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ABSTRACT

Contact tracing is one of the popular applications of proximity data. A contact tracing system collects, stores, and 
computes proximity distance and duration to identify the contacts for contagious diseases like SARS and Ebola. 
Most of the currently deployed contact tracing solutions is built with Bluetooth Low Energy (BLE). The BLE in 
smartphones is used for exchanging proximity data. This exchange of proximity data could be either intrusive or 
non-intrusive. In intrusive exchange, the data exchange takes place after establishing a BLE connection to another 
smartphone. In non-intrusive exchange, periodic broadcast messages from a smartphone are scanned for proximity 
data. Both methods operate under technology specific and environmental constraints. Irrespective of the method, 
there can be collisions while accessing the media. Collision impedes data exchange and reduces the reliability of 
scanning. In this paper we present a heuristic for the broadcast and scanning schedules of BLE in non- intrusive 
exchanges. The objective of this heuristic is to optimize scanning reliability and to conserve power. The heuristic 
could be used for any application that requires proximity distance and duration. A reliability model is built to 
quantify reliability using a generalization of the Birthday Problem (BP). The schedule self regulates to changing 
loads under all load conditions with optimal agility. This scheduling method can be evolved for newer versions of 
Bluetooth.

Keywords: Contact tracing; Smartphone; Bluetooth Low Energy; Proximity data; App design; Heuristic scheduling; 
Reliability; Birthday problem; SARS COVID-19

INTRODUCTION

A contact tracing system collects, stores, and computes data to 
identify the contacts and the cases for a contagious disease [1]. A 
subject is a case when the subject is having an infection specific 
symptoms or signs. A subject is a contact if the subject has likely 
contracted the virus but asymptomatic. The healthcare authority in 
a country develops the necessary guidelines which define the terms 
contact and case for an infection. The guidelines developed for an 
infection by a country can differ from others in subtle ways. In this 
paper, the guidelines released by the Centre for Disease Control 
(CDC) and prevention, US are assumed [2]. The CDC guidelines 
suggest that if a subject spends more than 15 minutes within 6 
feet of SARS- 2 COVID-19 infected person, then the subject is a 
contact and a potential case. A contact can turn into a case within 
14 days of becoming a contact and not likely after this period. The 
complete guidelines can be accessed from CDC’s official site.

All currently deployed contact tracing solutions are built with 
smartphones [3-8]. The Bluetooth Low Energy (BLE) in smartphones 
is used in exchanging proximity data. There are solutions where 
this data is complimented by tracking the subject’s location using 
wearable, cellular or GPS (Global Positioning System) technologies 

[9]. BLE devices are built for peer interaction unlike other wireless 
technologies like WiFi and cellular. A BLE device can be configured 
to advertise its presence and to scan for other BLE devices within 
its operating range. The only modification required to support 
contact tracing is the definition of a BLE service payload with 
Universally Unique ID (UUID) for proximity data exchange [10].

LITERATURE REVIEW

There are several contact tracing solutions, some are for closed user 
groups, some are for the residents of a country and some are open 
solutions with no clear boundary defined. There are two design 
approaches to processing proximity data. In one approach, the 
data is uploaded and processed in a centralized server to identify 
contacts. In the second one the data is processed in every registered 
smartphone, thus distributing the processing load. Both have their 
pros and cons.

There are two methods for exchanging proximity data; it is done 
either intrusively or non-intrusively. In the intrusive methods, a 
smartphone opens a BLE connection to another smartphone 
after finding it; and gets the proximity data exchanged within the 
connection. In the non-intrusive methods, the data is scanned 
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and extracted from the periodic advertisement broadcasts sent by 
BLEs. The individual connection to every other BLE requires more 
power and time with an intrusive method. This limits its scalability 
and reliability for data exchange. The non-intrusive method on the 
other hand scales better with broadcast- scanning combination; 
and it is more secure. However, it is limited by its 31-byte payload 
when using BLE, the version with the largest user base. The BLE 
collision is an issue that is common to both methods.

For privacy reasons, the identifier of the subject is made anonymous 
in proximity data. We classify the anonymity supported by a 
contact tracing solution into three categories: no-risk or low-risk 
or non-anonymous anonymity. In no-risk anonymity, the Proximity 
ID is a random value that uniquely identifies the smartphone user 
anonymously. It reveals the subject’s identity only under controlled 
conditions. In low- risk anonymity, the identifier is an encrypted 
value of the subject’s identity. This is only as strong as the cipher 
function used. Those who know the cipher can identify the 
corresponding user and user’s location with certain accuracy.

The BLE advertisement provides the presence data of the advertising 
smartphone. The distance between two BLE devices is computed as 
a function of differential signal strength between BLE transmitter 
and receiver. The duration is computed by consolidating and 
correlating the periodically collected proximity or presence data. 
A BLE device can be configured with a schedule to advertise its 
presence and to scan for other BLE advertisements from other 
smartphones within its operating range.

The heuristic schedule proposed in this paper is independent of 
centralized and distributed designs and the type of anonymity 
employed. However, it is specific to non-intrusive exchange 
methods. The heuristic could be used for any application that 
requires proximity distance and duration.

The rest of the paper is organized into four sections. Section 2 
describes the Bluetooth LE discovery features by highlighting the 
timing and other constraints. Section 3 describes the content of the 
proximity message assumed for our heuristic. Section 4 is the core 
section of this paper. In this section a reliability model for scanning 
is developed, and then this model is used to develop the heuristic 
for scheduling broadcast and scanning. Section 4 also addresses 
other related aspects of the scheduler. Section 5 concludes the 
paper.

BLE Neighbour discovery procedure

Bluetooth technology is built to support neighbour discovery. The 
Neighbour Discovery Procedure (NDP) of bluetooth includes two 
features: advertising and scanning. The scheduling presented in this 
paper is developed for bluetooth (BLE), the version of bluetooth 
with the largest user base. Evolving the scheduler for bluetooth 5.0, 
the current version of bluetooth, is presented at the end of Section 
4. The bluetooth 5.0 is backward compatible with BLE.

The Bluetooth Low Energy (BLE) shares the 2.4 GHz ISM band 
with WiFi and other wireless technologies. This band is divided 
into 40 channels on 2 MHz spacing from 2.4000 GHz to 2.4835 
GHz by BLE, starting at 2402 MHz as shown in Figure 1. Data 
rate of 1 Mbps is supported on each channel. The  three dispersed 
channels 37, 38, and 39 are used only for sending advertisement 
frames; the rest of the channels 0-36 are used for data.

Figure 2: BLE advertisement.

A BLE device can be configured to operate in one or certain 
permitted combination of the following four roles:

1. Broadcaster: An advertiser that is non-connectable

2. Observer: A scanner that can advertise but cannot initiate 
connections

3. Peripheral: An advertiser that is connectable and operates as a 
slave to a device with a Central role.

4. Central: A scanner that can advertise and initiate connections; it 
can operate as a master to a single or multiple Peripherals.

When advertising, a BLE peripheral device transmits the same 
message on the 3 advertising channels, one after the other as shown 
in Figure 2. A Central device that is looking for a Peripheral will 
scan those channels for advertisements. An advertising message can 
be directed or undirected broadcast. The directed advertisement 
targets a single receiver; the undirected one targets no specific 
receiver.

There is more than one type of advertisement message. The one 
that is of interest here is ADV_IND, an undirected advertisement. 
The ADV_IND frame format is described in Section 3. Each 
advertisement event includes sending an advertisement frame 
on all the three channels (37, 38, and 39) in order. The interval 
(AdvInterval) between two successive advertisement events initiated 
by a broadcaster can be from 20 milliseconds (ms) to 10.24 seconds, 
in steps of 0.625 ms. If two or more broadcasters are configured 
with the same advertising interval, then this may lead to repeated 
collisions. A small random delay (AdvDelay) is added to AdvInterval 
to each broadcast to avoid any such lock-step collisions. The value 
of AdvDelay is in the range 0 ms to 10 ms if all the broadcasters 
maintain the same delay (

WA
) between the advertisements in three 

channels, then the advertisements on channels 38 and 39 are 
more likely to succeed when the advertisement on channel 37 is 
successful. The maximum size of the ADV_IND frame is 47 bytes 

Figure 1: BLE advertisement and data channels. Note: (       ) Data; (       ) 
Advertising
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(31-byte payload). The time to transmit this frame of 47-byte with 1 
mbps channel is 0.376 ms.

An observer scans the advertising channels 37, 38 and 39, one 
by one periodically during a scanning interval (scaninterval) and 
extracts the information about the advertisers during scanwindow. 
In BLE specification, the scaninterval and scanwindow sizes are 
limited to a maximum of 10.24 seconds. The scanwindow should 
be less than or equal to scaninterval as shown in Figure 3.

Two scanning modes are defined: continuous scanning mode and 
discontinuous scanning mode. In the continuous scanning mode, 
scaninterval is equal to scanwindow, and the scanner scans each 
advertising channel without sleeping. On the other hand, in the 
discontinuous scanning mode, the scanner alternately repeats 
scanning in every scaninterval and sleeps for another period of 
scaninterval. In the discontinuous scanning mode, scanwindow 
should be shorter than scaninterval.

There is another independent mode of scanning operation; a 
scanner can operate in passive or active mode. In active mode, 
further exchange is supported between the advertiser and the 
scanner as shown in Figure 4. This exchange leads to connection 
establishment between two BLEs. There is no need for this 
exchange between broadcaster and observer pair; the interaction 
is simply passive scanning. There is a mandatory 150 μs delay that 
must be maintained between each packet sent over medium. This 
is known as the Inter Frame Space (T

IFS
). In passive single channel 

scanning, there may be no need for T
IFS

.

In active scanning, the T
WA

 should be large enough to support the 
exchange of ADV_IND, SCAN_REQ,

and SCAN_RSP. The BLE specification suggests T
WA

 value should 
be less than 10 ms.

Proximity data exchange

The contact tracing application that runs on smartphone includes 
user facing app and background services for scanning and broadcast. 
In this paper the term app is used to represent the complete 
contact tracing application with all its services. This app uses BLE 
broadcast message, ADV_IND, to exchange proximity data non-
intrusively. The physical layer frame format of ADV_IND is shown 
in Figure 5. This 47-byte frame includes advertiser’s identification 
(6-byte MAC address of source BLE), UUID, and payload data. 
The frame size can be less than or equal to 47-byte depending upon 
the payload size. The Access Address (AA) field is used to identify 
connections uniquely. The preamble indicates the start of a new 
frame and Cyclic Redundancy Check (CRC) provides the frame 
check sequence. The application independent frame details can 
be found in BLE specification. The payload size and content are 
contact tracing application specific. The description of one such 
payload can be found in this payload data [5] contains the Rotating 
Proximity Identifier (RPID), BLE signal strength at the source, and 
necessary overhead. All these data items are encoded using tag, 
length, and value format.

The RPID identifies the owner of the smartphone uniquely and 
anonymously. It is rotated periodically (every 15 minutes). An 
observer creates a proximity record for every scanned ADV_IND 
with RPID, timestamp, BLE signal strength at the source, source 
MAC address, and the BLE signal strength at the receiver. Each 
proximity record represents the presence snapshot of the advertiser 
for an observer. The 6-bytes advertiser address is a random number, 
and it is rotated every 15 minutes in synchronization with the 
RPID or independently. Periodically rotating both the advertiser’s 
identification and RPID mitigates the wireless tracking issue. This 
means two different proximity records from the same smartphone 
with more than 15 minutes between them will likely have different 
MAC addresses and RPIDs. In general, the information required 
to correlate these records to the same user is served by a common 
server [11].

The heuristic exchange schedule described in this paper is 
independent of the encoding of proximity data in ADV_IND 
payload and the rotations of RPID and MAC. However, the 
encoding is expected to include RPID and the necessary data for 
BLE signal strength at the source. The heuristic is also independent 
of how this data is processed and what type of anonymity is used. 
A non-intrusive contact tracing App is required to act in the 
role of both broadcaster and observer. The broadcaster role is 
implemented by periodic ADV_IND broadcast and the observer 
role is implemented by periodic scanning of ADV_IND from 
other apps. Each broadcaster periodically sends ADV_IND with 
proximity payload in three broadcast channels by maintaining 

Figure 3: BLE scanning.

Figure 5: BLE ADV_IND frame format.

Figure 4: Active scanning.
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short, fixed delay between these broadcasts. This fixed delay makes 
it flexible to scan any of the advertising channels for broadcast. The 
advertisement operation supports observers which are operating 
only in passive mode. This means, there is no other interaction 
between the observer and the broadcaster during this exchange 
(refer to Figure 4). Each observer also operates in continuous mode 
with a configured duty cycle. It is assumed that a device can perform 
scanning and advertisement at the same time [12].

Broadcast and scanning schedule heuristic

The maximum operational range of BLE is about 300 feet. The 
effective range could be much lower due to various factors like 
transmitter power, sensitivity of the receiver, and operational 
environment. Also, there is an issue with the accuracy of the distance 
computed with BLE differential signal strength. Considering these 
factors, the effective operational range r of a smartphone’s BLE 
is assumed to be about 12 feet for the heuristic. This distance 
is not entirely arbitrary. It is based on the accuracy of distance 
measurement and the required proximity distance suggested by 
CDC guidelines [13]. This distance r can be increased or decreased 
in single digit value by adjusting the reliability limits. Larger 
range can be supported with 2 Mbps bandwidth configuration of 
Bluetooth 5.0, provided the accuracy of distance measurement is 
improved. In an operational scenario, there may be broadcasts from 
apps which are beyond this range. This out-of-range data can be 
filtered out in post processing. The apps that are outside this range 
are assumed to have less influence on media contention due to 
their weaker signal and other factors like environment. The area 
of a circle with a 12-feet radius is 144 feet2. In crowded areas a 
standing person occupies about 5 feet2 on the average. This means 
there can be nearly 90 people within 144 feet2. The value of r and 
the average area occupied by a single person can be altered to evolve 
the heuristic. These values are chosen to illustrate the heuristic and 
stay close to deployment values. An app S1 and eleven other apps 
(S2 to S12) are within mutual data exchange range as shown in 
Figure 6. The broadcast and scanning schedules of these 12 apps 
are illustrated in Figure 7. A slot in the diagram models a unit of 
time, s. The value of s is fixed, and it is common to all the apps of 
contact tracing. It is set to 12.5 ms for all our illustrations. Both 
scanning period and broadcast period can be expressed as integral 
multiples of s. The value of s is chosen to be large enough to 
complete the broadcast attempt within a single slot for all possible 
values of AdvDelay (< 10 ms). The time value increases from left to 
right with column numbers in Figure 7. The S1 row in the diagram 
illustrates the scanning and broadcast schedules of app S1; the rest 
of the rows illustrate the scanning schedules for apps S2 to S12.

The broadcast period of b-slot is the same for all contact tracing 
apps; the scanning period and duty cycle on the other hand are 
configurable for each app. The time slots of different apps are 
synchronized in Figure 7. However, the heuristic supports apps 
with independent clocks. There are 12 apps in this illustration; the 
heuristic can support scenarios with more apps within operational 
range. The grey slots in S1-row are broadcast slots for S1. That is, 
S1 sends its ADV_IND message sometime within the duration 
of the slot. For clarity, broadcast activities of S2 to S12 are not 
shown in the diagram. A slot with suffix ‘S’ in rows S2 to S12 
indicates the scanning operation where the corresponding App 
scans S1’s broadcast. The scanning operation includes alternating 
active and inactive cycles with 50% duty cycle. An app scans for 
broadcast messages from other apps only during its active scanning 
cycle. The inactive cycle time is used to process proximity records 
from the preceding active cycle and decide if the duty cycle needs 
to be modified for the next scanning operation. The broadcast is 
periodic, and this period is a constant for all the apps. Each node 
attempts its broadcast every bs milliseconds. If all the apps follow 
the same broadcast and scanning schedules, each app will likely 
pick up the same number of broadcasts from S1 even when the two 
clocks are not synchronized. This is illustrated in Figure 7. A trivial 
way to guarantee this is by using a single common schedule all the 
time. This trivial solution is not adaptable: 1. It does not conserve 
power at smaller loads 2. It does not scale the scanning reliability 
for different load conditions. The   following section addresses 
these limitations.

Scanning reliability model

Two or more broadcast messages can collide when multiple apps 
attempt to broadcast at the same time. As result of this, the success 
of a scanning operation to locate a specific BLE and the resulting 
latency to connect to it become non-deterministic. There are 
analytical and experimental models [14-16] to find the expected 
latency for a pair of central and peripheral BLEs. This latency 
includes the time taken by the central BLE to successfully scan 
and connect to a specific peripheral. In this paper we model only 
the scanning reliability, specifically for a set of peer BLEs which 
are all operating in broadcast and observer roles for a specific BLE 
timing configuration. A broadcast over a single channel requires 
about 0.4 ms (transmission time of 0.376 ms + (

WA
-0.376)). The 

value of (
WA

-0.376) can be nearly zero for an app that is operating 
in broadcaster and observer roles, especially where the scanning 
is done on a single channel. An app attempts to broadcast on 
every bs milliseconds. If there are n apps within mutual operating Figure 6: Smartphone S1 at the centre of a circle with 12 feet radius (r).
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Figure 7: A broadcast and scanning schedule with 12 smartphones.
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range of r feet with uniformly distributed broadcast time, then the 
probability of success for a broadcast can be computed using one of 
the  generalizations of the birthday problem [17-18]. The number of 
days d is the number of possible broadcasts (bs/0.4) within a single 
broadcast period bs. The number of individuals, n is the number 
of apps within the range under consideration. An approximation 
based on Taylor Series (TS) expansion can be applied to compute 
the probability for successful transmission. This approximation 
requires d to be larger than n. In our heuristic scheduling the 
value of d is maintained to be larger than n by an order or two. 
The probability p that there is no collision for an advertisement is 
expressed as 1 - (1 - e(-nxn/2d)). Replacing d by bs/0.4 allows the 
expression to be rewritten as e(-nxn/5bs).

A successful broadcast guarantees successful reception for an 
actively scanning observer. The probability of receiving a broadcast 
is improved when the same advertisement is broadcast multiple 
times within each scanning period. If each advertisement appears 
m times within each active scanning period c, then the probability 
R of scanning at least one of those m advertisements within the 
scanning period is 1–(1–p)m

This probability R is a measure of the reliability of scanning. The 
value of R is a function of three parameters - broadcast period bs, 
number of apps n within the operating range of the observer, and 
number of broadcasts m that can be received from each of these 
apps in a single scanning period. It is obvious from the expression 
that the reliability measure can be improved by having a large 
broadcast period bs and a large m. The value of m is the measure 
of active scanning period, and the value of b is a measure of the 
broadcast period. Large values of m and b imply a large scanning 
period with fewer broadcasts in it. These large values imply larger 
power requirements and lower scanning resolution, respectively. 
The three parameters, namely c, b, and m are related; choosing 
values for two of the three decides the value for the third. The 
relationship between reliability of scanning and these parameters 
is first examined with the objective to conserve power and improve 
reliability for different load conditions. Table 1 and its plot in 
Figure 8 illustrate the reliability measure as a function of n, b, and 
m. 

The plot in Figure 8 and data in Table 1 suggest high and closely 
distributed reliability values for different schedules at lower load 
sizes (n<50) and diverging values at larger load sizes. The reliability 
value also stays higher over a larger range of n for a combination 
of larger broadcast period b and lower value of m. For example, 
a broadcast period of 3000 ms with scanning period of 6000 ms 
(column 2) offers a more sustained reliability measure compared 
to a broadcast period of 1000 ms with scanning period of 4000 ms 
(column 5) or broadcast period of 2400 ms with scanning period of 

4800 ms (column 4).

Conserving power with scanning time

The broadcast period in the range of 1-3 seconds is already near the 
top end of BLE broadcast range of 20 ms-10.24 s. A larger broadcast 
period will reduce the resolution required by downstream analytics 
and other coexisting applications. Lower values of broadcast period 
may violate Taylor Series approximation assumption. Thus, there is 
no further attempt made in this paper to conserve power or offer 
larger resolution by attempting values beyond the range of 1-3 
seconds. A small deviation around this range is fine.

In general, BLE scanning operation can consume more power than 
broadcast operation by an order or more, especially when the active 
period and duty cycle are large. Besides conserving power, shorter 
scanning periods are also preferable for adapting to changing loads 
with agility. There are two independent options to conserve power 
with scanning either by reducing the active scanning duration or 
reducing the scanning duty cycle. When the scanning is robust,  
smaller duty cycles are affordable. Larger duty cycles beyond 50% 
are not attempted to conserve power, the scheduler can still support 
such attempts.

Dual scanning schedules for conserving power

The reliability values are high and close to each other for all the 
schedules listed in Table 1 for up to a certain value of the load. 
Beyond this point, the reliability values of the schedules with 
low broadcast period and low scanning duration start dropping 
rapidly. This observation suggests that an app can use two different 
scanning schedules. When the load is less, a shorter active 
scanning period SL and when the load exceeds a threshold value, 
a larger active scanning period SH is used. Both the schedules are 
assumed to operate at 50% duty cycle unless and otherwise stated. 
The scanning period SH is twice longer than SL. It is important 
that the same broadcast period is maintained across all scanning 
schedules. The broadcast rate needs to be low in both schedules 
as identified in the earlier part of this section. Table 2 shows two 
scanning  schedule (active period) SL and SH for broadcast periods 
of 1000, 1200, 1250, and 1500 milliseconds, respectively. The 
smaller scanning periods are given preference to conserve power. 
The second, third, and fourth pairs are acceptable if the reliability 
requirement is 0.7 for up to a load of 90. The second pair supports 
the requirement with the lower scanning periods, thus conserving 
power. Schedule change takes place at the threshold value of 60. 
More than two scanning schedules can also be supported. This 
is done by generalizing the dual schedule described here with 
multiple scanning periods. A richer generalization is possible when 

Figure 8: Reliability plot for different load conditions and schedules.
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Table 1: Reliability measures for different load conditions and schedules.

 

Scanning Period C Scanning Period C Scanning Period C

6000 ms 4800 ms 4000 ms

Column 1 Column 2 Column 3 Column 4 Column 5 Column 6

NO Load (n ) bs=1500, m=4 bs=3000, m=2 bs=1200, m=4 bs=2400, m=2 bs=1000, m=4 bs=2000, m=2

1 20 1 0.999 1 0.999 1 0.998

2 30 1 0.997 1 0.995 0.999 0.993

3 40 0.999 0.99 0.997 0.985 0.995 0.978

4 50 0.994 0.977 0.987 0.965 0.977 0.952

5 60 0.979 0.955 0.959 0.934 0.932 0.91

6 70 0.948 0.923 0.905 0.889 0.85 0.852

7 80 0.893 0.881 0.818 0.831 0.732 0.779

8 90 0.813 0.828 0.703 0.761 0.591 0.695

9 100 0.71 0.765 0.572 0.683 0.446 0.604

Table 2: Four different SL and SH pairs.

bs=1000 bs=1200 bs=1250 bs=1500

Max Load
(n )

SL=2000,
m=2

SH=4000,
m=4

SL=2400,
m=2

SH=4800,
m=4

SL=2500,
m=2

SH=5000,
m=4

SL=3000,
m=2

SH=6000,
m=4

20 0.994 1 0.996 1 0.996 1 1 1

30 0.973 0.999 0.981 1 0.982 1 0.996 1

40 0.926 0.995 0.946 0.997 0.95 0.997 0.98 1

50 0.847 0.977 0.885 0.987 0.893 0.988 0.94 0.996

60 0.739 0.932 0.798 0.959 0.81 0.964 0.867 0.982

70 0.613 0.85 0.691 0.905 0.707 0.914 0.759 0.942

80 0.482 0.732 0.573 0.818 0.593 0.834 0.627 0.861

90 0.36 0.591 0.455 0.703 0.476 0.725 0.488 0.738

Table 3: Scheduling with multiple duty cycles and multiple scanning periods.

Load (n )

R R R

Scanning Schedule Criteria & Duty Cycle(SL=2400 
ms, m=2)

(SH=4800 
ms, m=4)

(SVH=6000
ms, m=5)

20 0.998 1 1 S 
L33 N £ 30,

u =2400/7200 = 33%30 0.993 1 1 S 
L33

40 0.978 1 1 S 
L40 30 < N £ 50,

u = 2400/6000 = 40%50 0.952 0.998 0.999 S 
L40

60 0.91 0.992 0.998 S
 L50

u = 2400/4800

70 0.852 0.978 0.992 S 
H

60 < N £ 90,
u = 4800/9600 = 50%

80 0.779 0.951 0.977 S 
H

60 < N £ 90,
u = 4800/9600 = 50%

90 0.695 0.907 0.948 S 
H

60 < N £ 90,
u = 4800/9600 = 50%

100 0.604 0.843 0.901 S 
VH

u = 6000/12000 = 50%

110 0.511 0.761 0.833 S
 VH

u = 6000/12000 = 50%
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multiple scanning periods are combined with multiple duty cycles 
as illustrated in Table 3.

Coexistence of dual schedules

Having two schedules, one for smaller load and one for larger 
load conserve power, but this creates a situation with a mix of 
apps operating with SL and SH within the operating range of an 
app. The scanning schedule chosen by an app has no implication 
to other apps. The scanning schedule used is based on the load 
seen by an app. The apps at the edge of an operating range can 
use SL and the ones that are closer to the centre can still operate 
with SH. If all the apps are still using the same broadcast schedule, 
they can operate with either of the two schedules. Having a 
common broadcast period across all the apps makes the reliability 
computation consistent among all the apps irrespective of their 
scanning schedules.

Conserving power with smaller scanning duty cycle

The duty cycle, u, can be reduced to conserve power when the 
scanning cycle is reliable for the prevailing load. This is done by 
extending the inactive period. There is a limit to this reduction 
as a lower duty cycle creates longer periods of inactivity. Table 3 
illustrates duty cycle configuration for different load conditions. 
The number of distinct broadcasts scanned in an active scanning 
cycle by an app decides the value of the active scanning period c 
and the duty cycle u for the next scanning cycle. The scanning 
period is modified by choosing a suitable value for m; the duty 
cycle is modified by choosing a suitable value for inactive period.

The schedule can be generalized to include multiple duty cycles as 
shown in Table 3. There are 3 different scanning periods SL, SH, 
and SVH and three different duty cycles 33%, 40%, and 50% with 
a guaranteed reliability requirement of 0.9 for normal load of up to 
90. When the load size is more than 90 the best scanning period is 
used even if the reliability is under 0.9. The scanning period SL is 
used for load value of up to 60 with 3 different duty cycles. When 
the reliability falls below 0.9, the scanning period is switched to SH 
and used for load values between 70 to 90. The scan period SVH 
is used for load values greater than 90. There are other possible 
scheduling options; instead of three different scanning periods, SH 
can be used for the entire range of the load for the guaranteed 
reliability of 0.9. This will likely consume more power. When an 
app starts, it starts with the schedule for the largest supported load 
and then scales down to prevailing load conditions. This guarantees 
reliable scanning in unknown conditions. Once an assessment of 
the load is done, the next scanning cycle itself could switch to an 
appropriate scanning schedule. This agility is optimal and creates a 
highly adaptive scheduler for fluctuating load conditions.

Supporting newer versions of bluetooth

BLE supports single bandwidth of 1 Mbps. The current version of 
Bluetooth, Bluetooth 5.0, supports longer range and four discrete 
transmission speeds: 125 Kbps, 500 Kbps, 1 Mbps, and 2 Mbps. The 
longer-range mode operates with lower bit rates of 125 kbps and 
500 kbps to support better sensitivity. The capacity of Bluetooth 
5.0 broadcast message is 8 times that of BLE. If the Bluetooth 5.0 
in smartphones is configured to use 2 Mbps transmission rate 
and continue to use the same proximity payload (31-bytes), then 
Bluetooth 5.0 could support a wider operational area as illustrated 
by Table 4. There are other options too: supporting larger payload 

that requires the same 0.4 ms transmission time or defining a larger 
payload that requires less than 0.4 ms but more than 0.2 ms. One 
such configuration is illustrated in Table 5 with message size that 
requires 0.25 ms. There are other enhancements to Bluetooth 5.0 
with no adverse impact to the heuristic. The graceful migration to 
Bluetooth 5.0 may require the app to advertise and scan both legacy 
and new payloads until BLE is phased out Table 4. This can make 
each Bluetooth 5.0 app look like two and may double the effective 
load size. Using the same payload in Bluetooth 5.0 can mitigate this 
problem but supporting new features will be ruled out. Bluetooth 
5.0 provides better reliability over larger range compared to BLE. 
It also offers better support for denser load conditions Table 5. 
Same Payload with 0.2 ms transmit time with 2 Mbps channel, bs 
= 2000 ms

Table 4: Reliability measures with same payload size for BLE 5.0.

Load R R R

(n ) m=2 m=4 m=5

20 1 1 1

30 0.998 1 1

40 0.994 1 1

50 0.986 1 1

60 0.973 0.999 1

70 0.953 0.998 1

80 0.926 0.995 0.999

90 0.89 0.988 0.996

100 0.847 0.977 0.991

110 0.796 0.958 0.981

120 0.739 0.932 0.965

Table 5: Reliability measures with larger payload size for BLE 5.0. Larger 
Payload that requires 0.25 ms transmit time with 2 Mbps channel, bs = 
2000 ms

Load R R R

(n ) m=2 m=4 m=5

20 0.999 1 1

30 0.997 1 1

40 0.991 1 1

50 0.979 1 1

60 0.96 0.998 1

70 0.931 0.995 0.999

80 0.893 0.988 0.996

90 0.844 0.976 0.99

100 0.786 0.954 0.979

110 0.721 0.922 0.959

120 0.651 0.878 0.928

Estimation of raw records collected

When an app scans an ADV_IND broadcast, it creates a new raw 
record using the payload, signal strength at the reception, and 
time stamp. This record is stored and subsequently processed. The 
number of raw records collected by an app varies with the scanning 
and broadcast schedules and the number of other   apps in the 
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operating range in each scanning cycle. An app that is deployed in 
an urban setting is likely to collect more raw records than an app 
that operates in a rural setting. The number of records collected 
in a day depends on the number of cumulative apps that were in 
the operational range during each scanning period of the day. This 
cumulative value is stochastic in nature. A simple estimation model 
is built with the average number of apps in the range for a given 
scanning period. Assuming an average of 2, there are 2x2x0.998 
records for every scanning period of 7.2 seconds (using the data in 
Table 3). This is about 50,000 raw records for a day. This simple 
estimate can be extended to understand the server capacity required 
and how to scale this capacity for fluctuating load conditions.

Coexistence of schedule with other BLE functions

The BLE in smartphones supports other features besides contact 
tracing. These features should continue to coexist with contact 
tracing schedules. The discovery procedure is common to contact 
tracing and other BLE applications. This means, the scanning and 
broadcast schedules described in this paper can be interrupted 
by other BLE apps. For instance, when a smartphone is trying 
to discover an external BLE speaker, it needs to scan on all the 
3 advertising channels until the speaker is discovered. These 
interruptions can last for a few seconds to a few minutes on wall 
clock time, internally this could be a few broadcast and scanning 
cycles. Once the device is discovered and connected, then there is 
no contention with the contact tracing schedule. The payload of 
contact tracing is uniquely identified from the payloads of other 
features by its UUID. The coexistence also offers opportunity to 
explore common presence data and common scheduler.

DISCUSSION AND CONCLUSION

A heuristic broadcast and scanning scheduler for contact tracing 
apps that operates with non-intrusive methods is presented in 
this paper along with a scanning reliability model. The schedule 
can adapt to changing loads with optimal agility. The app with 
the built-in BLE operates as both observer and broadcaster in 
passive scanning mode. The heuristic is developed for Bluetooth 
LE and can be extended to the current Bluetooth version 5.0 to 
handle larger load with larger proximity payload. This scheduler 
also provides a basis to estimate the volume of proximity data. This 
estimate is essential for capacity planning and identifying design 
issues. The heuristic is simple and feasible with the resources 
available in smartphones. The scheduler is designed to maximize 
scanning reliability and minimize bluetooth power requirements. 
It can be adapted to other proximity applications besides contact 
tracing.
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