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Abstract

Autism spectrum disorder is a set of neurodevelopmental disorders in terms of prevalence, morbidity and impact
to the society, which is characterized by intricate behavioral phenotype and deficits in both social and cognitive
functions. The molecular pathogenesis of autism spectrum disorder has not been well understood, however, it
seems that PI3K, AKT, and its downstream molecules have crucial roles in the molecular pathogenesis of autism
spectrum disorder. The PI3K/AKT signaling pathway plays an important role in the regulation of cell proliferation,
differentiation, motility, and protein synthesis. Deregulated PI3K/AKT signaling has also been shown to be
associated with the autism spectrum disorder. Discovery of molecular biochemical phenotypes would represent a
breakthrough in autism research. This study has provided new insight on the mechanism of the disorder and would
open up future opportunity for contributions to understand the pathophysiology.

Keywords: Autism; ASD; PI3K; AKT; PTEN; GSK3; Signal
transduction

Abbreviations:
ASD: Autism Spectrum Disorder; DHA: Docosahexaenonic Acids;

EPA: Eicosopentaenoic Acid; GSK3: Glycogen Synthase Kinase 3; 5-
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Rapamycin; NF-κB: Nuclear Factor κB ; PDZ: PSD-95/Dlg/ZO-1 ; PH:
Plekstrin Homology; PIP3: Phosphatidylinositol (3,4,5)-Triphosphate;
PI3K: Phosphatidylinositol-3 Kinase; PPARγ: Peroxisome
Proliferator-Activated Receptor γ; PTEN: Phosphatase and Tensin
Homolog on Chromosome 10; PUFAs: Polyunsaturated Fatty Acids;
ROS: Reactive Oxygen Species; SSRIs: Selective Serotonin Reuptake
Inhibitors; TNF: Tumor Necrosis Factor; TSC1: Tuberous Sclerosis
Complex 1; TSC2: Tuberous Sclerosis Complex 2

Introduction
Autism Spectrum Disorder (ASD) is a group of

neurodevelopmental disorders defined by an abnormal functioning
with the fundamental deficits in social communication and
reciprocity, and shows repetitive and categorized patterns of behavior
[1,2]. ASD is one of the most common behavioral disabilities
diagnosed in children, which represent a major public health problem.
ASD continues to increase at an upsetting rate [3]. Mixtures of genetic
as well as environmental factors are thought to cause the ASD, and
more active treatments than those now presented are absolutely
required. Several genetic studies have identified a large number of
genes which are related to ASD [4]. Many of the genes implicated in
ASD encode synaptic proteins [5]. However, most of those gene
mutations are rare and may only account for a small part of the cases
of ASD. Neuropathological methods applied to ASD brains have
revealed several developmental macroscopic and microscopic
abnormalities [6], suggesting neuro-inflammation with cytokine

production in frontal cortex and cerebellar regions have occurred [6].
In addition, intracellular signal transduction systems including the
phosphoinositide 3-kinase/serine–threonine protein kinase AKT (also
known as protein kinase B)/mammalian target of rapamycin
(PI3K/AKT/mTOR) pathway in brain have been found to be altered in
the ASD patients [7]. Furthermore, gene mutations associated with the
regulation of this pathway seem to play a significant role in mediating
the behavioral abnormalities characterized in the ASD. Because the
pathway also seems to make immune cell activation by regulation of
the key inflammatory cytokines [8], changes in the inflammatory
signaling might contribute to specific therapeutic effects on ASD
treatment. Moreover, recent studies have indicated that several
abnormalities of serotonergic system have been described in patients
with ASD including abnormal activity of the transporter and reduced
serotonin synthesis in brain [9]. Serotonin exerts part of its action by
modulating the activity of PI3K/AKT [10,11]. Here, we provide an
overview of research on the characterization of the regulation of
PI3K/AKT signaling (Figure 1) at the viewpoint of pathogenesis in
ASD. Understanding those regulations may provide better efficacy of
new therapeutic approaches.

Relationship between ASD and Serotonin/GSK3β
signaling

Serotonin (5-HT) is involved in various aspects of normal brain
functions including the regulation of mood, appetite and social
interactions [12,13]. Accordingly, a neuro-contribution of 5-HT
transmission in various human psychiatric conditions and drugs
acting on the 5-HT neurotransmission are regularly used for the
management of anxiety disorders [14]. Dysregulation of brain 5-HT
neurotransmission is thought to surely underlie mental conditions in
ASD [9]. Studies have found raised 5-HT levels in the whole blood
cells and platelets of ASD patients [15,16]. Higher activity of 5-HT
transporter has also been implicated in ASD [17]. 5-HT itself or drugs
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acting on the 5-HT neurotransmission control the serine/threonine
kinase glycogen synthase kinase 3beta (GSK3β), a signaling molecule
modulated by a lot of psychiatric therapeutic agents [1,18]. For
example, aripiprazole is an atypical antipsychotic drug accepted for the
treatment of psychiatric disorders such as schizophrenia, bipolar
disorder, major depressive disorder, and ASD [19]. The drug shows
partial agonistic activity at the 5-HT(1A) receptors, and antagonistic
activity at the 5-HT(2A) receptors [20]. Furthermore, GSK3β
inhibition rescues behavioral abnormalities in the 5-HTdeficient mice
[21]. In addition, reduction in brain 5-HT levels is accompanied by
activation of the GSK3β [13]. Considerably, inactivation of GSK3β
using pharmacological or genetic methods, may improve the aberrant
behaviors formed by the 5-HT deficiency. Furthermore, multiple
classes of 5-HT drugs, including selective 5-HT reuptake inhibitors
(SSRIs), tricyclic antidepressants, monoamine oxidase inhibitors, and
atypical antipsychotics, inhibit brain GSK3β signaling [22-24]. GSK3β
is inhibited by lithium, which is often used in combination with
antidepressants for the management of certain mood disorders [25].

Figure 1: Schematic depiction and overview of a PTEN/PI3K/AKT/
GSK3β signaling in inflammation responses has been shown.
Example molecules known to act on the PTEN/PI3K/AKT/GSK3β
pathway are also shown. Arrowhead means stimulation whereas
hammerhead represents inhibition. Note that some critical
pathways have been omitted for clarity.

Unlike many kinases, the GSK3β is a constitutively partial active
kinase that is inhibited following the phosphorylation of the Ser-9
residue located in its amino-terminal domain [26] (Figure 2). In brain,
stimulation of 5-HT (1A) receptors augments phosphorylation of the
Ser-9 residue, thus leading to inhibition of the GSK3β [27]. In
contrast, 5-HT (2A) receptor signaling reduces GSK3β
phosphorylation thus leading to kinase activation [28]. Inhibition of
this kinase prevents the appearance of behavioral changes brought by
5-HT-deficiency in mice experiments [29]. Accordingly, targeting
GSK3β signaling may give therapeutic advantages for the controlling
of certain 5-HT-related psychiatric conditions. In consistent,
inhibitory serine-9 phosphorylation of GSK3β is also essential for the
action of lithium [30]. Either directly or indirectory, mood stabilizers
lithium and valproic acid trigger an inhibition of GSK3β [31,32]. In
addition, various drugs acting on 5-HT neurotransmission are capable

of inhibiting GSK3β activity by increasing the inhibitory
phosphorylation of the amino-terminal domain serine-9 residue
[33,34]. Although the GSK3β was first identified as an enzyme
phosphorylating glycogen synthase, it has been found to
phosphorylate a lot of intracellular substrates [35]. Through the
phosphorylation, GSK3β regulates many important cellular processes,
including development, cell structure, microtubule dynamics, gene
expression, and cell survival [35]. GSK3β is a ubiquitous serine/
threonine kinase which is usually referred to as GSK3 isoforms,
GSK3α and GSK3β [36]. These two iso-enzymes are the product of
different genes termed GSK3α and GSK3β. The development of GSK3
isoform-specific inhibitors seems to be necessary for the treatment
with the GSK3-mediated pathology [37]. The regulation of GSK3 by
5HT(1A) receptors appears to involve an activation of
phosphoinositide 3-kinase (PI3K) which in turn activates the serine/
threonine kinase AKT, then phosphorylates the inhibitory serine 9
residue of GSK3β [27]. In addition to its regulation by 5-HT, brain
GSK3β is also inactivated by several neurotrophic factors, such as the
brain-derived neurotrophic factor and its receptor TrkB through
PI3K-mediated signaling [38,39]. Drugs that influence the 5-HT
system can also regulate GSK3β in certain brain areas [21].
Accordingly, systemic inhibition of GSK3β has been shown to have
effects similar to those of mood stabilizers, antipsychotics or
antidepressants. Numerous classes of pharmacological compounds
may differentially modulate GSK3β activity in the brain neuronal
networks.

Figure 2: Schematic protein structures of human GSK3β, PTEN and
AKT1. The functionally important phosphorylation sites are also
shown. Note that the sizes of protein are modified for clarity. PH
domain= pleckstrin homology domain; C2 domain= a protein
structural domain involved in targeting proteins to cell membranes;
PDZ= a common structural domain in signaling proteins (PSD9,
Dlg, ZO-, etc)

Relationship between ASD and PTEN
Increasing form of evidence suggests dysregulated PI3K activity and

downstream signaling as a significant contributor and potential
therapeutic targets for mental disorders [7,40]. Signaling through the
PI3K has various essential roles such as cell growth, migration,
differentiation and cell survival [41]. The PI3K activity is also known
as a crucial regulator of neuronal function [42]. PI3K signaling
transduces various signals from cell surface receptors to the AKT/
mTOR pathway, and is crucial for synapse and dendritic spine
development [42], and for enduring forms of synaptic plasticity
underlying memory and learning [43]. Accordingly, alteration in the
PI3K/AKT/mTOR pathway results in many behavioral abnormalities
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and is also expected to play a significant role in ASD pathogenesis.
Actually, alteration of the downstream mTOR signaling pathway has
been shown to be involved in 14% of ASD individuals [44].
Phosphatase and tensin homolog on chromosome 10 (PTEN) has lipid
phosphatase activity against the 3′phosphate of phosphatidylinositol ,,
5 trisphosphate, which negatively regulates the activity of PI3K/AKT
pathway [45]. In other words, PI3K catalyzes the reverse of PTEN
reaction resulting in AKT activation. Then, AKT phosphorylates a
diverse set of substrates including GSK3β [46]. 5-HT promotes
interactions with a scaffolding and regulatory molecule, which results
in the activation of PI3K/AKT [47]. Therefore, the PTEN may be a
significant regulator of this pathway in mediating the ASD phenotype.
In a clinical cohort of pediatric patients with ASD, there is a
prevalence rate of about 8% with mutations in PTEN gene [48].
Developmental delay and/or mental retardation have a higher
prevalence rate with mutations in PTEN [49]. Functional absence of
PTEN results in an enlarged hippocampus with increased size of brain
dendrite [50]. In contrast, overexpression of PTEN has been shown to
have inhibitory effects on 5-HT signaling via the decreased AKT
activity [51]. It has been shown that PTEN is a tumor suppressor gene
mutated in a lot of human cancers [52]. Individuals with germline
PTEN mutations are susceptible to tumors but also display brain
disorders together with macrocephaly, seizure, and mental retardation
[53]. As mentioned above, PTEN mutations have also been reported in
ASD individuals [54]. Downstream of the PI3K/AKT pathway, some
components of the mTOR signaling are present in synapses and
mediate synaptic plasticity in specific neuronal residents [55]. So,
abnormal activation of the PI3K/AKT pathway could underlie
behavioral abnormalities reminiscent certain features of human ASD.
However, a causal link between PTEN and ASD remains unclear.

Diets may contribute to the improvement of ASD-
therapy via the modulation of PTEN/AKT and GSK3β
signaling

Fish oil administration amends cognitive deficit, increases AKT
phosphorylation, decreases GSK3β phosphorylation, and decreases
pro-apoptotic molecule-expression, suggesting a potential role for fish
oil as a protection of neurons [56]. In particular, omega-3 (n-3) long-
chain polyunsaturated fatty acids (PUFAs) in the fish oil have become
a focus of interest. Docosahexaenonic acids (DHA) are essential for
brain development [57]. Fish oil administration also improves
cognitive deficit by the increasing AKT phosphorylation [58].
Accordingly, neuroprotecton could be performed by certain diets
involved in PI3K/AKT pathway. A variety of signals from food
nutrients leads to the PI3K/AKT and GSK3β pathway activation
and/or inhibition (Figure 3). For example, phosphorylation of Ser9 in
GSK3β is significantly increased in green tea polyphenols-treated
HepG2 cells [59]. In mice experiments, resveratrol may provide
neuroprotection via the increases in the GSK3β phosphorylation [60].
Dietary depletion of tryptophan, which is the precursor of 5-HT, has
been shown to exacerbate the repetitive behavior in ASD patients [61].
In consistent, tryptophan-restricted animals display a reduced activity
of phosphorylated AKT [62]. It is also suggested that the
neuroprotection of curcumin might be mediated via PI3K/AKT
signaling pathway [63]. Curcumin, a component in the widely used
culinary spice turmeric, could improve the plasticity and structure of
synapse, and could improve memory capacities [64]. Furthermore, an
apparent anxiolytic effect of curcumin has been shown in lead induced
animal anxiety-model, possibly resulted from modulation of neuronal
5-HT neurotransmission [65]. Kaempferol is a flavonol present in

various plants such as grapefruit and some edible berries, which
induces the activation of PI3K/AKT signaling [66]. On the contrary,
the biological activity of the isothiocyanates, rich in some vegetables
such as broccoli, has been shown to suppress AKT phosphorylation
[67]. However, despite these experimental observations, the exact
mechanisms for these food ingredients remain elusive for the clinical
uses. Additionally, it seems essential to exploit the potential profits of
optimal treatment and/or combination with these PI3K/AKT
modulators.

Figure 3: Several dietary modulators linked to the PTEN/
PI3K/AKT/GSK3β pathway are demonstrated, whose potential
molecular targets may be based on the predominant sites.
Arrowhead means stimulation whereas hammerhead represents
inhibition, suggesting implication of PTEN/PI3K/AKT/GSK3β
modulators for the therapy of ASD via the neuronal cells
protection. Note that some critical events have been omitted for
clarity.

Therapeutic and/or dietary interventions to respond the reduction
of PTEN expression could contribute to the prevention of the anxiety
diseases and/or could decline the rate of its development. Honokiol, a
compound in traditional eastern herbal medicines, can chemically
diminish the PI3K/AKT signaling by up-regulation of PTEN
expression [68]. However, PTEN indirectly promotes 5-HT synthesis
and secretion via inhibiting the signaling [69,70]. In addition, there is a
crosstalk between PTEN and 5-HT receptor [70]. It has been shown
that DHA and eicosopentaenoic acid (EPA) increase the level of PTEN
in breast cancer cells [71]. Since DHA and EPA are ligands of PPARγ,
both of the n-3 PUFAs exert anti-proliferative effects by inducing
PTEN expression via the activation of the PPARγ [72]. In this
meaning, the most attractive target with regard to PTEN transcription
seems to be PPARγ [73]. Both genistein and quercetin, daidzein also
have an effect on the PPARγ activation which has been shown to up-
regulate PTEN expression, then, suppresses the PI3K/AKT pathway
[74]. Therefore, dietary exposure to the soy isoflavones at
physiologically relevant concentrations induces PTEN expression [75].
A high-fat diet raises circulating fatty acids, which considerably
modifies PTEN expression [76]. Remarkably, some of rosemary
extract represses PTEN expression in K562 culture cells [77].
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Additionally, dietary consumption of the indole-3-carbinol up-
regulates PTEN in the animal model [78]. In the future, these findings
might be interpreted into new dietary managements for the treatment
of ASD via the regulation of AKT/PTEN signaling pathway.

Perspective
Overall, the effect of depletion in brain GSK3β activity is a

reduction in anxiety that is combined with an increase in the
beginning of social interaction. As mentioned above, previous studies
have shown that GSK3β would be commonly activated by 5-HT (2A)
receptors and inhibited by 5-HT (1A) receptors [27,28]. Changes in
the regulation of GSK3β activity have been associated with the actions
of several psychoactive drugs, including those affecting 5-HT
functions in the treatment of mood disorders. A better understanding
of the functions of GSK3β in different brain areas may be the key to
unravel the mechanisms by which it contributes to the regulation of
ASD treatment. Investigations of the function and mechanisms of
GSK3β mediated signaling in 5-HT synaptic transmission should offer
research possibilities to understand and potentially manage human
disorders. PTEN/PI3K/AKT/GSK3β pathway seems to be critical for
maintenance in brain neurons. As enzymes involved in neuronal cell
survival and neuroplasticity is particularly relevant to the function of
neurotrophic factor, regulation of PTEN/PI3K/AKT/GSK3β may
provide an important signaling for the neuroprotection in ASD.
Among different signaling molecules that can be regulated by 5-HT,
several lines of evidence support a role for this signaling networks
underlying the development and treatment of mental illnesses.
Accordingly, one treatment model is based on the regulation in the
ASD children. Given the complexity of the signaling pathways that can
regulate brain activity, it is probable that this pathway might
contribute to the therapeutic effect of dietary treatment on ASD. The
benefits from dietary supplementation may extend to a wider
population.
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