
1Int J Swarm Evol Comput, Vol. 11 Iss. 8 No: 1000267

Review Article

Correspondence to: Hari TS Narayanan, NetTools Consulting, Tamil Nadu, India, E-mail: ts.hari@gmail.com

Received: 01-Aug-2022, Manuscript No. SIEC-22-17614; Editor assigned: 04-Jul-2022, Pre QC No. SIEC-22-17614 (PQ); Reviewed: 22-Aug-2022, QC
No. SIEC-22-17614; Revised: 29-Aug-2022, Manuscript No. SIEC-22-17614 (R); Published: 05-Sep-2022, DOI: 10.35248/2090-4908.22.11.267

Citation: Narayanan HTS, et al. (2022) Scheduling Proximity Data Exchange for Contact Tracing. Int J Swarm Evol Comput. 11:267

Copyright: © 2022 Narayanan HTS, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

OPEN ACCESS Freely available online

Research Article

Scheduling Proximity Data Exchange for Contact Tracing
Hari TS Narayanan*, Spatika Narayanan

NetTools Consulting, Tamil Nadu, India

ABSTRACT

Contact tracing is one of the popular applications of proximity data. A contact tracing system collects, stores, and
computes proximity distance and duration to identify the contacts for contagious diseases like SARS and Ebola.
Most of the currently deployed contact tracing solutions is built with Bluetooth Low Energy (BLE). The BLE in
smartphones is used for exchanging proximity data. This exchange of proximity data could be either intrusive or
non-intrusive. In intrusive exchange, the data exchange takes place after establishing a BLE connection to another
smartphone. In non-intrusive exchange, periodic broadcast messages from a smartphone are scanned for proximity
data. Both methods operate under technology specific and environmental constraints. Irrespective of the method,
there can be collisions while accessing the media. Collision impedes data exchange and reduces the reliability of
scanning. In this paper we present a heuristic for the broadcast and scanning schedules of BLE in non- intrusive
exchanges. The objective of this heuristic is to optimize scanning reliability and to conserve power. The heuristic
could be used for any application that requires proximity distance and duration. A reliability model is built to
quantify reliability using a generalization of the Birthday Problem (BP). The schedule self regulates to changing
loads under all load conditions with optimal agility. This scheduling method can be evolved for newer versions of
Bluetooth.

Keywords: Contact tracing; Smartphone; Bluetooth Low Energy; Proximity data; App design; Heuristic scheduling;
Reliability; Birthday problem; SARS COVID-19

INTRODUCTION

A contact tracing system collects, stores, and computes data to
identify the contacts and the cases for a contagious disease [1]. A
subject is a case when the subject is having an infection specific
symptoms or signs. A subject is a contact if the subject has likely
contracted the virus but asymptomatic. The healthcare authority in
a country develops the necessary guidelines which define the terms
contact and case for an infection. The guidelines developed for an
infection by a country can differ from others in subtle ways. In this
paper, the guidelines released by the Centre for Disease Control
(CDC) and prevention, US are assumed [2]. The CDC guidelines
suggest that if a subject spends more than 15 minutes within 6
feet of SARS- 2 COVID-19 infected person, then the subject is a
contact and a potential case. A contact can turn into a case within
14 days of becoming a contact and not likely after this period. The
complete guidelines can be accessed from CDC’s official site.

All currently deployed contact tracing solutions are built with
smartphones [3-8]. The Bluetooth Low Energy (BLE) in smartphones
is used in exchanging proximity data. There are solutions where
this data is complimented by tracking the subject’s location using
wearable, cellular or GPS (Global Positioning System) technologies

[9]. BLE devices are built for peer interaction unlike other wireless
technologies like WiFi and cellular. A BLE device can be configured
to advertise its presence and to scan for other BLE devices within
its operating range. The only modification required to support
contact tracing is the definition of a BLE service payload with
Universally Unique ID (UUID) for proximity data exchange [10].

LITERATURE REVIEW

There are several contact tracing solutions, some are for closed user
groups, some are for the residents of a country and some are open
solutions with no clear boundary defined. There are two design
approaches to processing proximity data. In one approach, the
data is uploaded and processed in a centralized server to identify
contacts. In the second one the data is processed in every registered
smartphone, thus distributing the processing load. Both have their
pros and cons.

There are two methods for exchanging proximity data; it is done
either intrusively or non-intrusively. In the intrusive methods, a
smartphone opens a BLE connection to another smartphone
after finding it; and gets the proximity data exchanged within the
connection. In the non-intrusive methods, the data is scanned

2

Narayanan HTS et al.

Int J Swarm Evol Comput, Vol. 11 Iss. 8 No: 1000267

and extracted from the periodic advertisement broadcasts sent by
BLEs. The individual connection to every other BLE requires more
power and time with an intrusive method. This limits its scalability
and reliability for data exchange. The non-intrusive method on the
other hand scales better with broadcast- scanning combination;
and it is more secure. However, it is limited by its 31-byte payload
when using BLE, the version with the largest user base. The BLE
collision is an issue that is common to both methods.

For privacy reasons, the identifier of the subject is made anonymous
in proximity data. We classify the anonymity supported by a
contact tracing solution into three categories: no-risk or low-risk
or non-anonymous anonymity. In no-risk anonymity, the Proximity
ID is a random value that uniquely identifies the smartphone user
anonymously. It reveals the subject’s identity only under controlled
conditions. In low- risk anonymity, the identifier is an encrypted
value of the subject’s identity. This is only as strong as the cipher
function used. Those who know the cipher can identify the
corresponding user and user’s location with certain accuracy.

The BLE advertisement provides the presence data of the advertising
smartphone. The distance between two BLE devices is computed as
a function of differential signal strength between BLE transmitter
and receiver. The duration is computed by consolidating and
correlating the periodically collected proximity or presence data.
A BLE device can be configured with a schedule to advertise its
presence and to scan for other BLE advertisements from other
smartphones within its operating range.

The heuristic schedule proposed in this paper is independent of
centralized and distributed designs and the type of anonymity
employed. However, it is specific to non-intrusive exchange
methods. The heuristic could be used for any application that
requires proximity distance and duration.

The rest of the paper is organized into four sections. Section 2
describes the Bluetooth LE discovery features by highlighting the
timing and other constraints. Section 3 describes the content of the
proximity message assumed for our heuristic. Section 4 is the core
section of this paper. In this section a reliability model for scanning
is developed, and then this model is used to develop the heuristic
for scheduling broadcast and scanning. Section 4 also addresses
other related aspects of the scheduler. Section 5 concludes the
paper.

BLE Neighbour discovery procedure

Bluetooth technology is built to support neighbour discovery. The
Neighbour Discovery Procedure (NDP) of bluetooth includes two
features: advertising and scanning. The scheduling presented in this
paper is developed for bluetooth (BLE), the version of bluetooth
with the largest user base. Evolving the scheduler for bluetooth 5.0,
the current version of bluetooth, is presented at the end of Section
4. The bluetooth 5.0 is backward compatible with BLE.

The Bluetooth Low Energy (BLE) shares the 2.4 GHz ISM band
with WiFi and other wireless technologies. This band is divided
into 40 channels on 2 MHz spacing from 2.4000 GHz to 2.4835
GHz by BLE, starting at 2402 MHz as shown in Figure 1. Data
rate of 1 Mbps is supported on each channel. The three dispersed
channels 37, 38, and 39 are used only for sending advertisement
frames; the rest of the channels 0-36 are used for data.

Figure 2: BLE advertisement.

A BLE device can be configured to operate in one or certain
permitted combination of the following four roles:

1. Broadcaster: An advertiser that is non-connectable

2. Observer: A scanner that can advertise but cannot initiate
connections

3. Peripheral: An advertiser that is connectable and operates as a
slave to a device with a Central role.

4. Central: A scanner that can advertise and initiate connections; it
can operate as a master to a single or multiple Peripherals.

When advertising, a BLE peripheral device transmits the same
message on the 3 advertising channels, one after the other as shown
in Figure 2. A Central device that is looking for a Peripheral will
scan those channels for advertisements. An advertising message can
be directed or undirected broadcast. The directed advertisement
targets a single receiver; the undirected one targets no specific
receiver.

There is more than one type of advertisement message. The one
that is of interest here is ADV_IND, an undirected advertisement.
The ADV_IND frame format is described in Section 3. Each
advertisement event includes sending an advertisement frame
on all the three channels (37, 38, and 39) in order. The interval
(AdvInterval) between two successive advertisement events initiated
by a broadcaster can be from 20 milliseconds (ms) to 10.24 seconds,
in steps of 0.625 ms. If two or more broadcasters are configured
with the same advertising interval, then this may lead to repeated
collisions. A small random delay (AdvDelay) is added to AdvInterval
to each broadcast to avoid any such lock-step collisions. The value
of AdvDelay is in the range 0 ms to 10 ms if all the broadcasters
maintain the same delay (

WA
) between the advertisements in three

channels, then the advertisements on channels 38 and 39 are
more likely to succeed when the advertisement on channel 37 is
successful. The maximum size of the ADV_IND frame is 47 bytes

Figure 1: BLE advertisement and data channels. Note: () Data; ()
Advertising

3

Narayanan HTS et al.

Int J Swarm Evol Comput, Vol. 11 Iss. 8 No: 1000267

(31-byte payload). The time to transmit this frame of 47-byte with 1
mbps channel is 0.376 ms.

An observer scans the advertising channels 37, 38 and 39, one
by one periodically during a scanning interval (scaninterval) and
extracts the information about the advertisers during scanwindow.
In BLE specification, the scaninterval and scanwindow sizes are
limited to a maximum of 10.24 seconds. The scanwindow should
be less than or equal to scaninterval as shown in Figure 3.

Two scanning modes are defined: continuous scanning mode and
discontinuous scanning mode. In the continuous scanning mode,
scaninterval is equal to scanwindow, and the scanner scans each
advertising channel without sleeping. On the other hand, in the
discontinuous scanning mode, the scanner alternately repeats
scanning in every scaninterval and sleeps for another period of
scaninterval. In the discontinuous scanning mode, scanwindow
should be shorter than scaninterval.

There is another independent mode of scanning operation; a
scanner can operate in passive or active mode. In active mode,
further exchange is supported between the advertiser and the
scanner as shown in Figure 4. This exchange leads to connection
establishment between two BLEs. There is no need for this
exchange between broadcaster and observer pair; the interaction
is simply passive scanning. There is a mandatory 150 μs delay that
must be maintained between each packet sent over medium. This
is known as the Inter Frame Space (T

IFS
). In passive single channel

scanning, there may be no need for T
IFS

.

In active scanning, the T
WA

 should be large enough to support the
exchange of ADV_IND, SCAN_REQ,

and SCAN_RSP. The BLE specification suggests T
WA

 value should
be less than 10 ms.

Proximity data exchange

The contact tracing application that runs on smartphone includes
user facing app and background services for scanning and broadcast.
In this paper the term app is used to represent the complete
contact tracing application with all its services. This app uses BLE
broadcast message, ADV_IND, to exchange proximity data non-
intrusively. The physical layer frame format of ADV_IND is shown
in Figure 5. This 47-byte frame includes advertiser’s identification
(6-byte MAC address of source BLE), UUID, and payload data.
The frame size can be less than or equal to 47-byte depending upon
the payload size. The Access Address (AA) field is used to identify
connections uniquely. The preamble indicates the start of a new
frame and Cyclic Redundancy Check (CRC) provides the frame
check sequence. The application independent frame details can
be found in BLE specification. The payload size and content are
contact tracing application specific. The description of one such
payload can be found in this payload data [5] contains the Rotating
Proximity Identifier (RPID), BLE signal strength at the source, and
necessary overhead. All these data items are encoded using tag,
length, and value format.

The RPID identifies the owner of the smartphone uniquely and
anonymously. It is rotated periodically (every 15 minutes). An
observer creates a proximity record for every scanned ADV_IND
with RPID, timestamp, BLE signal strength at the source, source
MAC address, and the BLE signal strength at the receiver. Each
proximity record represents the presence snapshot of the advertiser
for an observer. The 6-bytes advertiser address is a random number,
and it is rotated every 15 minutes in synchronization with the
RPID or independently. Periodically rotating both the advertiser’s
identification and RPID mitigates the wireless tracking issue. This
means two different proximity records from the same smartphone
with more than 15 minutes between them will likely have different
MAC addresses and RPIDs. In general, the information required
to correlate these records to the same user is served by a common
server [11].

The heuristic exchange schedule described in this paper is
independent of the encoding of proximity data in ADV_IND
payload and the rotations of RPID and MAC. However, the
encoding is expected to include RPID and the necessary data for
BLE signal strength at the source. The heuristic is also independent
of how this data is processed and what type of anonymity is used.
A non-intrusive contact tracing App is required to act in the
role of both broadcaster and observer. The broadcaster role is
implemented by periodic ADV_IND broadcast and the observer
role is implemented by periodic scanning of ADV_IND from
other apps. Each broadcaster periodically sends ADV_IND with
proximity payload in three broadcast channels by maintaining

Figure 3: BLE scanning.

Figure 5: BLE ADV_IND frame format.

Figure 4: Active scanning.

4

Narayanan HTS et al.

Int J Swarm Evol Comput, Vol. 11 Iss. 8 No: 1000267

short, fixed delay between these broadcasts. This fixed delay makes
it flexible to scan any of the advertising channels for broadcast. The
advertisement operation supports observers which are operating
only in passive mode. This means, there is no other interaction
between the observer and the broadcaster during this exchange
(refer to Figure 4). Each observer also operates in continuous mode
with a configured duty cycle. It is assumed that a device can perform
scanning and advertisement at the same time [12].

Broadcast and scanning schedule heuristic

The maximum operational range of BLE is about 300 feet. The
effective range could be much lower due to various factors like
transmitter power, sensitivity of the receiver, and operational
environment. Also, there is an issue with the accuracy of the distance
computed with BLE differential signal strength. Considering these
factors, the effective operational range r of a smartphone’s BLE
is assumed to be about 12 feet for the heuristic. This distance
is not entirely arbitrary. It is based on the accuracy of distance
measurement and the required proximity distance suggested by
CDC guidelines [13]. This distance r can be increased or decreased
in single digit value by adjusting the reliability limits. Larger
range can be supported with 2 Mbps bandwidth configuration of
Bluetooth 5.0, provided the accuracy of distance measurement is
improved. In an operational scenario, there may be broadcasts from
apps which are beyond this range. This out-of-range data can be
filtered out in post processing. The apps that are outside this range
are assumed to have less influence on media contention due to
their weaker signal and other factors like environment. The area
of a circle with a 12-feet radius is 144 feet2. In crowded areas a
standing person occupies about 5 feet2 on the average. This means
there can be nearly 90 people within 144 feet2. The value of r and
the average area occupied by a single person can be altered to evolve
the heuristic. These values are chosen to illustrate the heuristic and
stay close to deployment values. An app S1 and eleven other apps
(S2 to S12) are within mutual data exchange range as shown in
Figure 6. The broadcast and scanning schedules of these 12 apps
are illustrated in Figure 7. A slot in the diagram models a unit of
time, s. The value of s is fixed, and it is common to all the apps of
contact tracing. It is set to 12.5 ms for all our illustrations. Both
scanning period and broadcast period can be expressed as integral
multiples of s. The value of s is chosen to be large enough to
complete the broadcast attempt within a single slot for all possible
values of AdvDelay (< 10 ms). The time value increases from left to
right with column numbers in Figure 7. The S1 row in the diagram
illustrates the scanning and broadcast schedules of app S1; the rest
of the rows illustrate the scanning schedules for apps S2 to S12.

The broadcast period of b-slot is the same for all contact tracing
apps; the scanning period and duty cycle on the other hand are
configurable for each app. The time slots of different apps are
synchronized in Figure 7. However, the heuristic supports apps
with independent clocks. There are 12 apps in this illustration; the
heuristic can support scenarios with more apps within operational
range. The grey slots in S1-row are broadcast slots for S1. That is,
S1 sends its ADV_IND message sometime within the duration
of the slot. For clarity, broadcast activities of S2 to S12 are not
shown in the diagram. A slot with suffix ‘S’ in rows S2 to S12
indicates the scanning operation where the corresponding App
scans S1’s broadcast. The scanning operation includes alternating
active and inactive cycles with 50% duty cycle. An app scans for
broadcast messages from other apps only during its active scanning
cycle. The inactive cycle time is used to process proximity records
from the preceding active cycle and decide if the duty cycle needs
to be modified for the next scanning operation. The broadcast is
periodic, and this period is a constant for all the apps. Each node
attempts its broadcast every bs milliseconds. If all the apps follow
the same broadcast and scanning schedules, each app will likely
pick up the same number of broadcasts from S1 even when the two
clocks are not synchronized. This is illustrated in Figure 7. A trivial
way to guarantee this is by using a single common schedule all the
time. This trivial solution is not adaptable: 1. It does not conserve
power at smaller loads 2. It does not scale the scanning reliability
for different load conditions. The following section addresses
these limitations.

Scanning reliability model

Two or more broadcast messages can collide when multiple apps
attempt to broadcast at the same time. As result of this, the success
of a scanning operation to locate a specific BLE and the resulting
latency to connect to it become non-deterministic. There are
analytical and experimental models [14-16] to find the expected
latency for a pair of central and peripheral BLEs. This latency
includes the time taken by the central BLE to successfully scan
and connect to a specific peripheral. In this paper we model only
the scanning reliability, specifically for a set of peer BLEs which
are all operating in broadcast and observer roles for a specific BLE
timing configuration. A broadcast over a single channel requires
about 0.4 ms (transmission time of 0.376 ms + (

WA
-0.376)). The

value of (
WA

-0.376) can be nearly zero for an app that is operating
in broadcaster and observer roles, especially where the scanning
is done on a single channel. An app attempts to broadcast on
every bs milliseconds. If there are n apps within mutual operating Figure 6: Smartphone S1 at the centre of a circle with 12 feet radius (r).

r feet

Figure 7: A broadcast and scanning schedule with 12 smartphones.

5

Narayanan HTS et al.

Int J Swarm Evol Comput, Vol. 11 Iss. 8 No: 1000267

range of r feet with uniformly distributed broadcast time, then the
probability of success for a broadcast can be computed using one of
the generalizations of the birthday problem [17-18]. The number of
days d is the number of possible broadcasts (bs/0.4) within a single
broadcast period bs. The number of individuals, n is the number
of apps within the range under consideration. An approximation
based on Taylor Series (TS) expansion can be applied to compute
the probability for successful transmission. This approximation
requires d to be larger than n. In our heuristic scheduling the
value of d is maintained to be larger than n by an order or two.
The probability p that there is no collision for an advertisement is
expressed as 1 - (1 - e(-nxn/2d)). Replacing d by bs/0.4 allows the
expression to be rewritten as e(-nxn/5bs).

A successful broadcast guarantees successful reception for an
actively scanning observer. The probability of receiving a broadcast
is improved when the same advertisement is broadcast multiple
times within each scanning period. If each advertisement appears
m times within each active scanning period c, then the probability
R of scanning at least one of those m advertisements within the
scanning period is 1–(1–p)m

This probability R is a measure of the reliability of scanning. The
value of R is a function of three parameters - broadcast period bs,
number of apps n within the operating range of the observer, and
number of broadcasts m that can be received from each of these
apps in a single scanning period. It is obvious from the expression
that the reliability measure can be improved by having a large
broadcast period bs and a large m. The value of m is the measure
of active scanning period, and the value of b is a measure of the
broadcast period. Large values of m and b imply a large scanning
period with fewer broadcasts in it. These large values imply larger
power requirements and lower scanning resolution, respectively.
The three parameters, namely c, b, and m are related; choosing
values for two of the three decides the value for the third. The
relationship between reliability of scanning and these parameters
is first examined with the objective to conserve power and improve
reliability for different load conditions. Table 1 and its plot in
Figure 8 illustrate the reliability measure as a function of n, b, and
m.

The plot in Figure 8 and data in Table 1 suggest high and closely
distributed reliability values for different schedules at lower load
sizes (n<50) and diverging values at larger load sizes. The reliability
value also stays higher over a larger range of n for a combination
of larger broadcast period b and lower value of m. For example,
a broadcast period of 3000 ms with scanning period of 6000 ms
(column 2) offers a more sustained reliability measure compared
to a broadcast period of 1000 ms with scanning period of 4000 ms
(column 5) or broadcast period of 2400 ms with scanning period of

4800 ms (column 4).

Conserving power with scanning time

The broadcast period in the range of 1-3 seconds is already near the
top end of BLE broadcast range of 20 ms-10.24 s. A larger broadcast
period will reduce the resolution required by downstream analytics
and other coexisting applications. Lower values of broadcast period
may violate Taylor Series approximation assumption. Thus, there is
no further attempt made in this paper to conserve power or offer
larger resolution by attempting values beyond the range of 1-3
seconds. A small deviation around this range is fine.

In general, BLE scanning operation can consume more power than
broadcast operation by an order or more, especially when the active
period and duty cycle are large. Besides conserving power, shorter
scanning periods are also preferable for adapting to changing loads
with agility. There are two independent options to conserve power
with scanning either by reducing the active scanning duration or
reducing the scanning duty cycle. When the scanning is robust,
smaller duty cycles are affordable. Larger duty cycles beyond 50%
are not attempted to conserve power, the scheduler can still support
such attempts.

Dual scanning schedules for conserving power

The reliability values are high and close to each other for all the
schedules listed in Table 1 for up to a certain value of the load.
Beyond this point, the reliability values of the schedules with
low broadcast period and low scanning duration start dropping
rapidly. This observation suggests that an app can use two different
scanning schedules. When the load is less, a shorter active
scanning period SL and when the load exceeds a threshold value,
a larger active scanning period SH is used. Both the schedules are
assumed to operate at 50% duty cycle unless and otherwise stated.
The scanning period SH is twice longer than SL. It is important
that the same broadcast period is maintained across all scanning
schedules. The broadcast rate needs to be low in both schedules
as identified in the earlier part of this section. Table 2 shows two
scanning schedule (active period) SL and SH for broadcast periods
of 1000, 1200, 1250, and 1500 milliseconds, respectively. The
smaller scanning periods are given preference to conserve power.
The second, third, and fourth pairs are acceptable if the reliability
requirement is 0.7 for up to a load of 90. The second pair supports
the requirement with the lower scanning periods, thus conserving
power. Schedule change takes place at the threshold value of 60.
More than two scanning schedules can also be supported. This
is done by generalizing the dual schedule described here with
multiple scanning periods. A richer generalization is possible when

Figure 8: Reliability plot for different load conditions and schedules.

6

Narayanan HTS et al.

Int J Swarm Evol Comput, Vol. 11 Iss. 8 No: 1000267

Table 1: Reliability measures for different load conditions and schedules.

Scanning Period C Scanning Period C Scanning Period C

6000 ms 4800 ms 4000 ms

Column 1 Column 2 Column 3 Column 4 Column 5 Column 6

NO Load (n) bs=1500, m=4 bs=3000, m=2 bs=1200, m=4 bs=2400, m=2 bs=1000, m=4 bs=2000, m=2

1 20 1 0.999 1 0.999 1 0.998

2 30 1 0.997 1 0.995 0.999 0.993

3 40 0.999 0.99 0.997 0.985 0.995 0.978

4 50 0.994 0.977 0.987 0.965 0.977 0.952

5 60 0.979 0.955 0.959 0.934 0.932 0.91

6 70 0.948 0.923 0.905 0.889 0.85 0.852

7 80 0.893 0.881 0.818 0.831 0.732 0.779

8 90 0.813 0.828 0.703 0.761 0.591 0.695

9 100 0.71 0.765 0.572 0.683 0.446 0.604

Table 2: Four different SL and SH pairs.

bs=1000 bs=1200 bs=1250 bs=1500

Max Load
(n)

SL=2000,
m=2

SH=4000,
m=4

SL=2400,
m=2

SH=4800,
m=4

SL=2500,
m=2

SH=5000,
m=4

SL=3000,
m=2

SH=6000,
m=4

20 0.994 1 0.996 1 0.996 1 1 1

30 0.973 0.999 0.981 1 0.982 1 0.996 1

40 0.926 0.995 0.946 0.997 0.95 0.997 0.98 1

50 0.847 0.977 0.885 0.987 0.893 0.988 0.94 0.996

60 0.739 0.932 0.798 0.959 0.81 0.964 0.867 0.982

70 0.613 0.85 0.691 0.905 0.707 0.914 0.759 0.942

80 0.482 0.732 0.573 0.818 0.593 0.834 0.627 0.861

90 0.36 0.591 0.455 0.703 0.476 0.725 0.488 0.738

Table 3: Scheduling with multiple duty cycles and multiple scanning periods.

Load (n)

R R R

Scanning Schedule Criteria & Duty Cycle(SL=2400
ms, m=2)

(SH=4800
ms, m=4)

(SVH=6000
ms, m=5)

20 0.998 1 1 S
L33 N £ 30,

u =2400/7200 = 33%30 0.993 1 1 S
L33

40 0.978 1 1 S
L40 30 < N £ 50,

u = 2400/6000 = 40%50 0.952 0.998 0.999 S
L40

60 0.91 0.992 0.998 S
 L50

u = 2400/4800

70 0.852 0.978 0.992 S
H

60 < N £ 90,
u = 4800/9600 = 50%

80 0.779 0.951 0.977 S
H

60 < N £ 90,
u = 4800/9600 = 50%

90 0.695 0.907 0.948 S
H

60 < N £ 90,
u = 4800/9600 = 50%

100 0.604 0.843 0.901 S
VH

u = 6000/12000 = 50%

110 0.511 0.761 0.833 S
 VH

u = 6000/12000 = 50%

7

Narayanan HTS et al.

Int J Swarm Evol Comput, Vol. 11 Iss. 8 No: 1000267

multiple scanning periods are combined with multiple duty cycles
as illustrated in Table 3.

Coexistence of dual schedules

Having two schedules, one for smaller load and one for larger
load conserve power, but this creates a situation with a mix of
apps operating with SL and SH within the operating range of an
app. The scanning schedule chosen by an app has no implication
to other apps. The scanning schedule used is based on the load
seen by an app. The apps at the edge of an operating range can
use SL and the ones that are closer to the centre can still operate
with SH. If all the apps are still using the same broadcast schedule,
they can operate with either of the two schedules. Having a
common broadcast period across all the apps makes the reliability
computation consistent among all the apps irrespective of their
scanning schedules.

Conserving power with smaller scanning duty cycle

The duty cycle, u, can be reduced to conserve power when the
scanning cycle is reliable for the prevailing load. This is done by
extending the inactive period. There is a limit to this reduction
as a lower duty cycle creates longer periods of inactivity. Table 3
illustrates duty cycle configuration for different load conditions.
The number of distinct broadcasts scanned in an active scanning
cycle by an app decides the value of the active scanning period c
and the duty cycle u for the next scanning cycle. The scanning
period is modified by choosing a suitable value for m; the duty
cycle is modified by choosing a suitable value for inactive period.

The schedule can be generalized to include multiple duty cycles as
shown in Table 3. There are 3 different scanning periods SL, SH,
and SVH and three different duty cycles 33%, 40%, and 50% with
a guaranteed reliability requirement of 0.9 for normal load of up to
90. When the load size is more than 90 the best scanning period is
used even if the reliability is under 0.9. The scanning period SL is
used for load value of up to 60 with 3 different duty cycles. When
the reliability falls below 0.9, the scanning period is switched to SH
and used for load values between 70 to 90. The scan period SVH
is used for load values greater than 90. There are other possible
scheduling options; instead of three different scanning periods, SH
can be used for the entire range of the load for the guaranteed
reliability of 0.9. This will likely consume more power. When an
app starts, it starts with the schedule for the largest supported load
and then scales down to prevailing load conditions. This guarantees
reliable scanning in unknown conditions. Once an assessment of
the load is done, the next scanning cycle itself could switch to an
appropriate scanning schedule. This agility is optimal and creates a
highly adaptive scheduler for fluctuating load conditions.

Supporting newer versions of bluetooth

BLE supports single bandwidth of 1 Mbps. The current version of
Bluetooth, Bluetooth 5.0, supports longer range and four discrete
transmission speeds: 125 Kbps, 500 Kbps, 1 Mbps, and 2 Mbps. The
longer-range mode operates with lower bit rates of 125 kbps and
500 kbps to support better sensitivity. The capacity of Bluetooth
5.0 broadcast message is 8 times that of BLE. If the Bluetooth 5.0
in smartphones is configured to use 2 Mbps transmission rate
and continue to use the same proximity payload (31-bytes), then
Bluetooth 5.0 could support a wider operational area as illustrated
by Table 4. There are other options too: supporting larger payload

that requires the same 0.4 ms transmission time or defining a larger
payload that requires less than 0.4 ms but more than 0.2 ms. One
such configuration is illustrated in Table 5 with message size that
requires 0.25 ms. There are other enhancements to Bluetooth 5.0
with no adverse impact to the heuristic. The graceful migration to
Bluetooth 5.0 may require the app to advertise and scan both legacy
and new payloads until BLE is phased out Table 4. This can make
each Bluetooth 5.0 app look like two and may double the effective
load size. Using the same payload in Bluetooth 5.0 can mitigate this
problem but supporting new features will be ruled out. Bluetooth
5.0 provides better reliability over larger range compared to BLE.
It also offers better support for denser load conditions Table 5.
Same Payload with 0.2 ms transmit time with 2 Mbps channel, bs
= 2000 ms

Table 4: Reliability measures with same payload size for BLE 5.0.

Load R R R

(n) m=2 m=4 m=5

20 1 1 1

30 0.998 1 1

40 0.994 1 1

50 0.986 1 1

60 0.973 0.999 1

70 0.953 0.998 1

80 0.926 0.995 0.999

90 0.89 0.988 0.996

100 0.847 0.977 0.991

110 0.796 0.958 0.981

120 0.739 0.932 0.965

Table 5: Reliability measures with larger payload size for BLE 5.0. Larger
Payload that requires 0.25 ms transmit time with 2 Mbps channel, bs =
2000 ms

Load R R R

(n) m=2 m=4 m=5

20 0.999 1 1

30 0.997 1 1

40 0.991 1 1

50 0.979 1 1

60 0.96 0.998 1

70 0.931 0.995 0.999

80 0.893 0.988 0.996

90 0.844 0.976 0.99

100 0.786 0.954 0.979

110 0.721 0.922 0.959

120 0.651 0.878 0.928

Estimation of raw records collected

When an app scans an ADV_IND broadcast, it creates a new raw
record using the payload, signal strength at the reception, and
time stamp. This record is stored and subsequently processed. The
number of raw records collected by an app varies with the scanning
and broadcast schedules and the number of other apps in the

8

Narayanan HTS et al.

Int J Swarm Evol Comput, Vol. 11 Iss. 8 No: 1000267

operating range in each scanning cycle. An app that is deployed in
an urban setting is likely to collect more raw records than an app
that operates in a rural setting. The number of records collected
in a day depends on the number of cumulative apps that were in
the operational range during each scanning period of the day. This
cumulative value is stochastic in nature. A simple estimation model
is built with the average number of apps in the range for a given
scanning period. Assuming an average of 2, there are 2x2x0.998
records for every scanning period of 7.2 seconds (using the data in
Table 3). This is about 50,000 raw records for a day. This simple
estimate can be extended to understand the server capacity required
and how to scale this capacity for fluctuating load conditions.

Coexistence of schedule with other BLE functions

The BLE in smartphones supports other features besides contact
tracing. These features should continue to coexist with contact
tracing schedules. The discovery procedure is common to contact
tracing and other BLE applications. This means, the scanning and
broadcast schedules described in this paper can be interrupted
by other BLE apps. For instance, when a smartphone is trying
to discover an external BLE speaker, it needs to scan on all the
3 advertising channels until the speaker is discovered. These
interruptions can last for a few seconds to a few minutes on wall
clock time, internally this could be a few broadcast and scanning
cycles. Once the device is discovered and connected, then there is
no contention with the contact tracing schedule. The payload of
contact tracing is uniquely identified from the payloads of other
features by its UUID. The coexistence also offers opportunity to
explore common presence data and common scheduler.

DISCUSSION AND CONCLUSION

A heuristic broadcast and scanning scheduler for contact tracing
apps that operates with non-intrusive methods is presented in
this paper along with a scanning reliability model. The schedule
can adapt to changing loads with optimal agility. The app with
the built-in BLE operates as both observer and broadcaster in
passive scanning mode. The heuristic is developed for Bluetooth
LE and can be extended to the current Bluetooth version 5.0 to
handle larger load with larger proximity payload. This scheduler
also provides a basis to estimate the volume of proximity data. This
estimate is essential for capacity planning and identifying design
issues. The heuristic is simple and feasible with the resources
available in smartphones. The scheduler is designed to maximize
scanning reliability and minimize bluetooth power requirements.
It can be adapted to other proximity applications besides contact
tracing.

REFERENCES
1. Gurley E. Coursera: COVID-19 Contact Tracing, Johns Hopkins

University, Baltimore, MD.2020.

2. Public Health Guidance for Community-Related Exposure, COVID-19
Guidance, Center for Disease Control and Prevention, US.2020.

3. Contact tracing app – India, Arogya Setu.2020

4. Bay J, Kek J, Tan A, Hau CS, Yongquan L, Tan J, et al. BlueTrace:
A privacy-preserving protocol for community-driven contact tracing
across borders, A white paper from government technology agency,
Singapore Tech. Rep. 2020;9:18.

5. Exposure notification API preliminary 1.2 Apple & Google joint
contact tracing initiative . .2020.

6. Exposure notification bluetooth specification 1.2 Apple & Google
joint contact tracing initiative.2020

7. Exposure notification cryptography specification preliminary 1.2,
Apple & Google joint contact tracing initiative.2020.

8. Martin T, Karopoulos G, José L. Ramos H, Kambourakis G, Fovino
IN, et.al. Demystifying COVID-19 digital contact tracing: a survey on
frameworks and mobile apps, wireless communications and
mobile computing, Hindawi. 2020.

9. Bluetooth core specification v5.2 bluetooth core specification working
group, bluetooth SIG proprietary.2019.

10. Afaneh M, Bluetooth GA: How to design custom services &
characteristics (MIDI device use case), Novel Bits. 2017.

11. Narayanan HT, Contact tracing solution for global community.
Comput J. Oxoford Academic. 2021; 64(10):1565-1574.

12. Locatify, BLE beacons for indoor positioning, beacon limitations,

13. Cho K, Park W, Hong M, Park G, Cho W, Seo J, et al. Analysis of
latency performance of Bluetooth Low Energy (BLE) networks.
Sensors. 2014; 15(1):59-78.

14. Cho K, Park G, Cho W, Seo J, Han K. Performance analysis of
device discovery of Bluetooth Low Energy (BLE) networks. Comput.
Commun. 2016; 81:72-85.

15. Luo B, Xu J, Sun Z. Neighbour discovery latency in Bluetooth Low
Energy networks. Wirel.Netw. 2020; 26(3):1773-1780.

16. Borja MC, Haigh J. The birthday problem. Significance. 2007;4(3):124-127.

17. Mathis FH. A generalized birthday problem. SIAM Review. 1991;
33(2):265-270.

18. Wendl MC. Collision probability between sets of random variables,
Statistics and Probability Letters.2003; 64(3):249-254.

https://www.coursera.org/learn/covid-19-contact-tracing.
https://www.coursera.org/learn/covid-19-contact-tracing.
https://www.cdc.gov/coronavirus/2019-ncov/php/public-%20health-recommendations.html
https://www.cdc.gov/coronavirus/2019-ncov/php/public-%20health-recommendations.html
https://www.mygov.in/aarogya-%20setu-app/
https://bluetrace.io/static/bluetrace_whitepaper-938063656596c104632def383eb33b3c.pdf
https://bluetrace.io/static/bluetrace_whitepaper-938063656596c104632def383eb33b3c.pdf
https://bluetrace.io/static/bluetrace_whitepaper-938063656596c104632def383eb33b3c.pdf
https://covid19.apple.com/contacttracing
https://covid19.apple.com/contacttracing
https://covid19.apple.com/contacttracing
https://covid19.apple.com/contacttracing
https://covid19.apple.com/contacttracing
https://covid19.apple.com/contacttracing
https://www.hindawi.com/journals/wcmc/2020/8851429/
https://www.hindawi.com/journals/wcmc/2020/8851429/
https://www.hindawi.com/journals/wcmc/2020/8851429/
https://www.bluetooth.com/specifications/specs/
https://www.bluetooth.com/specifications/specs/
https://www.novelbits.io/bluetooth-gatt-services-characteristics/
https://www.novelbits.io/bluetooth-gatt-services-characteristics/
https://ieeexplore.ieee.org/abstract/document/9619513
https://locatify.com/blog/ble-%20beacons-no-bull-beacon-review
https://www.mdpi.com/1424-8220/15/1/59
https://www.mdpi.com/1424-8220/15/1/59
https://www.sciencedirect.com/science/article/abs/pii/S0140366415003886
https://www.sciencedirect.com/science/article/abs/pii/S0140366415003886
https://link.springer.com/article/10.1007/s11276-018-1864-3
https://link.springer.com/article/10.1007/s11276-018-1864-3
https://rss.onlinelibrary.wiley.com/doi/full/10.1111/j.1740-9713.2007.00246.x
https://epubs.siam.org/doi/abs/10.1137/1033051
https://www.sciencedirect.com/science/article/abs/pii/S0167715203001688

