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Recent clinical and laboratory findings have attracted much interest 
in homocysteine (Hcy) because the latter is relevant to numerous 
medical conditions. Elevated plasma level of Hcy (eHcy) is a recognized 
independent risk factor for cardiovascular disorders [1,2], causing 
arthrosclerosis and myocardial infarction. Additionally, eHcy has been 
observed in a number of neurological disorders including stroke [3], 
dementia, Alzheimer’s disease (AD) [4], Parkinson’s disease (PD) [5], 
and amyotrophic lateral sclerosis (ALS) [6]. 

Hcy is an intermediate metabolite of the essential amino acid 
methionine involving DNA metabolism via mythylation. Hcy can 
be converted into either methionine or cystathione by the enzymes 
methionine synthase, which requires B12 as a cofactor to remethylate 
Hcy to methionine, or cystathione β-synthase, which controls trans-
sulfuration of Hcy to cystathione and requires B6 as a cofactor; and 
methyltetrahydrofolate reductase (MTHFR), which requires folate for 
reaction. In physiologic conditions, Hcy is converted to methionine 
which is activated by ATP to form S-adenosylmethionine (SAM) 
and serves as a universal methyl donor. The transfer of SAM’s methyl 
group to an acceptor molecule generates S-adenosylhomocysteine 
(SAH) which is then hydrolyzed and regenerates homocysteine [7]. 
This hydrolysis is a reversible reaction that favors the synthesis of SAH 
which is also a potent inhibitor of methylase enzymes. Thus, an elevated 
intracellular SAH or a low SAM/SAH ratio may predict methylation 
deficits [7], which are critical for neurological function. The plasma 
level of Hcy is determined primarily by adequate dietary intake and 
vitamin status. eHcy can be caused by either a deficiency of B12 or 
folic acid alone, or in combination, or genetic factors, such as C667T 
MTHFR polymorphism. 

eHcy likely exerts its adverse effects via direct and indirect 
intracellular actions. For example, eHcy stimulates free radical 
production, provokes oxidative stress response, increases cytosolic 
calcium level, interferes with mitochondrial function, depletes ATP 
reserve, impairs transmethylation of DNA causing DNA breakage, and 
results in hypersensitivity to excitotoxicity and apoptosis [8-10]. Of 
note, depletion of cellular ATP is a pivotal factor in neurodegenerative 
disorders such as AD, PD, ALS, and Huntingdon’s disease [11,12]. 
eHcy may potentiate synaptic glutamate receptor activity either 
directly [13] or indirectly via its metabolite L-homocysteic acid [14], 
thereby altering synaptic functions. These actions can be diminished 
by metabotropic glutamate receptor antagonists [10, 15]. Further, eHcy 
may compromise anti-oxidative capacity by decreasing glutathione 
peroxidase activity [16] and tissue levels of vitamins A, C and E 
[17]. These adverse effects of eHcy on anti-oxidative activity occur at 
multiple levels and can be modified by administration of N-acetyl-L-
cysteine, vitamin C or vitamin E [18]. Interestingly, supplementation 
of folate is not as effective as N-acetyl-L-cysteine, vitamin C or vitamin 
E in protecting against Hcy-induced apoptosis [19] but capable of 
reducing intracellular superoxide levels independently from Hcy levels 
[20], indicating a different anti-oxidative mechanism of folate from that 
of Hcy. 

Recent studies suggest that eHcy is an independent risk factor 
for cardiovascular diseases and responsible for about 10 percent of 
total risk [2]. The relationship between plasma Hcy levels and risk of 

cardiovascular diseases and stroke is as follows: 7 µM, low; 8-11 µM, 
moderate; 12-16 µM, high; 16 µM, very high [21]. An increase of 1 
µmol/l in plasma Hcy corresponds to a 151 gram decrease in birth 
weight in the third trimester of Japanese women who’s intake of folate 
was only dietary [22]. Additionally, evidence from clinical studies 
relating eHcy to neurologic disorders appears to be compelling [3-6,8], 
though the possibility that eHcy may be related to the side effects of 
medication, such as levodopa, [5,23] and normal physiologic conditions 
[3] cannot be dismissed. eHcy may have an uninformed impact on
neurodegeneration. Laboratory studies showed eHcy potentiates Aβ
neurotoxicity in cultured neurons [15]; enhances the susceptibility of
dopaminergic neurons to environmental toxic insults such as rotenone, 
iron, and MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine)-
induced dopaminergic neuronal death in a mouse model of PD [24];
and accelerates motor neuronal death [25,26]. Clinical studies have
documented that eHcy causes vascular endothelial cells dysfunction
leading to hypercoagulation, atherosclerosis and stroke [3], which may, 
in turn, play a role in the pathogenesis of neurodegenerative disorders
[8]. Notably, those neurologic disorders commonly occur in late adult
life, which may suggest possible cumulative effects, such as Hcy, from
environments with possible genetic predispositions. Importantly, eHcy
level is related with various physiologic and pathologic conditions
including old age [3], male sex, cigarette smoking [27], chronic renal
insufficiency, high blood pressure, elevated cholesterol level, and lack
of exercise [28].

Currently there is no cure for neurodegenerative disorders. The 
best approach in clinical practice is primarily prevention through 
modification of acquired risk factors. As eHcy may play a role in 
promoting early onset of various neurologic disorders, exacerbating the 
symptoms, and accelerating neurodegeneration, eHcy may become a 
therapeutic target in tertiary management although evidence of Hcy 
as a definite risk factor for the development of neurodegenerative 
disorders is still lacking. Nevertheless, information that eHcy may be 
causally relevant to neurologic disorders could have important clinical 
implications, because administration of vitamin B-complex with folate 
to reduce eHcy is inexpensive, potentially effective, and devoid of 
adverse effects, therefore, having an exceptionally favorable benefit/
risk ratio [2,29,30]. However, the efficacy in prevention of neurologic 
disorders remains to be elucidated and in debate [21]. Well-designed 
prospective randomized placebo-controlled clinical trials are warranted 
to evaluate the efficacy of administration of vitamin B-complex with 
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folate to patients with eHcy in preventing the onset, or mitigating the 
severity, of neurologic disorders. 
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