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Abstract

Outer Membrane Vesicle (OMV) proteome has been involved into the pathogenesis of diseases and resistance of
microorganisms against a number of antibiotics, mechanism of action of probiotics and host-pathogen interaction
etc. We have enlightened the role played by extracellular vesicles proteomics in the pathogenesis of different
diseases related to human. Isolation succeeded by purification of ample amount of OMV from biological samples, is
one of the most important steps for further proteome related analysis. With the development of both labelled and
label-free methods used in proteomics, significant progress has been made in previous years in membrane
proteomics. Hence, it is important to review the biological significance of proteins found in the OMV fractions using
membrane proteomics approach. We have also explained methods used for isolation, purification and quantification
of OMV. In the present review, it can be concluded that proteomic study of outer membrane and extracellular
vesicles has now gained priority for the detailed study of disease pathogenesis, drug resistance, vaccine
development, cell signalling etc.

Keywords: Membrane proteomics; Outer membrane vesicles
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Introduction
Microorganisms communicate among themselves and with their

surrounding environment via membrane vesicles found in their Outer
Membrane Vesicle (OMV) for trafficking bacterial cell signalling
molecules to target cells around them. These molecules include nucleic
acids, proteins, some endotoxins and allied virulence factors. Gram-
negative bacteria are known to constitutively secrete OMVs in their
extracellular space. Their production is the response of bacterial stress
and crucial for taking up nutrients from the environment, carrying
endotoxic lipopolysaccharide, biofilm formation, quorum sensing,
genetic transformations, and pathogenesis. They facilitate enzymes to
reach their targets in a concentrated and protected irrespective of the
distance from its source. Adhesions, toxins, and immune modulatory
compounds containing OM vesicles that are synthesized naturally by
pathogenic bacteria, facilitates the spread of pathogenesis of bacteria
by enhancing its binding and invasion, resulting in cytotoxicity, and
modifying immune response of host [1]. OMVs are also reported to
behave as secretion system for factors related to virulence and toxins
inside a host, facilitate survival in the inter-species environmental
competition, intra- and inter-species communication, secretion of
proteins which are misfolded and aggregated (a novel stress response
mechanism) etc.[2]. Both pathogenic and non-pathogenic species of
Gram-negative bacteria are known to release vesicles [3-6],
including Escherichia coli [7,8], Borrelia burgdorferi [9], Neisseria spp.
[10,11], Bacteroides (including Porphyromonas) spp.
[12-14], Shigella spp. [15,16], Helicobacter pylori [17], Salmonella spp.
[18,19], Brucella melitensis [20], Campylobacter jejuni [21,22],
Xenorhabdus nematophilus [23], Vibrio spp. [24,25] Actinobacillus
actinomycetemcomitans [26], and Pseudomonas aeruginosa [27].
Studies related to the vesicles released by various origins of bacteria

suggest that these vesicles facilitate interactions between prokaryotic or
eukaryotic cells with and bacteria. Artificial outer membrane vesicles
have also been designed to study the role of OMVs such as OMV of
Pseudomonas aeruginosa [28]. OMVs reduce the toxic compound
levels like toluene resulting in the release of attacking phage thereby
protecting the bacteria [29,30]. OMVs based vaccines are capable of
conferring immunity against the various genotypes of Acellular
pertussis [31], Neisseria meningitis [32], Pseudomonas aeroginosa
[33], Bordetella parapertussis and Bordetella pertussis infection [34].
OMV and detergent extracted outer membrane vesicles (DOMV) are
also used as vaccine delivery system [35-39]. In this review, we have
discussed the significance of the different methods used for isolation
and characterization of the outer-membrane and extra-cellular
proteome.

Membrane vesicles
Prokaryotes, eukaryotes (archaea [40,41], Gram-negative and

Gram-positive bacteria [42-45], fungi [45-46] and parasites
[50,51] produce the spherical, membranous vesicles from the outer cell
surface. Archaeal membrane vesicles (diameter 90-230 nm) contain S-
layer proteins and membrane lipids, which has been obtained from the
surface of archaeal cell [41,52]. Archaea MVs produces both toxin [52]
and non-toxin [53] releasing vesicles. Microbial vesicles obtained from
parasites and fungi; include two types of vesicles [48,54]. Exosomes
(diameter of 50-100 nm) are known to be produced from intracellular
compartments and ectosomes, which are shed from plasma membrane
[55]. Exosomes are typically homogeneously shaped vesicles produced
during exocytosis of multivesicular bodies within the cell, while
ectosomes are ubiquitous in nature that assembled at and released out
from plasma membrane of cell [56]. Microvesicles (100-1,000 nm in
diameter), similar to OMV are produced from plasma membrane and
endosomal membrane compartment by hematopoietic cells, epithelial
cells, and cells of tumor. Proteins, mRNAs, microRNAs, and lipids
make up the bilayer proteolipids named as extracellular vesicles [55]. It
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is also important to note that Extracellular Vesicles (EVs) (similar to
bacterial OMV in component), which are released by various types of
mammalian cells, facilitates communication between different cells
[57]. Bacterial EV are proposed to contribute to intercellular
communication, bacterial survival and human pathogenesis as a novel
secretion system [58]. EVs can transport proteins, nucleic acids like
mRNAs and microRNAs [57]; transport membrane components
including receptors [59]; and protect the stuffs they are carrying from
getting degraded by many enzymes present in the extracellular region
[57]. Quantitative proteomic study of S. typhimurium revealed that
membrane vesicles released by bacteria are modulated by the envelope
proteins [60]. The location of membrane vesicle formation is the
protein enriched regions of envelope characterized by temporary
decrease in OM-PG and/ OM-PG-IM interconnections density [60] or
slight modulation in LPS structure [61] leads to the change in MV
formation. High conservation of protein domains enhances the
interconnections of OM-PG-IM and OM-PG envelope among
different Gram-negative bacteria [60] portray that these connections
play a crucial role in the vesicle release pathway of bacteria. Although
fungi, parasites, and archaea are not related taxonomically but several
basic features of vesicle production are same perhaps upon which lots
of other microorganisms have adapted additional mechanisms.
Archaeal MVs are synthesized and secreted by pinching the cell surface
off, a phenomenon reminiscent of eukaryotic SMVs and bacterial
MVs.

Formation of Outer membrane vesicles
Outer Membrane Vesicles (OMV) biogenesis without disrupting the

viability of bacteria still remains intangible. Various vesiculation
mechanism theories based on genetic and biochemical data have been
studied [62]. The ubiquitous process of vesiculation helps in the
survival of Gram-negative bacteria in different conditions of
environments [3]. Naturally produced membrane vesicles are very
distinct, closed blebs of outer membrane released by budding cells,
rather due to cell lysis or death [14,62-64]. The utmost rate of
membrane vesicle formation takes place at the end of log phase and is
plentiful at the sites of cell division, as explained for B. melitensis, E.
coli and Vibrio cholera [8,20-24]. The outer membranes of Gram-
negative bacteria consist of proteins, asymmetric lipid distribution,
phospholipids, lipoproteins and lipopolysaccharide (LPS). The
periplasm comprises of the peptidoglycan layer, occupant
housekeeping enzymes and proteins, and temporary intermediates of
secretory pathways. Native OMVs contain only lipids and protein of
the outer membrane as well as periplasm but do not contain
components of cytoplasm and inner membrane. This was confirmed
from density gradient-purified OMV analysis [62]. To understand the
mechanism of vesicle formation and release, deletion of yfgL gene,
leads to remarkable decline in formation and release of OMV and in
an adherent-invasive strain of E. coli K12 and E. coli (AIEC) [65]. A
lipoprotein is encoded by yfgL gene, which plays role in the formation
and/or degradation of peptidoglycan [66]. yfgL resulted in rise of the
peptidoglycan production and decrease in the lytic transglycosylase
synthesis which in turn reduce the turgor pressure on outer membrane
of cell [65]. This experiment revealed that in the synthesis of the

OMVs, LPS structure plays an important role directly and indirectly. In
general, non-pathogenic bacteria produce less number of vesicles than
their pathogenic counterparts [67,68]. PAO1 strain of P. aeruginosa,
has two types of O-antigen side chain, produce the highly charged and
long “B-band” form vesicles [27,69,70]. This strain also increases the
vesicle formation with the increment in B-band LPS under the
different condition (oxygen stress) [71]. Salmonella and P.
aeruginosa mutants also show the increase in vesicle production in
which LPS O-antigen side chain is missing [72,73] whereas mutation
in core of LPS result in decreased OMP expression [73-75]. Some
recent studies demonstrated that various pathways that manage
different environmental stresses that are faced by a pathogen inside
host body influence activation of pathways involved in OMV
formation of P. aeruginosa. These stresses increase the OMV
production, which does not depend on modulators of OMV formation
identified from previous studies, such as PQS, MucD and, AlgU,
homolog modulators of OMV synthesis in E. coli. It was also revealed
that B-band instead of A-band LPS was responsible for OMV
biogenesis induced by oxidative-stress. However, the process by which
increased OMV formation helps P. aeruginosa to adjust with stressful
conditions inside host body and survival, is yet to be studied [76].

Proteomic analysis of OMV and EVs
Outer membrane related proteins that are exposed on the surface

and extracellular proteins, play a role in adhesion, entry, transport of
nutrients, toxicity, suppression of host cell immune system and also
resistance to the antibiotic. Consequently, identifying and
characterizing the proteins associated with OMV can improve the
diagnosis of diseases and result in the development of new vaccine and
drug targets. Proteomics is considered as a major technique to study
membrane proteomics in detail under different diverse conditions
[77]. With the development of proteomic tools [77-80], considerable
progress has been done in recent years in the area of membrane
proteomics. Various methods that are employed in the membrane and
differential proteomics are unlabelled methods, labelled method and
most recent label free quantification methods [79,80]. Isotope labels
can be integrated into peptides metabolically, chemically or
enzymatically. In label free proteomics the mass spectrometry reveals
the mass differences and their proteomic quantifications can be done
by analyze their respective signal intensities. Every isolation and
purification method has its own merits and demerits and they are
paired to each other [79]. Based on the above introduction, it is also
important to explain the significance and use of OMV and
extracellular vesicle proteomics. Nowadays, numerous studies are
being performed on proteomic analysis of bacterial OMVs. Recent
progress in the studies of Gram-negative bacterial extracellular vesicles
implies that OMVs may function as intercellular communicasomes in
bacteria-bacteria and bacteria-host interactions [81]. Some studies
show that 70-80% OM- associated proteins make up the OMVs [82].
Hence, the surface proteomes have been analyzed to get a better
understanding of the mechanism related to virulence, drug resistance,
biofilm formation and development of new drug and vaccine targets.
Different steps of isolation, purification, quantification of OMV and its
significances have been outlined in Figure 1.
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Figure 1: Outline of different steps of isolation, purification and quantification of OMV and significances of OMV.

Isolation, purification and quantification of OMV and EV
Before performing the proteomics, it is important to review the

methods for the isolation and purification of the OMV. Methods used
for the isolation of the OMV and EV include ultracentrifugation and
precipitation [2]. The isolation of OMV starts from culture supernatant
after removal of cultured bacteria by centrifugation at 6,000 × g for 5
min. Supernatant was filtered via 0.22 µm sterilization vacuum filter
(V25) [83]. The non-OMV proteins are removed by filtration using the
cut-off of 50-100 kDa membranes before ultracentrifugation.
Precipitation of the OMV has been performed using ammonium
sulfate. A particular concentration of ammonium sulfate is required
for the isolation OMV therefore care must be taken to select the
concentration of the ammonium sulfate. For example in P. gingivalis,
OMV proteins are precipitated by 40% saturation of ammonium
sulfate [12,14] followed by the isolation of non-OMV proteins at 70%
saturation [84]. This shows that a proper concentration of ammonium
sulfate should be resolute carefully and imprecise binding of
extracellular proteins to ammonium sulfate-precipitated OMV is
exceedingly feasible [1]. The increase in protease during concentration
step may results in OMV associated protein degradation. Hence,
addition of corresponding inhibitor into the media prior to the
concentration step is required to prevent the degradation. The
precipitated and centrifuged OMV should then be reconstituted by
dialysis against suitable buffer before further investigations. Both these
isolation methods are unable to isolate OMV from the extra cellular
matrixes such as large protein complex and aggregates. These
impurities are removed by the density gradient centrifugation and gel

filtration. In the OMV, lipid content is more than secreted proteins and
its density is lower than other protein complexes, hence OMV, move
around to lighter fractions during the iodixanol density gradient
centrifugation [85]. Gel filtration is also employed for the purification
of the isolated OMV using Sephacryl S-500 column (i.e., N.
meningitidis OMV) [86], Sephacryl S-300 (Meiothermus ruber OMV)
[87]. Quantification of OMV can be done by light scattering based
single particle tracking [88] and flow cytometric analysis [89].
Bicinchoninic acid assay [90], Lowry [91] and Bradford [92], or by
image analysis of stained or immune-detected gel-separated sample,
are also used for OMV component quantification. Proteins extracted
OMV can also analyzed by immunoblot and densitometry [93,94]. The
purified OMV are characterized by TEM microscopy [60] or by gel free
and gel-based proteomics method followed by western blotting and
mass spectrometry [94]. To achieve the basic TEM images of OMV,
negative staining by 2% uranyl acetate has been performed [88]. Due
to excessive cross-linking of the proteins, image background becomes
complex and hard to study; therefore, fixation of the specimen has
been done by glutaraldehyde and formaldehyde followed by Immuno-
gold labelling to highlight the OMV components [27,96]. Examination
by fluorescence labeling confirmed the interaction of OMV with other
membranes, such as fusion with host-cell membrane before their entry
into the eukaryotic cell [97,98]. Phospholipids and fatty acids forming
the OMV membrane bilayers are also matter of interest which are first
extracted from OMV and then analyzed by thin layer chromatography
or mass spectrometry [99,100].
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Significance of OMV proteomics in virulence of pathogens
Membrane of Gram-negative bacteria comprises of two

polysaccharide bilayers, which consist of inner and outer membrane,
the periplasm in between. This complicates the process of virulence
factor secretion by the bacteria. These pathogens have developed
various strategies; of which few are pathogen-specific, so that virulence
factors can have admittance to the extracellular environment,
especially bloodstream or tissue cells of the host [101]. Due to the
cytotoxicity of A. baumannii OMV, virulence is induced in the host
organism [102]. Kwon et al., reported that some of the proteins
associated with OMVs named as chaperonin GroEL, AmpC-beta-
lactamase, 6,7-dimethyl-8-ribityllumazine synthase, and AbOmpA.
Among these proteins, several virulence factor linked proteins were
recognized: Putative Zn-dependent protease, bacterioferritin,
AbOmpA, catalase, putative protease, Cu/Zn superoxide dismutase,
putative phospholipase A1 precursor, putative serine protease, and
ferrichrome–iron receptor. Adaptive and innate immune responses are
modulated by interaction of PAMPs, such as lipopolysaccharide,
lipoproteins, outer membrane proteins, with PAMPs receptors in the
host cells [103,104]. Among the 26 different outer membrane proteins,
AbOmpA has been shown the interaction with the TLR-2 along with a
modulated immune response in dendritic and epithelial cells
[105,106]. In host epithelial cells, AbOmpA also facilitates the
adhesion and invasion mechanism of the bacteria [107]. Kwon et al.,
also studied about OMVs as a virulent factor. In doing so, the OMVs in
the absence of bacteria were treated with human cell line, which
revealed that AbOmpA was present in the cytoplasm, which signifying
that outer MVs directly hold multiple diverse virulence factors to host
cells. Cytotoxicity assay of OMVs suggests that these virulence factors
also alter the physiology of cells (elongation of the cell) [108]. Some
previous studies also suggested that 151 proteins of the strain 173 of A.
actinomycetemcomitans were identified with the help of LC-MS/MS
and via OMV proteome investigation and they were found to be
involved in virulence related mechanism. Identified protein such as
GroEL, LtxA, TdeA, Omp100, TadZ, RcpC, TadE, BilR1, TadG, TadF,
TadD, RcpC, RcpA, Pal, OmpA like protein, Omp18/16, and Omp39
are involved in the virulence related mechanism like cytotoxicity,
immune-reactivity and/or pro-inflammatory activity, drug targeting,
immune evasion and scavenging of iron and nutrients [109].

Proteins that are essential for the virulence of Pseudomonas
aeruginosa [110], and that of Helicobacter pylori [111] have been
identified through the LC-MS/MS analysis of outer membrane vesicles.
Proteomic profiling of OMV of Campylobacter jejuni using high
resolution LTQ-orbitrap spectroscopy identified 134 vesicular proteins
which have the significant role in the bacterial infection and
communication [112]. Virulence role of the OMV can also be
understood from the proteomic study of the samples obtained from the
septic human or rat serum [113,114]. Proteomic analyses of
extracellular proteins in the Acinetobacter baumannii have revealed
their role in defense machinery against the macrophagic attack and
also in the state of oxidative stress [115]. The proteomic profiling of
OMV of Myxococcus xanthus revealed that the OMV is rich in
proteins with hydrolytic functions [116]. Proteomic analyses of OMV
of Francisella novicida have also revealed its role in the pathogenesis
[117]. Quantitative proteomics analyses of heat stressed Clostridium
difficile helped to understand its physiological and metabolic functions
used during upshift of temperature mimicking pyrexia [118].
Proteomic study of outer membrane of the E. coli revealed over
expression FhuE and FhuA, and YbiL that have role in the iron
transport [119]. By differential proteomics study, the role of iron in the

continued existence of A. baumannii resistance strain (ATCC and
carbapenem) in human host is revealed [120,121]. Proteome of the
human host changes during Acinetobacter baumannii infection. Soares
et al, found that the alterations in the plasma proteome using DIGE
based differential proteomic analysis of the host infection with A.
baumannii as compared to controls [122]. FhuE receptor, ferric
acinetobactin receptor, ferrienterchelin receptor and ferric siderophore
receptor have been played a role in iron transport in the host,
identified in the membrane fraction of A. baumannii using DIGE
based proteomics tool. Wurpal et al., studied about EDTA-heat
induced outer MV biogenesis coupled with proteolytic treatment like
carbonate extraction, cell lysis, ultracentrifugation and 2D-DIGE
succeeded by MS/MS analysis of different uro-pathogenic E. coli
(UPEC) strains. This UPEC surface-exposed proteome analysis
demonstrated the constitutive proteins along with the various
virulence related proteins [82]. Current MS-based high-throughput
proteomic analyses of Gram-negative bacterial OMVs have identified
thousands of vesicular proteins and provided clues to reveal the
biogenesis and pathophysiological functions of Gram-negative
bacterial OMVs [81].

Significance of OMV proteomics in the study of drug
resistance and biofilm formation

Outer membrane act as a barrier between organism and host, hence
the drugs have to cross the membrane to exert its action. Outer
membrane vesicles are also known to possess chromosomal encoded
β-lactamases which causes the degradation of extracellular β-lactam
[123]. All Gram negative bacteria have been synthesized such as OM
vesicles by which they facilitate biofilm formation and many biological
functions namely virulence factors transportation and antibiotics
resistance [60, 124,125]. Bacterial mobility is highly conserved in all
Xanthomonas, and S. maltophilia species. Some recent studies related
to OMV associated virulence factor Ax21 was found in S. maltophilia
[126,127] while in Xanthomonas oryzae was found to contain the same
factor (named Omp1x) [128] which play a role in virulence and
biofilm formation [129]. In Xanthomonas pv. oryzicola this protein
expression is controlled by DSF quorum sensing system [130]. The
Diffusible Signal Factor (DSF) has a major importance in regulating
biofilm production as well as cell-cell communication in S. maltophilia
[131,132]. This factor system is also known to involve in co-
colonization of the pathogens like B. cenocepacia and P. aeruginosa
[131] in host lungs epithelial cells causing cystic fibrosis [133]. Devos
et al., measured the OMV mediated protein secretion of the homologs
of A×21 in the presence of BDSF, imipenem, PDSF and diffusible
signal factors via targeted and label-free LC Multiple Reaction
Monitoring technique. The results indicate large quantities of A×21
protein formation and packaging in OMVs that depicts the role played
by it in the biofilm production and antibiotic resistance. Utilizing
proteomic analysis, membrane vesicles of Staphylococcus aureus has
been shown to have role in antibiotic resistance and pathology [43].
Minami et al., the changes in proteomic profiles of DRM fractions
during cold acclimation using 2D-gel electrophoresis and mass
analysis [134]. RND multidrug efflux pump membrane fusion proteins
have been identified in the P. aeruginosa using membrane proteomics
approach [86,106,135-137]. Proteomic analyses of A. baumannii
explain that histidine metabolism also have major role in the biofilm
formation [138]. Outer membrane comparative proteomic analysis of
P. aeruginosa showed resistance against the ampicillin, kanamycin, and
tetracycline antibiotics [139]. Production of vesicles is also influenced
by antibiotics like mitomycin C, an inducer of Shiga toxin, used for
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treating Shigella dysenteriae. This increases the OMV size, toxicity and
production [15] while antibiotics like norfloxacin, ciprofloxacin,
fosfomycin, etc. are not responsible for altering OMV production or
toxicity. Carbapenem resistant A. baumannii has been already studied
using outer membrane proteomics between wild type and resistance
strain [108, 140-142]. Membrane proteomics result also showed that A.
baumannii displays a vigorous and adaptable metabolism [143,144].
Similarly, differential high-end isoelectric point proteome analysis of
Acinetobacter radioresistens reveals that with the help of aromatic
compounds, we can induce the envelope stress responses [145]. Using
differential quantitative proteomic analysis of OMVs from multidrug-
resistant A. baumannii, Yun et al, reported that carbapenem suppress
outer membrane proteins expression and increases the expression of
resistance nodulation cell division transporters and protein kinases
[146]. Using similar approach, Lee et al., explain the mechanism of
hetero-resistance mechanism induced by imipenem in the multi-drug
resistant A. baumannii [147]. Biofilm formation is one of the
important reasons for the persistence of A. baumannii on the surface
of host lung epithelial cells. Cabral et al., did the differential proteomics
of multi-drug resistant Acinetobacter cultured in three diverse
conditions (exponential, late stationary phase and biofilms stage) and
they also examine the effects of salicylate on the biofilm formation
which is a biofilm inhibitory compound. This multiple approach
strategy explained unique lifestyle of A. baumannii, which are involved
in both virulence and biofilms formation [148]. Differential
proteomics of the Porphyromonas gingivalis, Treponema denticola
suggest synergestic relationship in the polymicrobial biofilms
formation [149].

Extracellular vesicles (EV) proteomics in the study of human
diseases

EVs act as vehicles for intercellular communication and host
manipulation [150]. Cancer has traditionally been considered as a
human disease resulting from gene mutations but new finding suggest
that extracellular vesicles which are derived from tumour can carry
polypeptides, polysaccharides, DNA and RNA causative of cancer
progression [151]. Intake of the tumor derived extracellular vesicles
(EVs) by non-tumor cells can be converted into cancerous cell [152].
EV released by cancer cells also acts against the stress response [93].
Bioengineering of the membrane vesicles for the delivery of the siRNA
into the cancer cell and used in the cancer therapy [153]. Exosomes
secretion has been found to be key feature for the malignancy of the
different stages of the cancer growth and development [59]. The OMVs
released from Helicobacter pylori increases the chance of development
of gastric cancer [154]. Biomarkers have been identified form the
limited breast cancer tissue by membrane proteomics using
SRM/MRM proteomic analysis in combination with iTRAQ shotgun
analysis [155]. Proteomic analysis of purified MVs [156] from
colorectal cancer cells has been done using SDS PAGE and nano LC–
MS/MS analysis [157]. Tumor-derived MVs also have a role in
intercellular communication known as extracellular organelles
communicasomes [157]. The mitochondrial and endoplasmic
reticulum fraction of breast cancer cell lines ZR-75-1 cells and MDA-
MB-231 cells treatment with Dox-TRAIL identified new differentially
abundant proteins using the iTRAQ labelling coupled with
multidimensional LC-MS/MS [158]. Proteomic analysis also explained
that serum glycoprotein can be a reliable biomolecule for the
identification of biomarkers in the pancreatic cancer [159].
Extracellular vesicles are shed to the extracellular region by most
eukaryotic and prokaryotic cells but recently it has been reported in

Gram-positive bacteria, mycobacteria and fungi [160]. EV proteomes
reflects developmental phases of Bacillus subtilis where it shows the
formation of EV during sporulation is strongly supported by
delineation of protein content that differs from proteome of EV formed
by vegetative spores [58].

Significance of OMV in the development of probiotics
Probiotics are the microorganisms that provide health benefits when

consume. E. coli Nissle 1917 (EcN) is the well-known probiotic that is
used in treatment of intestinal disease. This enhances the useful
microbiota and the homeostasis of the gastro-intestines. Using the LC-
MS/MS analysis, Aguilera et al., identified 18 different proteins that
have been found to be strain specific and others are outer membrane
vesicles of pathogens. These outer membrane vesicles shows binding
with the host and increase the beneficial and positive effects on the
host intestinal function [161]. Moreover, OMVs are known to be
strong immunomodulatory, so they can also be used as potent
pathogen-free vaccines after modifying its immunogenic contents.
Proteomic analysis of OMV has enabled researchers to identify new
vaccine targets against various pathogens by increasing host immune
responses. This includes neonatal meningitis E. coli (NMEC) [136],
group A Streptococcus [160] and Neisseria meningitidis serogroup B
[161].

Conclusion and Future Perspective
OMV proteomics gives a better and clear understanding of the role

of various host micro-environments that contribute to the pathogen
survival. Because of their role in communication between species,
interaction of host and pathogen and adaptability to various
environment conditions, OMV is potential source for the vaccine
development. Isolation followed by purification of sufficient quantity of
outer membrane vesicles from biological samples is the most crucial
step for subsequent investigations such as quantitation and
characterization. With the advancement in the proteomic methods
significant progress has been made in the discipline of extracellular
proteomics and OMV. Therefore, outer membrane and extra cellular
proteomics has now become much more apparent as methods of
choice for studying the pathogenesis of diseases, drug resistance,
vaccine development, cancer biology, cell signalling etc. Various
approaches [162-163] have been tried to develop effective drug against
the pathogen and OMV proteomics can pay a significant role in this
development. Study of these vesicles proteomics will also help in the
better understanding of etiology of the diseases and hence help in the
development of effective drug.
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