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Abstract
Genomic investigations into the diversity of environmental microbes are leading to insights into ecological 

dynamics, the evolution of new forms of biological systems, and the discovery of new functions that might be 
exploited for biotechnological and biomedical purposes. It is now clear that an understanding of the community 
structure, function and evolution of bacteria in their natural environments is required to meet the promise of microbial 
biotechnology. To meet these new challenges, microbiologists are applying the tools of genomics and related high-
throughput technologies to both cultured microbes and environmental samples. This work will lead to new views on 
ecosystems and biological function together with the biotechnology enabled by this science. 
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Introduction
Microorganisms are found almost in every habitat present in 

nature due to their ubiquitous property. Some microorganisms are 
free living where as others are parasites, they exhibit various beneficial 
properties in food production, in cleaning up of environment, human 
health [1].The biotechnology potential is increasing exponentially with 
the identification of organisms, isolation of novel compounds and 
their pathways, and the molecular and biochemical characterization of 
cellular components [2].

Microorganisms of various types are present in the environment 
[3].Environmental microorganisms, especially those living under 
extreme conditions, cannot be cultured easily under laboratory 
conditions. Genomes of uncultured organisms have remained mostly 
uncharacterized and are thought to contain a wide range of novel genes 
of scientific and industrial interest. Metagenomics approaches, which 
are analyses of mixed populations of uncultured microbes, have been 
developed to identify novel and industrially useful genes and to study 
microbial diversity in a wide variety of environments [4].As the role of 
the environment is accorded a more prominent role in modifying the 
relationship between genetic variants and clinical measures of disease, 
consideration of gene-environment interactions is a must [5].

Microbial ecology examines the diversity and activity of micro-
organisms in Earth’s biosphere. In the last 20 years, the application of 
genomics tools have revolutionized microbial ecological studies and 
drastically expanded our view on the previously underappreciated 
microbial world. This review first introduces the basic concepts in 
microbial ecology and the main genomics methods that have been 
used to examine natural microbial populations and communities. In 
the ensuing three specific sections, the applications of the genomics 
in microbial ecological research are highlighted. The four specific 
genomics methods (phylogenetic analysis of ribosomal RNA, DNA–
DNA re-association kinetics, Metagenomics, and micro-arrays) in 
analyzing the diversity and potential activity of microbial populations 
and communities from a variety of terrestrial and aquatic environments 
[6].

Genomics technologies for environmental science

Molecular techniques are powerful tools for monitoring 
environmental effects and characterizing microbial diversity. The 
Environmental Microbiology group is undertaking a series of projects 
using such molecular techniques. The research team has undertaken 
a project to apply gene arrays for environmental effects monitoring 
(EEM), which is vital to ecosystem protection. Molecular tools such as 
rRNA probes, DNA extraction and analyses, i.e., denaturing gradient 
gel electrophoresis and microarrays, can effectively monitor changes 
in, and improve the understanding of microbial communities involved 
in vital ecosystem processes. 

Gene inventory and Metagenomics techniques have allowed 
rapid exploration of bacterial diversity and the potential physiologies 
present within microbial communities. However, it remains nontrivial 
to discover the identities of environmental bacteria carrying two or 
more genes of interest [7].However, the complexities and structural 
characteristics of these genes are still unknown among species; the 
information analysis in entropy view may thus help us elucidate 
mechanisms [8].Comparison with existing approaches shows that this 
method can achieve better performance in terms of environment [9].
As a result of these properties, in recent years projection methods are 
being successfully applied to biological data such as DNA microarrays 
and proteomic data [10].

Molecular biology, in the genome era, does not refer to studies 
involving just single macromolecules, it actually involves the study 
of complete cellular pathways, and why not, even entire organisms. 
Indeed, the world-wide genome-sequencing projects revolutionized 
the field and are producing unimaginable amount of biological data, 
providing a near complete list of the components that are present in an 
organism [11]. There are many ways of recovering biological products 
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and the decision the scientist or engineer has is to decide what method 
is best to achieve the most efficient separation process to meet the 
growing demands of the biotechnology industry [12].

DNA sequencing

High-throughput DNA sequencing has enabled systems biology 
to begin to address areas in health, agricultural and basic biological 
research. Concomitant with the opportunities is an absolute necessity 
to manage significant volumes of high-dimensional and inter-related 
data and analysis. The output from these technologies currently ranges 
from 1-20 gigabases of raw sequence information per experiment, with 
a relatively high error rate compared to Sanger sequencing. The sheer 
quantity of output, the relative shortness of reads and the frequency of 
errors have created problematic areas for data management in terms of 
organization, analysis and information extraction [13].

Sequencing using both reverse and forward primers was carried out 
and the sequence so obtained was translated using EXPASY (Expert 
Protein Analysis System) tool. Nucleotide and protein sequence data 
was analyzed using BLAST program at NCBI website whereas Clustal 
W was performed for multiple sequence alignment of the test sequence 
[14].These new technologies are rapidly evolving, and near-term 
challenges include the development of robust protocols for generating 
sequencing libraries, building effective new approaches to data-analysis, 
and often a rethinking of experimental design.DNA sequencing has the 
potential to dramatically accelerate biological and biomedical research 
in environmental microbes  by enabling the comprehensive analysis 
of genomes, transcriptomes and interactomes to become inexpensive, 
routine and widespread, rather than requiring significant production-
scale efforts [15].

Methods that are based on DNA sequencing circumvent these 
obstacles, as DNA can be isolated directly from living or dead cells in 
various contexts. Such methods have led to the emergence of a new 
field, which is referred to as Metagenomics [16].

Metagenomics

Metagenomics is a rapidly growing field of research that has had 
a dramatic effect on the way we view and study the microbial world. 
Environmental microbiology that using conventional methods, 
cultured microorganisms represents no more than 1% of the 
microorganisms present in the vast majority of environmental habitats. 
Consequently, a huge metabolic diversity still remains to be explored 
and discovered. With the aim to study and use the information 
contained in the genomes of uncultured microbes, environmental 
microbiologists have been investigating microbial communities 
since the 1990’s applying Metagenomics based approaches. Sequence 
annotation by gene function revealed specific adaptive capabilities 
enriched in the air environment, including genes potentially involved 
in resistance to desiccation and oxidative damage [17].

Metagenomics is the genomic analysis of microorganisms by direct 
extraction and cloning of DNA from an assemblage of microorganisms. 
The development of Metagenomics stemmed from the ineluctable 
evidence that as-yet-uncultured microorganisms represent the vast 
majority of organisms in most environments on earth. Novel genes and 
gene products discovered through Metagenomics. The application of 
Metagenomics sequence information will facilitate the design of better 
culturing strategies to link genomic analysis with pure culture studies 

[18].With improved genotyping technologies and the growing number 
of available markers, case-control Genome Wide Association Studies 
(GWAS) have become a key tool for investigating complex diseases 
[19].

DNA typing techniques can cause problems when evidence 
samples are inadvertently contaminated with DNA from another 
source. Therefore, precautions need to be taken to minimize the risk of 
contamination [20]. Such population-specific disease-gene and genetic 
damage association studies can provide disease-damage susceptibility/ 
resistance information which can be useful for exploring target specific 
DNA- safe therapeutics [21]. Proteins are far more complex than the 
genome and a proper analysis can be extremely expensive and time 
consuming [22].

Metagenomics-based approaches have led to the accumulation 
of an increasing number of DNA sequences, but until this time the 
sequences retrieved have been those of uncultured microbes. These 
genomic sequences are currently exploited for novel biotechnological 
and pharmaceutical applications and to increase our knowledge 
on microbial ecology and physiology of these microbes. Using the 
Metagenomics sequences to fully understand how complex microbial 
communities function and how microbes interact within these niches 
represents a major challenge for microbiologists today [23].

DNA microarrays

Although DNA microarray technology has been used successfully 
to analyze global gene expression in pure cultures, it has not been 
rigorously tested and evaluated within the context of complex 
environmental samples. Adapting microarray hybridization for 
use in environmental studies faces several challenges associated 
with specificity, sensitivity and quantization [24].DNA microarray 
technology permits high-throughput identification of differentially 
expressed genes [25].

DNA microarrays have emerged as one of the most promising 
methods for the analysis of gene expression. This technique allows 
the study of an immense amount of genes (over 10,000) with only 
one experiment and therefore can draw a picture of a whole genome. 
Anyway, the huge number of data coming out from microarray 
experiments may often raise experimental complications and 
difficulties in the analysis [26]. Microarrays are a novel platform for 
analysis of genes and genomes in microbes [27].

DNA microarrays can proportionate an instant picture about the 
preferential gene expression between two different environmental 
samples. However, this type of analysis is very difficult and complex 
in natural ecosystems, mainly because of the broad biodiversity and 
multiple environmental parameters that may affect gene expression. 
As a result of these properties, in recent years projection methods are 
being successfully applied to biological data such as DNA microarrays 
and proteomic data [28].

Nowadays there is an increasing interest in the development of 
more efficient and less time-consuming methods to assess the presence 
of microorganisms, as well as their viability for bioprocess control and 
improvement. Rapid detection of microorganisms in samples is one of 
the key questions to obtain real-time data for the development of more 
accurate quality control programs [29].Microarrays can be coupled 
with PCR where they serve as a set of parallel dot-blots to enhance 
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product detection and identification. Finally, microarrays can also be 
used to “fingerprint” bacterial isolates and they can be used to identify 
diagnostic markers suitable for developing new PCR-based detection 
assays [30].

DNA microarrays exploit primary sequence data to measure 
transcript levels and detect sequence polymorphisms, for every gene, 
simultaneously. The design and construction of a DNA microarray 
for any given microbial genome are straightforward. By monitoring 
microbial gene expression, one can predict the functions of 
uncharacterized genes, probe the physiologic adaptations made under 
various environmental conditions, identify virulence-associated genes, 
and test the effects of drugs [31].

Microarrays and Metagenomics to investigate the genetic diversity 
of environmentally relevant micro-organisms and identify new 
functional genes involved in the catabolism of xenobiotics [32].Finally, 
we outline scenarios for an innovative combination of microarrays 
with other molecular tools for structure-function analysis of complex 
microbial communities [33].

Bioinformatics

Bioinformatics based analysis and prediction is playing a pivotal 
role in understanding and capturing the in-depth knowledge of 
biological molecules particularly with reference to proteomics and 
genomics. Although with this advancement, there have been only 
limited efforts on the collection of all relevant information for a 
specific field of interest. With this realization, present study focuses on 
the wide spread data and information related to the occurrence and 
potential of degrading bacteria. The information and detailed account 
on these bacteria are quite limited and scattered in scientific journals 
[34].knowledge of the three-dimensional structure of a protein would 
be an invaluable aid to understand the details of a particular protein 
[35]. Further studies are needed to elucidate the precise contributions 
of each of these proteins and to determine their possible relevance in 
the targeting of new therapeutic interventions [36].

Metabolic networks are complex and highly interconnected, thus 
systems-level computational approaches are required to elucidate and 
to understand metabolic genotype-phenotype relationships [37]. The 
implications of this hypothesis in genetic diversity, protein antigenic 
properties and diseases are discussed [38]. Computational biology 
technology has facilitated an increase in the successful rate of genetic 
association study and reduced the cost of genotyping. In the present 
study, we applied various bioinformatics tools for the selection of high 
potential microbes [39]. The differentially expressed genes identified in 
this study are also considered as biomarkers [40]. These tools are being 
used toward the development of novel therapies, for the utilization of 
systems models, and to help guide experimental investigations [41]. 
Massively parallel pyrosequencing of the small subunit (16S) ribosomal 
RNA gene has revealed that the extent of rare microbial populations 
in several environments [42]. The evaluation of the various molecular 
properties of these populations helps in the discovery of new microbes 
[43].

We describe a novel approach that eliminates costly and time 
consuming probe selection and testing by applying data mining and 
common bioinformatics tools. Similar to a rational drug design process 
in which drug-protein interactions are modeled in the computer, the 

rational probe design described here uses a set of criteria and publicly 
available bioinformatics software to select the desired probe molecules 
from libraries comprised of hundreds of thousands of probe molecules 
[44].Summary data from recent studies provide overwhelming 
evidence that bioinformatics tools are useful in protein interactions [45] 
microorganisms provide a large pool of bioactive compounds, and the 
intensive search for new drugs leads to the identification and structure 
determination of many novel compounds from these organisms [46].

Proteomics

Protein function can be understood in terms of its structure. 
Indeed, the three-dimensional structure of a protein is closely related to 
its biological function. Proteins that perform similar functions tend to 
show a significant degree of structural homology [47]. Protein structure 
has always been a significant concern among molecular biologists 
because it provides intimate information regarding the function and 
mechanism of the given protein. This knowledge regarding proteins, 
which are key molecules in the biology of living organisms, can be 
used in a variety of ways, ranging from protein structure modeling to 
structural genomics [48]. This technology was choosing because of high 
performance in application development. This application was tested 
in order to analyze their performance for accessing heterogeneous 
biological data [49].

Existing protein-protein interactions databases cover only a 
portion of the interactomes and interaction information on protein 
isoforms is underrepresented [50].Existing algorithms that are based 
on sequence homology (ortholog conservation) or protein structural 
data are not necessarily superior [51]. Proteomic approach to identify 
proteins [52] Two-dimensional gel electrophoresis (2DE) still plays a 
key role in proteomics for exploring the protein content of complex 
biological mixtures. However, the development of fully automatic 
strategies in extracting interpretable information from gel images is 
still a challenging task [53].

Proteomics is to advance knowledge in the field of environmental 
biotechnology, including studies of bacterial physiology, metabolism 
and ecology. Bacteria are widely applied in environmental 
biotechnology for their ability to catalyze dehalogenation, 
methanogenesis, denitrification and sulfate reduction, among others. 
Environmental samples are often highly complex, which makes 
proteome studies in this field especially challenging. Some of these 
challenges are the lack of genome sequences for the vast majority of 
environmental bacteria, difficulties in isolating bacteria and proteins 
from certain environments, and the presence of complex microbial 
communities. Despite these challenges, proteomics offers a unique 
dynamic view into cellular function [54]. Improving these aspects of 
cell-based proteomics is essential for improving the stringency and 
efficacy of [55] environmental proteomics enables simple protein 
cataloging, comparative and semi-quantitative proteomics, analyses of 
protein localization, discovery of post-translational modifications, and 
even determination of amino-acid sequences and genotypes by strain-
resolved  Proteogenomics [56].

Functional genomics approaches, such as proteomics, greatly 
enhance the value of genome sequences by providing a global level 
assessment of which genes are expressed, when genes are expressed and 
at what cellular levels gene products are synthesized. With over 1000 
complete genome sequences of different microorganisms available, 
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and DNA sequencing for environmental samples (Metagenomics) 
producing vast amounts of gene sequence data, there is a real 
opportunity and a clear need to generate associated functional genomic 
data to learn about the source microorganisms [57].

PCR

The polymerase chain reaction (PCR) is an enzymatic reaction 
which follows simple, predictable and well understood principles. 
Selective amplification of nucleic acid molecules, that are initially 
present in minute quantities, provides a powerful tool for analyzing 
nucleic acids [58].PCR offers certain advantages over conventional 
methods for the diagnosis and characterization of microbes. When 
approximately applied, PCR can be more specific, sensitive, versatile, 
and rapid than conventional methods; in addition, genetic information 
can be obtained in the process [59].

PCR technology provides potential for a powerful diagnostic tool 
in detection of pathogenic microorganisms [60].Thus, real-time PCR 
assay can be used as a rapid and effective procedure that can detect 
minute amounts of microbes from complex environments [61].
Remarkably, PCR-based markers linked to malt trait could have been 
used for evaluating the genetic diversity and determining the genetic 
relationships among these accessions [62].

Microbial populations in complex environmental samples are 
difficult to characterize; current techniques are incomplete and time 
consuming. We investigated a polymerase chain reaction (PCR)-based 
method for rapidly comparing bacterial communities independent of 
culture or cloning. This recent increase in awareness of our inability to 
cope with microbial diversity is due to a quantum leap in methodologies 
(e.g. molecular cloning, polymerase chain reaction (PCR), DNA 
probing etc.) and in the development of concepts that allowed biologists 
to come to a unified view of the genealogy of all living material, i.e. 
the use of semantic molecules for phylogenetic studies [63]. Microbial 
degradation and decolorization is an environment friendly and cost-
competitive alternative to chemical decomposition processes [64].

Identifications of microbial organisms are now usually done 
by comparing their SSU rRNA gene sequences to those of known 
organisms. The usual application is to study the composition of the 
microbial community within a given environmental or clinical sample. 
SSU rRNA gene sequences are thus obtained, either after cloning 
the PCR products and random sequencing a set of clones) or by 
pyrosequencing). The questions are to find out if these sequences are 
related to other sequences already found in environmental samples, 
and/or related to well known cultured microorganisms and eventually 
a type strain [65]. 

In conclusion, the results of the present investigation clearly 
indicate that [66] the direct sequencing results, therefore, shall help 
in understanding the molecular events associated with environmental 
microbes [67]. In addition, gene expression profiling may provide 
mechanistic insights that may subsequently be employed to develop 
biomarkers to detect chemical toxicity as well as strategies to intervene 
chemical toxicity [68].

There is an increasing demand worldwide for the application 
of intelligent, fast and inexpensive measurement systems in clinical 
diagnosis. In the field of Clinical Microbiology, current techniques 
generally require 24-48 hours to identify and characterize a pathogenic 

microorganism following a series of biochemical tests. Although new 
molecular biological and serological test have been introduced recently, 
they still have not replaced cultural methods and microscopy [69].

Revolutionary advancements in molecular tools to understand the 
structure and function of microbial communities are bolstering the 
power of microbial ecology. A push from advances in modern materials 
along with a pull from a societal need to become more sustainable is 
enabling environmental biotechnology to create novel processes [70].

Conclusion
Molecular biology has revolutionized the study of microorganisms 

in the environment and improved our understanding of the 
composition, phylogeny, and physiology of microbial communities. 
The current molecular toolbox encompasses a range of DNA-based 
technologies and new methods for the study of RNA and proteins 
extracted from environmental samples. Currently there is a major 
emphasis on the application of “Omics” approaches to determine the 
identities and functions of microbes inhabiting different environments. 
The key to this approach will be the integration of gene expression, 
proteomics, physiological, mutant phenotype, and metabolic data into 
working cellular models that can accurately predict the response of the 
organism to a given environment. High-throughput sequencing and 
advances in DNA sequencing and amplification technology, coupled 
with genomic tools, are enabling holistic views into the composition 
and dynamics of predominantly microbial communities.
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