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The physiology of hemeoxygenase, its isoenzymes and tissue 
of origin

Heme oxygenases are the rate limiting enzymes that catalyze 
the metabolism of heme into equimolar concentrations of carbon 
monoxide (CO), free iron and the bile pigment biliverdin. Biliverdin 
is further converted to bilirubin by bilirubin reductase [1,2]. CO, the 
product of heme degradation acts as a physiological stimulator of 
soluble guanylate cyclase (sGC) and regulates neuronal, vasodilatory 
and inflammatory signaling [3]. The functional role of CO was verified 
by using Zinc protoporphyrin (ZnPP), the competitive inhibitor of 
HO-1, which acts by inhibiting soluble guanylate cyclase (sGC) [4].

In humans there are three active isoforms of heme oxygenase 
namely, HO-1, HO-2 [1,5] with HO-3, the least active isoenzyme 
having 90% homology with HO-2 [6]. Both HO-1 and HO-2 
isoenzymes are products of two distinct genes and share approximately 
40% amino acid homology [7]. HO-1 is a 32 kDa protein also known 
as heat shock protein-32 (Hsp32) which was first purified from rat 
liver [8]. Subsequently, it was also identified in humans [9] and was 
found to be constitutively expressed in human renal inner medullary 
cells [10], Kupffer cells in the liver [11], purkinje cells in the cerebellum 
[12] and CD4+/CD25+ regulatory T lymphocytes [13] under normal 
physiological conditions. This wide range of expression of HO-1 in 
different organs was a clue of its important role for different organ 
functions. The expression of HO-1 can also be induced by variety 
of stimuli such as its own substrate heme, reactive oxygen species 
(ROS), hydrogen peroxide, heavy metals, hypoxia, NO, ultraviolet 
radiation, prostaglandins, cytokines, growth factors like insulin 
and lipopolysaccharide and certain therapeutic agents such as non-
steroidal anti-inflammatory drugs, antidiabetic thiazolidinediones 
and statins [14-18]. HO-2 is a 36 kDa protein which is found to be 
expressed in testis, brain, endothelium, distal nephron segment, liver 
and gut myenteric plexus [1,2]. The biological functions of HO-1 are 
mainly associated with a basic adaptive and defensive response against 
oxidative and cellular stress and to maintain cellular homeostasis 
[19,20]. Numerous cell signaling pathways including extracellular 
signal-regulated kinases ERK1 and ERK2, c-jun-NH2-kinase (JNK) 
and p38 kinase, protein kinase C (PKC), phosphoinositol and protein 
kinase A mediate the transcription of HO-1, which ultimately regulates 

cell survival and offers cytoprotection [21]. The central role of HO-1 
in protection against oxidative stresses was demonstrated in HO-1 
knockout mice [22] and also in a patient with an inherited HO-1 
deficiency [23] where results showed a reduction in the protective 
responses against oxidant stress (Figure 1)

CO generated during heme catabolism assists in cytoprotective 
effects via anti-inflammatory, anti-proliferative and antiapoptotic 
activity [21]. Cross talk exists between HO system and NOS system 
[24]. It is evident that the NO/NOS system induces CO/HO system 
while CO/HO system reciprocately regulates the NO/NOS system 
[25]. HO can regulate the production of NO via multiple mechanisms 
(Maines, 1997). NO/HO-1 system has been shown to produce pro-
tumoral effects through decrease cell growth inhibition and induction 
of cell survival [26].

Prelude to the protective effect of HO-1 in cancer cells were the 
various preclinical and clinical studies demonstrating a protective 
role of HO-1 in cardiovascular, renal disease and ischemia perfusion 
injury. Wang et al. [27]  reported that sustained HO-1 upregulation 
in the failing heart serves to mitigate detrimental left ventricular 
(LV) remodeling via antioxidant, antihypertrophic, antifibrotic, 
and proangiogenic effects in mice [27]. Moreover, a clinical study in 
patients with peripheral artery disease showed that HO-1 genotype 
exerts protective effects against adverse coronary events [28]. Similarly, 
HO induction exerts a protective effect on renal function in animal 
models of rhabdomyolysis, cisplatin nephrotoxicity and nephrotoxic 
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Abstract
Effective and safe anticancer treatment remains a challenge to the scientific community. Major disadvantage 

inherent to current anticancer strategies is their lack of targeting tumour cells, or tissues resulting in sever dose limiting 
toxicity. Researches in the field of anticancer drug delivery are currently exploring the potentials of nanotechnology to 
realize the “magic bullet” professed by Paul Ehrlich at the turn of the 20th century. Heme oxygenas-1 (HO-1) is over 
expressed as a survival factor in tumour tissues to withstand adverse tumour micro environmental factors such as 
hypoxia, hypoglycaemia, and significant acidity. Inhibition of HO-1 activity thus can be a viable anticancer strategy. 
However HO-1 is essential for multiple physiological and adaptive responses in normal tissues of different organ 
systems. Utilizing nanotechnology advancement to selectively inhibit HO-1 activity in tumour tissue is being currently 
explored as a novel strategy for effective anticancer management. In this review we discuss the function of HO-1 in 
physiological conditions, its role in cancer progression and the potential therapeutic implication for selective inhibition 
of HO-1 in tumour tissues.
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nephritis [29]. Furthermore, HO-1 derived CO provided protective 
effects in acute kidney injury and hypertension. In addition, HO-1 
derived CO increased blood carboxyhoemoglobin levels, renal blood 
flow and glomerular filtration [30]. In vivo expression of HO-1 protects 
kidneys from acute ischemic failure or ischemia/reperfusion injury [31] 
and cardiac xenografts from rejection [32]. Also, exposure of kidney 
graft recipients to low concentrations of HO-1 derived CO imparted 
significant protective effects against renal I/R injury and improve 
function of renal grafts [33]. The wealth of these studies warranted the 
evaluation of the role of HO-1 in solid tumors.

Role of HO-1 in tumor progression and tumor maintenance

While the HO-1 mediated cyto-protective effect plays an essential 
role in adaptive protection of different organs against oxidative 
stress, it can also shift the endogenous balance between apoptosis and 
proliferation towards an anti-apoptotic and anti-proliferative status, 
thereby promoting cancer formation and maintenance. HO-1 over 
expression was demonstrated in various cancer cells compared to 
surrounding healthy tissue leading to an increased survival of neoplastic 
cells [34]. In addition, HO-1 gene polymorphism was associated with 
an increased chance of cancer development [35]. 

HO-1 is over expressed in various tumor tissues derived from all 
the three germ layers such as brain tumors, lung cancer, hepatoma, 
colon carcinoma and prostate carcinoma [36-41]. HO-1 was induced 
in cancer cells by different stimuli. For example, in Kaposi sarcomas, 
HO-1 is induced by a Kaposi sarcoma-associated herpes virus (KSHV) 
[42] and in chronic myeloid leukemia and mast cell neoplasm it was 
induced by oncogenes BCR/ABL fusion kinase [43] and KIT D816V 
[44], respectively. Moreover, HO-1 was induced by NO in AH136B 
hepatoma [45] and by hemin and cadmium in human gastric cancer 
cells [46]. Finally, HO-1 can also be induced in cancer cells in response 
to chemotherapy, irradiation or photodynamic therapy [47-49]. The 
inherent over expression either in response to tumor microenvironment 
or in response to suboptimal anticancer therapy can thus provide a 
valuable therapeutic opportunity for treatment to both primary as well 
as refractory tumors (Figure 2).

Although, exact mechanism by which HO-1 causes increased 
proliferation and survival of cancerous cells is uncertain, some of 
the widely reported processes include, antiapoptotic effects, altered 
expression of cell cycle and promotion of angiogenesis [19,34]. HO-1 
effect on the cell cycle is mainly mediated through the cell cycle 
regulatory protein, p21. HO-1 activation reduces the expression of p21 
in endothelial cells, melanoma and colon carcinoma [50,34]. However, 
p21 expression was found to be up regulated in thyroid carcinoma [51] 
and gastric cancer [46].

The antiapoptotic effects of HO-1 have been documented in 
various cancer cells. HO-1 blocks apoptosis by three major pathways, 
namely, decreased intracellular pro-oxidant level, increased bilirubin 
level and elevated CO production [19]. Lin et al. [52] demonstrated 
that nuclear localization of HO-1 is an important signaling event in 
cancer cells which may up regulate genes that provide cytoprotection 
from oxidative stress [52]. In rat AH136B hepatoma cells, HO-1 exerted 
anti-apoptotic effects against oxidative stress induced by NO [45]. 
In melanoma cells, HO-1 overexpression caused resistance against 
oxidative stress and consequently leads to tumor growth in vivo [34]. 
The cytoprotective role of HO-1 has been shown to be dependent on 
p38 MAPK and PI3K/Akt signal transduction pathway which further 
modulate the expression of apoptosis related genes [5]. Specifically, 
antiapoptotic effects of HO-1 in gastric cancer cells are independent 
of p53 status in a p38 MAPK and ERK mediated pathway and show 
elevated caspase inhibitory protein2 (c-IAP2) and decreased caspase3 
activity [46]. In addition, the increased activity of HO-1 was associated 
with increased nuclear localization of NFκB. The antiapoptotic effect 
of HO-1 was also reported in thyroid cancer cells [51]. This effect 
was mediated via activation of a p38 MAPK and ERK. Moreover, 
Busserolles et al. [50] reported that HO-1 produced resistance to 
apoptosis in colon cancer cells by modification of the Bcl-2/Bax ratio 
towards survival [50]. This effect was independent of p38 but mediated 
via the Akt pathway. In bladder cancer, HO-1 induced by hypericin-
photodynamic therapy required functional p38 MAPK and PI3K 
pathways to confer a cytoprotective effect, probably through the control 
of the nuclear availability of the Nrf2 pool [48]. Furthermore, Banerjee 
et al. [53] reported the role of the Ras-Raf-ERK pathway that activates 
the expression of HO-1 in human renal cancer cells [53]. This further 
mediates anti-apoptotic signal leading to cancer cell survival. The 
cytoprotective action of HO-1 was also enhanced by supplementation 
of cultured cells with biliverdin or bilirubin as shown in hepatoma and 
colon carcinoma cells [45,50]. However, HO-1 derived CO was unable 
to provide cytoprotection in colon carcinoma, gastric cancer cells and 
chronic myelogenous leukemia [43,50]. 

Koiso et al. [54] reported the role of HO-1 in the modification 
of differentiation of human myeloid leukemia cells (K562) [54]. 
Similarly, Wang et al. [55] reported the association of high expression 
of HO-1 and tumor differentiation in gall bladder cancer [55]. Further, 
Mayerhofer et al. [56] reported that HO-1 is involved in BCR/ABL-
dependent survival of CML cells [43]. 

Another mechanism by which HO-1 leads to cancer cell survival is 
by offering resistance to anticancer treatment as shown in pancreatic 
cancer [47], colon cancer, lung carcinoma [39] and chronic myeloid 
leukemia [43,56]. The enhanced sensitivity of cancer cells towards 
radiotherapy and chemotherapy was further explored by therapeutic 
inhibition of HO-1 in these cells.

Figure1:  Factors involved in HO-1 expression in various tissues.

Figure 2: Factors activating HO-1 expression in tumors.
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HO-1 may also play a role in tumorigenesis by reducing antitumor 
immunity and anticancer immunotherapy. It is established that 
HO-1 exerts T cell immune suppression thereby generating induced 
T regulatory cell (Treg) activities and helping cancer cells to escape 
immune response [57]. Importantly, HO-1-specific CD8+T cells were 
detected ex vivo and in situ among T lymphocytes from malignant 
melanoma, renal cell carcinoma and breast cancer patients which 
effectively suppressed cell immune responses [58]. HO-1 specific T 
cells isolated from the peripheral blood of cancer patients inhibited 
cytokine release, proliferation and cytotoxicity of other immune cells.

Recently, Tauber et al. [59] carried out gene expression profiling 
of HO-1 and reported its association with tumorigenesis. They 
demonstrated that the protein network downstream of HO-1 modulates 
adhesion, signaling, transport, and other critical cellular functions 
of neoplastic cells and therefore promotes tumor cell growth and 
dissemination [59]. The role of HO-1 gene promoter polymorphism 
is studied in various cancer patients and its association with cancer 
development is established. For example, Vashist et al. [60] evaluated 
the prognostic value of the transcription controlling GTn repeat 
germ line polymorphism in the promoter region of the HO-1 gene in 
curatively resectable pancreatic cancer patients. They found that the 
short GTn allele (SGTn) was associated with aggressive biological tumor 
behavior. Furthermore, SGTn had the worst disease-free and overall 
survival. They also reported a steadily increasing risk between LL, SL, 
and SS genotype patients for larger tumor size, presence of lymph node 
metastasis, poor tumor differentiation and higher recurrence rate [60]. 
Similarly in urothelial cancers, constitutive expressions of HO-1 were 
associated with the presence of SGTn [61]. Some studies have also 
reported the association of higher frequency of long GTn allele (LGTn) 
and greater risk of cancer as shown in patients with oral squamous cell 
carcinoma [62], lung adenocarcinoma [35], esophageal squamous cell 
carcinoma [63], breast cancer [64] and gastric adenocarcinoma [65].

Role of HO-1 in angiogenesis and metastasis

Tumor progression beyond 2 mm is totally dependent on 
efficient blood supply [66]. Further access of tumor cells to functional 
blood vessels is a prerequisite for its metastasis to distant organs. 
Angiogenesis is the process of formation of new blood vessels which 
supply nutrients for growing tumors. Tumor angiogenesis thus, is 
essential for the development and metastasis of tumors [66]. HO-1 has 
shown proangiogenic potential in addition to the cytoprotective effects. 
It was reported that genetic over expression of HO-1 in endothelial 
cells increased production of VEGF and consequently produced 
endothelial cell proliferation, migration and formation of capillary-
like tube structure [67]. Soares et al. [32] first demonstrated that the 
overexpression of HO-1 prevents apoptosis in endothelial cells [32]. 
This anti-apoptotic effect was mediated via degradation of p38α MAPK 
isoform [68]. 

HO-1 promotes endothelial cell proliferation and tumour 
vascularization in various types of cancers [69]. For example, 
expression of HO-1 increases the angiogenic potential of murine 
melanoma resulting into increased tumor vascularization [34]. In 
human gliomas and vertical growth melanomas, HO-1 expression 
was observed in infiltrating macrophages leading to increased vascular 
density and tumor vascularization [12,70]. Furthermore, in melanoma 
and oligodendroglioma, expression levels of HO-1 in macrophages 
correlated with tumor cell invasiveness and poor prognosis [36,70]. 
HO-1 stimulated in vitro tumor angiogenesis and increased endothelial 
cell survival in pancreatic carcinoma [69]. Recently, Miyake et al. [61] 
demonstrated that overexpression of HO-1 promotes angiogenesis 

in urothelial carcinoma cells [71]. In addition, inhibition of HO-1 
in vivo decreased tumor growth and micro vessel density (MVD) by 
suppressing angiogenic factors, particularly HIF-1α and subsequently 
VEGF. Furthermore, the principal role of HO-1 in angiogenesis was 
confirmed through administration of HO-1 inhibitor or siRNA which 
showed decreased VEGF expression and cell survival as shown in 
endothelioma, hepatocellular carcinoma, lung carcinoma and in 
tumors formed by transformed fibroblasts [72,42,73,41]

As angiogenesis further leads to the metastasis, the effect of 
HO-1 expression on metastasis has also been studied. Was et al. [34] 
reported that expression of HO-1 in melanoma cells leads to the 
increased number of metastasis in lung which further shortened the 
survival of mice [34]. Similarly, pancreatic cancer cells over expressing 
HO-1 produced increased lung metastasis in mice [69]. In prostate 
carcinoma, silencing of the HO-1 gene reduced cell invasion in vitro 
and inhibited growth of primary and metastatic tumors in vivo [74]. 
Recently, Chong et al. [75] reported that overexpression of HO-1 can 
enhance tumor metastatic ability through cell invasiveness in patients 
with NSCLC [75]. 

However, the ability of HO-1 to produce metastatic effects remains 
controversial. For example, endogenous HO-1 inhibits migration and 
the invasive capacity of certain prostate cancer cells [76]. Furthermore, 
in MCF-7 breast cancer cells, HO-1 inhibited invasion induced by TPA 
[77]. Also, colorectal cancer patients expressing HO-1 showed lower 
rate of lymphatic tumor invasion and fewer lymph node metastases 
[78] and in oral carcinoma, HO-1 was suggested as a marker of low risk 
of metastasis. These data suggests that the role of HO-1 in metastasis is 
cell specific and in some cases it can paradoxically reduce the metastatic 
ability of cancer cells (Figure 3). 

Therapeutic implication of HO-1 inhibition

Numerous studies have reported the therapeutic implications 
of HO-1 in various solid tumors. Berberat et al. [47] reported higher 
expression of HO-1 in human pancreatic tumors [47]. The targeted 
knockdown of HO-1 expression led to pronounced growth inhibition 
of the pancreatic cancer cells and increased sensitivity towards 
radiotherapy and chemotherapy [47]. Similarly, Sunamura et al. 
[69] demonstrated that HO-1 over expression leads to pancreatic 
cancer aggressiveness, by increasing tumor growth, angiogenesis and 
metastasis. The inhibition of HO-1 expression significantly decreased 
the tumor growth and lung metastasis in SCID mice inoculated with 
Panc-1/hHO-1 cells [69]. These studies show that administration of 
HO-1 inhibitors might be effective for the treatment of pancreatic 
cancers. 

HO-1upregulation was also reported in human hepatocellular 
carcinoma cells (HCC) where it was associated with poor prognosis 

Figure 3: Possible antitumor mechanisms of HO-1 inhibition in tumors.
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due to its protective and anti-apoptotic activity [41]. Down regulation 
of HO-1 resulted in cytotoxic effects in hepatoma cells both in vitro and 
in vivo [37,45]. Over expression of HO-1 contributes to tumor radio-
resistance in HCC and indicates the potential therapeutic benefits of 
HO-1 inhibition in tumor tissues prior to hepatic irradiation [79].

Hill et al. [80] reported the higher expression of HO-1 in human 
breast cancer cells [80]. They showed that HO-1 inhibited human 
breast cancer cell proliferation. This study reported for the first 
time the anti-tumor activity of HO-1 in breast cancer cells and was 
contradictory to the anti-apoptotic effects of HO-1 in other types of 
cancers. In addition, HO-1 also inhibited the invasion and migration 
of breast carcinoma cells [77]. 

In addition to solid tumors, abnormal expression of HO-1 has 
been linked to oncogenesis and chemo resistance in hematological 
malignancies. It is reported that HO-1 is constitutively expressed in 
primary CML cells [43] and acts as a survival molecule in CML cells, 
as over expression of HO-1 inhibited apoptosis induced by BCR/
ABL tyrosine kinase inhibitor imatinib (STI571). In another study, 
Mayerhofer et al. [43] showed that inhibition of HO-1 leads to the 
growth inhibition of imatinib-sensitive as well as imatinb-resistant CML 
cells [56]. HO-1 is also overexpressed in human primary acute myeloid 
leukemia (AML) cells where it offers protection from chemotherapy-
induced apoptosis [81]. Interestingly, combined inhibition of HO-1 
and NF-κB significantly induced apoptosis in AML cells and thus 
provided a novel therapeutic approach to treat chemotherapy-resistant 
forms of AML [82].

In addition, HO-1 inhibition has been reported to have 
advantageous therapeutic effect on mast cell (MC) neoplasm. HO-1 
was found to be overexpressed in neoplastic canine mast cells where 
it acts as a survival factor [83]. In human mast cells, HO-1 expression 
was induced by the mastocytosis-related oncoprotein KIT D816V and 
its inhibition led to the reduced expression of HO-1 and consequently 
decreased proliferation/survival in neoplastic MCs [44].

Selective inhibition of HO-1 as a new target for anticancer 
nanotechnology

As described before, HO-1 plays an important role in cancer 
progression therefore; selective inhibition of HO-1 has been explored 
as a novel anticancer therapy. The two main strategies used for selective 
inhibition of HO-1 are namely, siRNA and metalloporphyrins [16]. 
However, the greatest impediment in the therapeutic application of 
these strategies is poor solubility as well as their toxicity and poor 
delivery to the tumor. By using nanotechnology, various studies have 
shown targeted delivery of siRNA or protoporphyrins to tumors 
[84,85]. In the next section we discuss the therapeutic implications of 
both strategies and the attempted use of protoporphyrins for HO-1 
inhibition by nanotechnology to address both short comings.

Selective inhibition via siRNA 

Numerous studies have reported the association between decreased 
expression of HO-1 by siRNA and reduced cell survival in various 
human neoplasms both in vitro and in vivo. For example, siRNA 
induced knockdown of HO-1 led to increased apoptosis of cultured 
colon carcinoma cells, chronic and acute myeloid leukemia cells, lung 
cancer cells and hepatocarcinoma cells (HCC) [50,39,56,86,41]. In 
addition, in lung cancer cells, HO-1 siRNA increased the generation 
of ROS and augmented the cytotoxicity of cisplatin [39]. In pancreatic 
cancer cells, suppression of HO-1 expression by siRNA resulted in 
decreased cell proliferation and sensitization of pancreatic cells to 

oxidative stress and gemcitabine or γ-radiation [47]. Importantly, 
HO-1 siRNA reduced growth of orthotopic hepatocellular tumors [41]. 
Alaoui-Jamali et al. [74] demonstrated an inhibition in the therapeutic 
activity of the HO-1 by using a small-molecule inhibitor OB-24, which 
was found to mimic the activity of HO-1 shRNA in prostate cancer 
cells [74]. OB-24 is a competitive and reversible inhibitor of the HO-1 
enzyme which selectively inhibits HO-1 but not HO-2. OB-24 reduced 
cell proliferation, cell survival and cell invasion in prostate cancer 
cells in vitro. In addition, it also inhibited prostate tumor growth as 
well as lymph node and lung metastasis in vivo. Interestingly, OB-24 
potentiated the anticancer activity of taxol.  

Selective inhibition via proto porphyrin derivatives

Protoporphyrin (PP) IX is a heme metabolite and its iron-
exchanged derivatives, such as zinc PPIX (ZnPPIX) and tin PPIX 
(SnPPIX), have been found to inhibit competitively in vitro and in vivo 
HO activity [87]. In contrast, hemin (FePP) and cobalt PPIX (CoPPIX) 
induce and activate HO-1, while copper PPIX (CuPPIX) does not affect 
HO-1 activity [87,88]. The pharmacological inhibition of HO-1 using 
protoporphyrins has been reported to exert cytotoxic effects in various 
cancer cells and thus has potential use for therapeutic treatment of 
cancer. For example, administration of the HO-1 inhibitor ZnPP via 
tumor feeding artery significantly suppressed the growth of hepatoma 
AH136B tumors [37] and this effect was mediated via induction of 
apoptosis [45]. Similarly, SnPP IX treatment also induced apoptosis in 
AH136B tumor cells [45]. However, SnPP IX treatment of the rats did 
not affect the blood flow in the tumor tissue whereas both ZnPPIX and 
CuPPIX decreased the blood flow to P22 carcinosarcoma tumors in rats 
[89]. The pretreatment of lung cancer A549 cells with ZnPP produced 
increased apoptosis incisplatin-treated cells as compared with the 
cells treated with cisplatin alone which suggests the role of HO-1 in 
sensitizing lung cancer cells to cisplatin [39]. In addition, simultaneous 
treatment with ZnPP and cisplatin synergistically increased reactive 
oxygen species (ROS) generation and decreased the expression of 
HO-1 [39]. In colon cancer cells, Zn (II) PPIX exerted potent cytotoxic 
effect both in vitro and in vivo and this anticancer effect was mediated 
through a cell cycle arrest, caspase-3 dependent apoptosis induction 
and increased generation of ROS [90]. Finally, administration of ZnPP 
significantly inhibited progression of a B-cell leukemia/lymphoma 
1 tumor in mice by specially targeting tumor cells and reported HO 
independent effects of ZnPP on tumorigenesis [91].However, it is 
reported that the cytotoxic effect of ZnPP in rat hepatoma AH136B 
primary cells was reversed by the presence of bilirubin [45].

Although an inhibition of HO-1 by ZnPP has been widely used 
for drug development, some conflicting evidence has been reported. 
Nowis et al. [90] demonstrated that ZnPPIX was unable to restore 
cisplatin sensitivity in HO-1 over expressing melanoma cells [90]. Also, 
it didn’t potentiate the antitumor effects of cisplatin, doxorubicin or 
5-FU in C-26 colon adenocarcinoma; B16F10 melanoma and EMT6 
breast adenocarcinoma models. The study warranted more selective 
and efficient delivery of HO-1 inhibitors to the tumor for combination 
therapies with chemotherapeutics.

Role of nanotechnology in targeted inhibition of HO-1 in 
tumors

HO-1, as evident from the above discussion, is an attractive target 
for inhibition of tumor progression on the cellular level. However, 
on tissue level many obstacles have to be overcome before the HO-1 
inhibitors can reach its cellular targets at the cytoplasm of tumor cells. 
First, the HO-1 inhibitor needs to be water soluble so that it can be 
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administered as parenteral therapeutic. Second, the water soluble drug 
needs to reach the tumor tissues and concentrate their selectively in 
a therapeutically effective concentration, and finally preferably the 
drug can retain its therapeutic concentration for extended duration. 
Unfortunately, neither si RNA, nor metal protoporphyrins satisfy the 
abovementioned conditions. In this respect, nanotechnology comes 
into action to render theses promising approaches into potential drug 
candidates. Tumor tissues are selectively permeable to macromolecules 
(drugs) of nanosize magnitudes due to their extensive vascular leakage 
[92]. Specifically, the macromolecules of size exceeding 7 nm, known 
as nanomedicine have an advantage of evading the tight junction in 
normal vasculature [92]. More importantly they escape renal clearance 
for being above the renal excretion threshold, thus they can attain 
longer circulator life in plasma [93]. As the circulatory half-life and the 
pharmacological effect are parallel to each other, nanomedicine tends 
to have prolonged and selective anticancer activity. Thus the chemical 
conjugation of poor water soluble HO-1 inhibitors into a long chain 
of high molecular weight polymeric carrier or encapsulating it into 
the core of a miceller carrier can impose all the advantages needed for 
clinical applications.

As discussed above, ZnPP is ideal for selective cancer cell toxicity, 
as it inhibits HO-1 which is overexpressed by cancer cells and is crucial 
to their survival. ZnPP has strong phototoxic properties in addition 
to its capability of radio-sensitization of tumor cells to megavoltage 
RT [94] (Figure 4). However, the pharmaceutical application of 
ZnPP is limited due to its poor water solubility [95]. Therefore, with 
the help of nanotechnology, a water-soluble micellar form of ZnPP 
was formulated by conjugating it with polyethylene glycol (PEG) 
[95]. The PEG-ZnPP micelles have a mean particle size around 180 
nm [96]. This smaller size of micelles offers an advantage of higher 
vascular permeability at target tumor sites by diffusion mechanisms 
[97]. Thus, PEG–ZnPP selectively accumulated in tumor tissues 
utilizing the mechanism called enhanced permeability and retention 
(EPR) effect and exhibited targeted inhibition of HO in tumor tissue 
[98]. In addition, via encapsulation, micelles offer stability and thus 
improve pharmacokinetics and biodistribution of sparingly soluble 
anticancer agents [99]. Specifically, the pharmacokinetic profile of 
PEG-ZnPPIX nanoparticles showed a 40 fold longer plasma residence 
time compared to free ZnPPIX after intravenous administration [98]. 
Also, PEGylated ZnPP (PEG-ZnPP) exhibited the desired cytotoxic 
effects in various cancer cells in vitro and in vivo. For example, PEG-
ZnPP induced oxidative stress, and consequently apoptotic death in 
colon cancer SW480 cells [98]. Interestingly, PEG-ZnPP preferentially 
accumulated in solid tumor tissue in a S180 murine model resulting in 
significant tumor suppression without any side effects [98]. This effect 
was mediated through targeted suppression of HO-1 and an induction 
of apoptosis in tumor cells. The similar effect was also observed when 
PEG-ZnPP was combined with another oxidative chemotherapeutic 
agent such as PEG-DAO/D-proline (PEG-conjugated D-amino acid 
oxidase with D proline) [100]. PEG-ZnPP pre-treatment significantly 
reduced the growth of S180 tumors in mice receiving PEG-DAO/D-
proline compared to no PEG-ZnPP pre-treatment. In addition, PEG-
ZnPP sensitized colon cancer cells to cytostatic/cytotoxic effects of 
camptothecin or doxorubicin and suggested the role of HO-1 inhibitor 
in potentiating the chemotherapeutic response of solid tumors [100]. 

SMA-ZnPP nanomicelles as a potential anticancer agent 

In spite of having promising anticancer activity in vitro and in vivo, 
the poor drug (ZnPP) loading (1.5% ZnPP/PEG w/w ratio) was the 
critical shortcoming of PEG-ZnPP for its future biological applications 

[101]. To overcome this problem, another highly water soluble micellar 
formulation of ZnPP was designed by the use of amphiphilic styrene-
maleic acid copolymer (SMA), namely SMA-ZnPP [85]. SMA-ZnPP 
showed higher and more efficient intracellular uptake rate compared 
to PEG-ZnPP by endocytotic pathway followed by release of free 
ZnPP in the presence of membrane components [96]. After its release, 
ZnPP is mainly colocalized with HO-1 at endoplasmic reticulum 
(ER) compartment and inhibits HO-1 activity which leads to higher 
oxystress and cell death. SMA-ZnPP exist as nanoparticles in aqueous 
solution and tend to accumulate preferentially at tumor site by the 
EPR effect therefore it’s been used in a variety of ways to induce its 
anticancer effect [102].

SMA-ZnPP micelles exhibited potent dose dependent HO-1 
inhibitory potential as well as cytotoxic effects on KYSE-510 human 
esophageal cancer cells [101]. Importantly, HO-1 inhibitory potential 
of native ZnPP was not altered by its SMA-ZnPP formulation. In animal 
model, SMA-ZnPP showed potent antitumor effects without any 
apparent side effects [85]. Kondo et al. [44] reported that both SMA-
ZnPP and PEG-ZnPP reduced the growth of mast cell leukemia HMC-
1 cells in a dose dependent manner [44]. The growth inhibitory effects 

Figure 4: Mechanism of SMA-ZnPP as antitumor agent.

   Reference
Cerebral glioblastoma and astrocytomas (Hara et al., 1996)
Oligodendroglioma (Deininger et al., 2000)
lymphosarcoma (Schacter et al., 1982)
Malignant vertical growth melanoma (Torisu-Itakura et al., 2000)

Oral squamous cell carcinoma (Chang et al., 2004; Tsuji et al., 
1999)

Chronic myeloid leukemia (Mayerhofer et al., 2004)
Mast cell leukemia (Kondo et al., 2007)
Renal cell carcinoma (Goodman et al., 1997)
Prostate cancer (Maines et al., 1996)
Hepatoma (Doi et al., 1999; Sass et al., 2008)
Kaposi sarcoma (Marinissen et al., 2006)
Pancreatic cancer (Berberat et al., 2005)
Colorectal cancer (Becker et al., 2007)
Lung cancer (Hirai et al., 2007)
Breast cancer (Hill et al., 2005)
Thyroid carcinoma (Chen et al., 2004)
Gall bladder cancer (Wang et al., 2010b)

Table1: Expression of HO-1 in different types of cancers
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of SMA-ZnPP were associated with induction of apoptosis. Moreover, 
SMA-ZnPP showed powerful cytotoxic activity against primary CML 
cells obtained from patient’s refractory to Gleevec therapy [56]. This 
response was associated with down-regulation of oncogene BCR-ABL 
dependent tyrosine kinase activity. Gleixner et al. [103] reported the 
cytotoxic effect of SMA-ZnPP in a variety of hematopoietic and non-
hematopoietic (solid tumors) cells [103].The cell death was associated 
with induction of apoptosis. In addition, SMA-ZnPP in combination 
with various targeted drugs or conventional drugs showed synergistic 
cytotoxicity in myeloid leukemia and various solid tumor cells in vitro 
[103].

The potential application of the SMA-ZnPP and PEG-ZnPP has 
also been explored in photodynamic therapy. Iyer et al. [85] reported 
higher cytotoxic effect of PEG-ZnPP in KYSE-510 human esophageal 
cancer cell line in the presence of light [85]. Similarly, Regehly et al. 
[94] reported that in Jurkat cells, SMA-ZnPP causes about five times 
higher phototoxicity compared to PEG-ZnPP due to higher uptake of 
ZnPP by tumor cells [94]. Furthermore, in ddY mice bearing S-180 
tumors, 12mg/kg dose of SMA-ZnPP showed more effective tumor 
regression when irradiated by a tungsten–xenon light at a luminous 
intensity of 50,000 LUX for 5 min whereas, utilizing high intensity light 
(HIL) as a source of irradiation, SMA–ZnPP at 6 or 12 mg/kg showed 
marked reduction in tumor growth in DMBA induced mammary 
cancer model in female SD rats [85]. This effect was attributed to the 
synergistic effect of oxystress induced killing augmented by in situ free 
radical generation (in presence of light) by SMA–ZnPP.

Conclusion
It is now well established that HO-1 is constitutively expressed 

in various neoplastic cells where it acts as a survival factor and offers 
cytoprotection to developing tumors. In addition, over expression of 
HO-1 promotes angiogenesis and metastasis in tumors and advances 
resistance against conventional and targeted drugs in various 
malignancies. Numerous preclinical studies have reported that 
selective inhibition of HO-1 in tumors leads to reduced tumor growth 
and increased response to chemotherapy and radiotherapy. Targeted 
inhibition of HO-1 using nanotechnology has shown promising 
anticancer effect. The recent advancement in efficient delivery of HO-1 
inhibitors to tumor sites presents a new paradigm furthering its future 
clinical application as anticancer agents. 
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