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Abstract

Newly characterized defence processes based on extracellular DNA-based trapping in mammals point to new
targets for control of diseases ranging from lupus to sepsis to cancer. Emerging evidence that this is an ancient
underpinning of immune systems includes the observation that DNA-based extracellular traps also operate in plants.
Potential clinical applications include the use of plant metabolites as signals to modulate plant and animal
extracellular trapping responses.
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Commentary
In 2004, neutrophil extracellular traps (NETs) were first reported to

be a component of the mammalian immune system [1]. In response to
microbial challenge, neutrophils produce and export a
macromolecular complex that functions as a trap to immobilize the
invading pathogen [2]. Extracellular DNA (exDNA) is a structural
component of NETs, such that treatment with DNase eliminates the
capacity of cells to control microbial invasion [3,4]. Rapid progress in
describing the role of exDNA-based trapping in defense by
neutrophils, eosinophils, and other cell types and its interaction with
bacterial, fungal, viral, and protozoan pathogens is underway [5-8].
ExDNA also has been implicated in autoimmune diseases including
lupus, rheumatoid arthritis, and cancer [9-11]. It is now clear that
exDNA plays a critical role in cellular defense in animals, and that
microbial expression of extracellular DNase (exDNase) is a key
virulence factor in pathogenesis [12-15]. The human pathogen Group
A Streptococcus has been known for decades to produce exDNases; all
strains produce at least one, and most produce several whose
expression is induced by contact with host cells [16]. A strong
correlation between virulence and exDNase production among strains
was presumed to be a nonspecific scavenging mechanism unrelated to
pathogenicity. As one example of such a correlation, exDNase is
produced by all tested pathogenic strains of Fusobacterium
necrophorum, but closely related nonvirulent strains do not express
this trait [17]. Fungal pathogens of mammals also secrete exDNase,
whose levels are correlated with virulence [18].

A phenomenon of microbial 'extracellular trapping' also occurs in
plant cells called 'border cells' (Figure 1). These specialized cell

populations regulate microbial colonization of root tips housing
meristems that control plant growth and development [19]. As with
mammalian bone marrow cells that produce neutrophils, the root cap
is programmed to produce a set number of border cells [20-22]. In
response to signals including pathogens, metals, and other elicitors,
cell cycle is induced, renewed mitosis is initiated, and new cells begin
to detach into the environment within 5 minutes [23,24]. In a survey
of >50 diverse monocot, dicot and gymnosperm species, association of
the plant pathogen Agrobacterium tumefaciens with border cells of
each plant was correlated with virulence [25]. Virulence also was
correlated with the development of rope-like structures enmeshed
with bacteria and extending between border cells (Figure 2A). The
significance of these host-microbe specific phenomema was not clear
until extracellular histone was discovered among border cell-secreted
proteins [26]. Histone-linked extracellular DNA (exDNA) is a key
component of NETs [1,2]. Our discovery that histone H4 is among the
proteins secreted from plant cells suggested parallels with innate
immunity in animals. Like neutrophils, border cells now have been
shown to produce exDNA-based traps that protect growing root tips
from invasion by fungal pathogens; when the exDNA is removed by
treatment with DNase at the time of inoculation, root tip infection
increases from <1% to 100% [27]. Staining with DNA-binding
molecules such as Sytox green, DAPI, and toluidine blue (Figure 2B,C)
reveals structures similar in appearance to NETs [28]. Individual
border cells also produce a mucilaginous capsule (Figure 3) similar to
that appearing on bacterial cells stained with India ink [29]. Both types
of extracellular structures are induced in response to pathogens,
metals, and other elicitors [23], and both are eliminated in response to
DNase I [27,30]. Plant pathogens produce exDNase activities whose
role in reversal of extracellular trapping will be of interest as an avenue
to explore for application in agriculture and medicine [19,31].
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Figure 1: Cell cycle control of border cell production and delivery. (A) Meristematic cells (1) within the root cap undergo cell division and
then differentiate into specialized cells (2) that sense gravity and other signals to control direction of root growth. Cells at the cap periphery
(3) secrete mucilage as border cells (4) separate into the environment. (B) Upon exposure of the root tip to water, border cells (arrows)
disperse instantaneously into suspension. Cell viability in most species is >90%, as revealed by treatment with the vital stain fluorescein
diacetate, which accumulates only within living cells (inset).

Figure 2: Plant extracellular traps: Development of mucilaginous
strands similar in appearance to mammalian NETs. (A) When
pathogenic bacteria are incubated with border cells (bold black
arrow), conspicuous strands enmeshed with masses of trapped,
inert bacteria (black arrow) develop rapidly, leaving the
background largely free of actively swimming bacteria. (B) When
toluidine blue is added to water as border cells (bold black arrows)
disperse from the root cap periphery (white arrow), strands similar
in appearance to NETs (black arrows) are revealed instantaneously.
(C) Similar strands (black arrows) are evident when toluidine blue
is added to detached border cells (bold black arrows).

Figure 3: Plant extracellular traps: Capsule formation on individual
border cells. (A) As border cells detach from the root cap, in the
absence of microbial populations, a small capsule ca 2-3 microns in
diameter (bold arrow) is revealed by adding India ink, which does
not penetrate the mucilaginous matrix. (B) When pathogenic
bacteria are added, the capsule as revealed by India ink expands by
>10-fold within 5 minutes, and bacteria (arrows) can be seen
trapped throughout the expanding matrix.

Plant and animal defense pathways share many common elements
[32-35]. As such, plant metabolites have long been of interest in
modulating human diseases, with salicylic acid and aspirin as one
enduring example of success in application [36]. Plant cells, whose
trapping responses can be induced in a synchronous fashion within
minutes, may provide a convenient model system to identify signals
that control exDNA production and delivery, and to dissect
mechanisms by which eukaryotic extracellular trapping occurs [37].
Understanding how such signals from plants may participate in the
trapping process in plants, the natural host extracellular environment
may help facilitate efforts to use them to control plant and human
health [38].
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