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Abstract

The role of UV and pigmentation are very difficult to control for in human studies, and mechanisms difficult to infer
based on statistical association with melanoma. The animal models are not representative of the human situation.
But on the other hand, animal studies can be useful for basic studies that will ultimately help in building up a picture
of the overall network of in vivo cellular behavior and intra and inter cellular pathways contributing to melanoma
progression and the effects (or not) of UV radiation in individuals with MC1R variants.

This review describes that, although the Mc1r is a determinant of coat color phenotype as the MC1R is a
determinant of hair and skin color in humans, deficiency of the Mc1r in mice is associated with a paradoxical lower
incidence of melanoma.
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MC1R and Mc1r
The melanocortin-1 receptor (MC1R) is a member of the G-

protein-coupled receptor (GPCR) superfamily the ligand for which,
alpha-melanocyte stimulating hormone (α-MSH), is derived from the
proopiomelanocortin (POMC) precursor protein [1,2]. MC1R present
in melanocyte membrane is involved in melanogenesis where it
regulates the amount and type of melanin production and thus human
skin phototype and its sensitivity to UV induced damage [3,4]. There
are two main types of melanin: pheomelanin (red/yellow) and
eumelanin (brown/black), which are derived from the same precursor
dopaquinone that is formed following oxidation of tyrosine by
tyrosinase [5,6]. However while synthesis of eumelanin requires MC1R
activity, the synthesis of pheomelanins is a default pathway which
proceeds in the absence of MC1R signaling [7]. In pigmented tissues
such as skin melanin is present as mixtures or copolymers of both
types [8]. MC1R engagement with its ligands, α-MSH or
adenocorticotropic hormone (ACTH) activates adenyl cyclase (AC),
resulting in cAMP production, which leads to phosphorylation of
cAMP responsive-element-binding protein (CREB), a member of the
transcription factor family [6]. CREB activates microphthalmia
transcription factor (MITF) which activates the enzyme tyrosinase [6].
The MC1R coding region in humans is highly polymorphic with at
least 30 allelic variants, most of which result from a single amino-acid
substitution [8]. Also in other mammals similar single polymorphisms
as well as mutations causing frame shifts and truncated Mc1r variants
have been found [9].

In mouse hair, signaling through the Mc1r acts as a control point
for determining the eumelanin/phaeomelanin ratio and its loss of
function or mutations results in yellow coat color [10]. The hair of the
Mc1r mouse is often used in EPR analysis as a natural standard of
pheomelanin although it should be noted that it does not contained
pure pheomelanin [11,12]. In the recessive yellow mouse (Mc1re/e,
extension mutation), a frame shift mutation in the Mc1r gene causes

deletion of a single nucleotide at position 549 of the open reading
frame and results in a premature stop after 12 additional codons, the
result of which is premature termination in the fourth trans-
membrane domain of the receptor protein making it unable to couple
to AC and activate cAMP [13,14]. The Mc1r receptor in the mouse
thus differs from the human polymorphisms in MC1R which encode a
complete receptor, albeit one with altered function, although there is
76% identity in amino acid sequence. In the mouse Mc1r the receptor
is truncated and the ability to engage cAMP is totally absent.

There are differences between MC1R and Mc1r. Mc1r required a
higher concentration of α-MSH [13] and is less sensitive to exogenous
ligands like agouti signaling protein (ASP) which acts as an
extracellular antagonist of Mc1r signaling [14,15]. The difference in
potency is compensated in vivo by expression of a higher number of
Mc1r receptors on mouse than on human melanocytes [16,17].
Moreover, it seems that signaling by Mc1r is largely ligand-
independent in vivo, as loss of POMC, the precursor of α-MSH, in
C57BL/6 mice preserved eumelanin hair pigmentation [18], while
most individuas that lack POMC have red hair [19,20].

UV-Induced Melanoma
Damage to epidermal melanocytes plays a critical role in the

development of malignant melanoma (CMM), which occurs in skin,
but is also found in other parts of the body, including the bowel and
the eye (uveal melanoma). It is one of the most lethal types of cancers.
A causal role for solar UV exposure, in etiology of cutaneous
melanoma is widely accepted. UV radiation, that reaches the earth
surface consists mainly of UVA (95%; 320-400 nm), and about 5% of
UVB (280-320 nm). UVC (200-280 nm) is completely absorbed by the
earth’s atmosphere. Stratospheric ozone depletion, leads to increases
doses of UVB transmitted to the Earth, which increases the risk for
skin cancer including melanoma [22]. Epidemiologic studies indicate
increased susceptibility of children to UV-induced melanoma [23,24].
Studies on a mouse model for UV-induced melanoma, confirmed that
exposure to UV of neonatal but not adult HGF/SF(Hepatocyte growth
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factor/scatter factor) transgenic mice resulted in development of
melanoma within a year of treatment [25-28]. HGF/SF transgenic
mouse in which mouse HGF/SF cDNA sequences were overexpressed
by virtue of a mouse metallothionein (MT) gene promoter and
associated locus control regions [29,30], has an increased number of
extra-follicular dermal melanocytes in the trunk skin, that imitate
human skin (melanocytes are present in the skin, in contrast to wild
type mouse which has melanocytes present only in hair follicles). In
contrast to other animal model, in which only dermal-animal
melanoma occurs, neonatal HGF transgenic mice are susceptible to
UV-induced melanoma which, uniquely among melanoma mouse
models, recapitulate the histopathology of human disease, namely
superficial spreading melanoma (SSM) [25-28]. The mechanism of
juvenile susceptibility to melanoma is not well known. However our
studies on HGF/SF transgenic mice suggest that the immaturity of
melanocytes in the skin and the profound defect in the immune
response, of UV-induced DNA damage, play an important role in the
susceptibility of juvenile mice to UV-induced malignant melanoma
[24,28].

Mc1r and Immune System
In addition to cutaneous and hair follicle melanocytes,

keratinocytes and fibroblasts, MC1R expression was also found on
macrophages, lymphocytes, neutrophils and dendritic cells [3],
suggesting a role not only in skin physiology and melanogenesis but
also in inflammation. Melanotropins have been reported to possess
anti-inflammatory effects in many experimental models of acute and
chronic inflammation, including bowel diseases, allergy and others
[31,32]. MC1R is subject to regulation by a variety of paracrine and/or
autocrine factors that are synthesized in response to UV exposure of
the skin such as α-MSH and ACTH, both derived from POMC, and
which protect from UV induced DNA damage and apoptosis
[3,32-34]. Most of the studies to date have focused on the anti-
inflammatory properties of α-MSH from which it has been concluded
that lack of MC1R may increase UV sensitivity [35]. There is ample
published evidence that UV upregulates α-MSH in keratinocytes and
in melanocytes [36]. UVB has also been elegantly demonstrated to
upregulate expression and protein levels of POMC in cultured human
skin explants [37]. There is evidence that UV upregulates α-MSH in
human skin in vivo. Holzmann et al. [38] reported increased levels of
circulating both α-MSH and ACTH in humans in response to UVA
irradiation in fair-skinned individuals [38]. In mouse skin Cui et al.
[40] found that UVB irradiation of mice increased epidermal POMC
protein levels in a p53 dependent manner, consistent with their in
vitro studies. The total UVB dose used was 2 kJ/m2 (40 J/m2/day 5
days a week for 10 weeks). In the same study these investigators
showed increased α-MSH in cultured human foreskins irradiated with
UVC (254 nm germicidal lamp) [39] although it should be noted that
254 nm UVC is not a component of sunlight and thus has limited
biologic relevance. The MC1R has been suggested as the receptor
responsible for the anti-inflammatory effects of α-MSH and related
peptides via inhibition of NF-κB activation [40,41] and protection of
IκBα degradation [42]. This results in reduction of the expression of
pro-inflammatory cytokines [42] and adhesion molecules [41],
therefore affecting the humoral and cellular phases of inflammation
[43,44]. Further, Grabbe et al. [45] found that α-MSH decreased
contact hypersensitivity and induced immune tolerance in mice,
indicating an immunosuppressive role [45].

However, there are inconsistent studies using Mc1re/e yellow mice
with a deficiency in Mc1r to investigate the effects of the Mc1r on
inflammation and immunity. Using an model of inflammatory
peritonitis, Getting et al. [46] found that Mc3r not Mc1r was
responsible for the anti-inflammatory effect [46]. In contrast, Maaser
et al. [47] found a crucial role for Mc1r in experimental colitis [47].
We have recently demonstrated, however, that lack of Mc1r in mice
did not alter an inflammatory response to UV in their skin. For all
tested groups of mice: C57BL/6-c (albino),C57BL/6-Mc1re/e (yellow),
and C57BL/6 (black) formation of DNA damage as CPD, edema,
determined as increase in skin thickness, and infiltrating neutrophils
as a percentage of total skin cells after UV irradiation at selected time
points remained similar, suggesting that Mc1r does not influence the
inflammatory response in mice. We also found that lack of Mc1r did
not alter either neonatal immune tolerance or UV immunosuppresion
[48]. Our findings were confirmed by other researchers [see
commentaries in Experimental Dermatology [49,50].

MC1R and Susceptibility to Melanoma
In human melanoma MC1R polymorphisms are well described as

significantly increasing melanoma risk. However only some of these
polymorphisms, such as R151C, R160W and D249H that encode
hypomorphic mutants that are unable to either bind ligand or activate
AC are associated with red hair in a Caucasian population [9,51] and
these show the highest risk for melanoma. The “red-head” phenotype
(phototype I) is defined not only by hair color but also by light skin,
poor tanning ability and sensitivity for sunburn [52] and increased
skin cancer including melanoma susceptibility [35,53-55]. Studies on
human melanocytes derived from individuals with one of these three
mutations showed that loss of function in the MC1R gene sensitizes
their melanocytes to UV induced DNA damage and thereby increased
its susceptibility to UV induced skin cancer [35,53,55]. However no
clear correlation with polymorphisms in MC1R and erythema induced
by UVB have been proved [56-58]. The function of human MC1R
variants are also extremely diverse, and it seems that different human
MC1R variants may affect different melanocyte pathways.

However studies on mouse models described below show diverse
effects of Mc1r on melanoma. While lack of the Mc1r in Mc1re/e mice
with the B-Raf V600E mutation increased development of melanoma
[59], in a mouse model with HGF/SF overexpression mice
homozygous for the Mc1r (e/e) mutation with deficient Mc1r
signaling, do not develop melanoma [28]. The human MC1R
polymorphisms that confer increased melanoma risk yield a receptor
with the potential to retain some function which is lacking in recessive
yellow mice, where the Mc1r receptor loses all signaling [28].
Moreover the effects on melanoma may not be specific to the
particular (e) mutation. For instance Gray Lipizzaner horses carrying a
loss-of-function mutation in ASIP (agouti signaling protein) that
results in higher levels of Mc1r had a higher incidence of melanoma,
implying that increased Mc1r signaling promotes melanoma in these
animals [60]. Along these lines, in the Sinclair Swine pig model of
melanoma, while black pigs are melanoma-prone, yellow pigs, that are
thought to carry either MC1R or ASIP mutations, are resistant [61].

Mc1r and HGF
HGF is the only known ligand of the c-Met receptor (receptor

tyrosine kinase). Upon HGF binding, the c-Met receptor can activate
various signaling pathways including AKT/PI3K/mTOR, RAS/MAPK
and STAT pathways [62] which are highly relevant to melanoma.
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Aberrant c-Met activation correlates with hyperproliferation,
metastasis, tumour angiogenesis and poor prognosis in various human
cancers.

Pigmented, black transgenic HGF/SF neonatal mice are more
susceptible than albino HGF/SF animals to melanoma, notably to
UVA-induced melanoma, suggested to be as a result of oxidative
interactions between UVA and eumelanin [12,27]. HGF does not
affect melanin synthesis but increases the number of extra-follicular
melanocytes resulting in a hyperpigmented phenotype [12,27].
Interestingly while overexpression of HGF increases the number of
extra-follicular melanocytes in the trunk skin of FVB and C57-BL/6
mice, which further increase with mouse age, this does not occur in
HGF transgenic e/e mice. C57BL/6-Mc1re/e-HGF mice had few extra-
follicular melanocytes, even though transgenic HGF and c-Met were
expressed. Both C57BL/6-Mc1re/e

 and C57BL/6-Mc1re/e-HGF have
yellow hair and black eyes, and similar amounts of pheomelanin [28].
Lack of melanomas in C57BL/6-Mc1re/e-HGF mice, either in response
to UV radiation or spontaneously is consistent with this deficiency of
extra-follicular melanocytes [28]. The importance of Mc1r in the
extrafollicular survival of melanocytes complements the findings of
Chou et al. 2013 who showed that in wild-type mice, Mc1r played an
important role in migration of melanocytes from the hair follicle to the
epidermis after wounding or UV radiation, a process that does not
require transgenic HGF [63]. In our studies, heterozygous C57BL/6-
Mc1re/+-HGF mice, which were indistinguishable from Mc1r
competent C57BL/6-Mc1r+/+-HGF with similar numbers of dermal
melanocytes and eumelanin levels in the skin, nevertheless produced
significantly fewer melanomas. Impaired melanoma formation in
these heterozygous animals indicates that a previously unrecognized
pigment independent interaction between c-Met and Mc1r interaction
is necessary for melanoma in this model [28]. It can be speculated that
a molecule that regulates signaling pathways of Mc1r and c-Met, is
PTEN (phosphatase and tensin homolog) may be responsible. Studies
on melanoma and other cancers such as hepatocellular carcinoma and
epithelioid sarcoma, show that PTEN can inhibit both PI3K/AKT/
mTOR and HGF/c-MET pathways [64,65]. PTEN loss plays an
important role in melanoma [65]. Cao et al. show a UVB-dependent
interaction between human MC1R and PTEN, a negative regulator of
AKT, that protects PTEN from degradation thus limiting AKT
activation [67]. Polymorphisms in MC1R show to impair UV-induced
binding to PTEN, resulting in senescence in cultured melanocytes
[67]. Therefore it is possible that in heterozygous C57BL/6-Mc1r-e/+ -
HGF transgenic mice, due to lower expression of Mc1r, PTEN can
play important role in inhibition of UV-induced melanoma but this
remains to be established.

Mc1r and BRAF
B-RAF, a member of the Raf kinase family of growh signal

transduction protein kinases, is a key component of MAPK pathway
(mitogen- activated protein kinases, also known as the Ras-Raf-MEK-
ERK pathway), which regulates cell proliferation and differentiation.
Despite the fact that B-RAF mutation occurs both in melanoma
(60-80%), and in pigmented lesions [68, 69], the role of UV damage in
BRAF mutation remains unknown. Studies of Cao et al. showed a
synergism between MC1R variants and B-RAFV600E in cellular
transformation of genetically engineered human immortalized
melanocytes [67], but an association between MC1R polymorphisms
and B-RAF mutations in human melanoma is not well established, and
it has been reported by some groups but not by others [70- 72]. Mitra

et al. [59] found that ,in a mouse model carrying the B-Raf V600E
mutation, spontaneous melanomas occurred in Mc1r deficient
(C57BL/6-B-Raf CA- Mc1re/e) yellow mice due to the presence of
phaeomelanin [59]. However there was no information on UV
melanomas in this model. In contrast, no mutations in B-Raf were
found in HGF-transgenic mouse tumors (unpublished observations,
73). Moreover, HGF/SF does not affect the quality of melanin, nor the
efficiency of melanogenesis, but only the number and localization of
melanocytes. In contrast to C57BL/6-HGF/SF transgenic mice,
C57BL/6-B-Raf CA mice do not have extra-follicular melanocytes and
arising melanomas are exclusively dermal without epidermal
component. Recent studies have shown that the role of HGF in
melanoma is not dependent on activated B-RAF signaling in human
melanomas, and that HGF can mediate escape from B-RAF inhibition
through activation of the MAPK and PI3K-AKT pathways [74,75].
Therefore the effect of the Mc1re/e mutation on melanoma in mouse
models not dependent on B-RafV600E or HGF should be established.

Conclusion
Since melanoma is one of the most malignant tumors and is

resistant to many traditional therapies, the hope lay in recently
introduced molecularly targeted therapies in which mutated genes and
impaired pathways are blocked by specific inhibitors. Notably B- RAF
inhibitors have been used with partial success and use of c-Met
inhibitors has been proposed. However for understanding and better
efficiency of therapeutic procedures more extended mechanistic
studies on animal models are necessary.
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