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Abstract

High level of ionizing radiation and various other mutagenic agents can damage DNA and induce carcinogenesis
which may be transferred to offspring’s. Flavonoids are major antioxidant compounds obtained from plants and form
a significant proportion of most diets. In this review, we have summarized the present understanding of the roles of
various flavonoids as preventive approaches against DNA damage and carcinogenesis.
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Introduction
In living cells, free radical species derived from oxygen (ROS) and

nitrogen (NOS) are produced endogenously by mitochondria,
cytochrome P450 and peroxisome, which act as signaling molecules
and control metabolic pathways and the cell cycle [1]. Usually, cells
have their defense mechanisms such as antioxidant enzymes catalase
and superoxide dismutase and free radical scavengers like glutathione
(GSH) for the removal of free radicals. However under stress
conditions such as exposure to radiation or chemicals, this balance is
disturbed and excessive free radicals are generated that cannot be
cleared by natural defenses and can lead to DNA damage and
carcinogenesis.

Many factors are known to cause DNA damage. Ionizing radiation
is one of the main DNA damaging and carcinogenic agents. Radiation
induced DNA damage signaling and repair pathways play important
role in mutagenesis and carcinogenesis. Other major DNA damaging
agents are cigarette smoke, chemical carcinogens and food borne
carcinogens.

DNA damage includes various types of lesions ranging from
isolated base lesions or single strand breaks (SSBs) to complex lesions
like double strand breaks (DSBs) and other non-DSB such as
oxidatively generated clustered DNA lesions (OCDLs) [2]. DNA
damage and inefficient repair are known to cause cellular injury and
initiate the process of carcinogenesis.

Various types of natural compounds are used in cancer prevention
and cancer therapy [3]. Recent studies have explored the potential of
flavonoids obtained from food sources in the prevention of various
oxidative stress induced diseases such as cancer and cardiovascular
diseases. Flavonoids regulate many cellular, biochemical and
immunological events involved in cancer initiation and progress [4]. A
number of studies have demonstrated ability of flavonoids to protect
cellular DNA against damage [5].

Many molecular biology methods such as TUNEL assay, Flow and
laser scanning cytometry, Nick translation and electron microscopy are
used to detect DNA strand breaks [6]. Two different types of strategies

categorized as direct and indirect methods are used to measure
radiation-induced DNA damage [7]. The most commonly used
indirect methods to visualize the DNA damaging protective effects of
flavonoids are micronuclei formation and comet assay, which can
measure biological consequences of DNA damage. Also, calf thymus
DNA and plasmid pBR322 DNA is commonly used to study protective
effects of flavonoids. Many studies have also linked protective action of
flavonoids with their anti-oxidant nature or ability to regulate cell
signaling [8].

In this review we have focused on summarizing the current
understanding of the mechanisms of action of widely used flavonoids
to explore their potential use in the prevention of DNA damage and
carcinogenesis.

DNA Damage Inducing Agents and Biological
Responses

DNA can be modified and damaged by various endogenous and
exogenous factors. Common endogenous factors include Reactive
Oxygen Species (ROS) and Reactive Nitrogen Species (RNS) generated
during normal metabolic functions, errors during DNA replication
and spontaneous or enzymatic conversions

A major exogenous or environmental factor is ionizing-radiation
which can induce the formation of DSBs. Other exogenous factors
include non-ionizing ultraviolet radiation through biochemical
modifications and chemical compounds such as cisplatin,
benzo[a]pyrenes (BaP), nitrogen mustards, methyl methanesulphonate
(MMS), N-nitroso-N-methylurea (NMU) and N-ethyl-N-nitrosourea
(ENU) [9]. Tobacco products and chemical found in food such as
aflatoxins found in contaminated peanuts and heterocyclic amines in
over-cooked meats are also classified as cancer-causing DNA-
damaging agents [10]. Chemicals bind directly to DNA and induce
damage by forming DNA adduct [11]. Cells have evolved many
pathways to cope up with the harmful effects of DNA damage which
are classified as ‘DNA repair’ or ‘DNA damage tolerance’ (DDT) [12].
In mammalian cells two main pathways, namely non-homologous end
joining (NHEJ), which is major pathway and homologous
recombination and which, provides greater repair fidelity are involved
in DSBs repair [13]. In the case of single-stranded DNA lesions, DNA
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damage tolerance (DDT) pathway is involved, which promotes the
bypass of single-stranded DNA lesions encountered by DNA
polymerases during DNA replication [14]. If the DNA damage is not
repaired properly it can lead to mutations and eventually
carcinogenesis.

Flavonoids in Food Sources and Their Role in
Prevention of Diseases

Flavonoids are secondary metabolites of plants that impart
coloration to most flowers, fruits and seeds [15]. Flavonoids have a
common structure of two aromatic rings connected to three carbon
atoms. In addition, the basic structure of flavonoids allows multiple
substitution patterns in benzene rings (Figure 1). Flavonoids are
therefore, classified based on their chemical structure [16,17].

Figure 1: Chemical structure of the key flavonoids with preventive
activities against DNA damage and carcinogenesis.

Few epidemiological studies have been performed to understand the
health benefits of flavonoids. Flavonoids are majorly found in daily
diet. Epidemiological study using smokers who ingested flavonoid rich
food was performed and suggested that flavonoids protected against
harmful effects of tobacco carcinogen in bladder mucosal cells [18]. To
elucidate the possible roles of dietary flavonoids in cancer and the
prevention of cardiovascular diseases number of cohort studies and
one cross-cultural study was performed. Protective role of flavonoids
in cardiovascular disease was found in few studies while reduction in
lung cancer was observed only in one study [19]. Flavonoid intake was
linked with lower cardiovascular disease mortality [20]. A number of
studies have been performed to study protective effect of flavonoids
against cancer [21]. Flavonoids showed beneficial effect in the
treatment of hemorrhoidectomy with radiofrequency scalpel by
reducing post-hemorrhoidectomy symptoms [22]. Many health
benefits of flavonoids in food have been suggested but in general it is
difficult to conclude because flavonoids are modified in different ways
in mammalian biology.

Due to an improved understanding of the isolation and
identification of flavonoid compounds from different food sources, it
has become easier to understand health benefits of individual
compounds. Flavonoids are found abundantly in vegetables and fruits
and have shown many health benefits in both in vitro and in vivo

studies [23,24]. Many species of plants have evolved flavonoids as a
protective mechanism against harmful effects of ultraviolet-B radiation
[25]. Zea mays plant, which contain flavonoids anthocyanins showed
protection from UV- radiation-induced DNA [26].

Antioxidant and Pro-Oxidant Behavior of Flavonoids
Among various polyphenols used in human diet, flavonoids are

most abundant. They are obtained from plant sources and have shown
important health benefits. They show antioxidant properties and
studies to understand their roles in various diseases have been
undertaken. However they also show prooxidant activity [27,28] and
can lead to DNA damage and mutagenic effects. Flavonoids have
shown both mutagenic and anti-mutagenic properties [29]. Few plant
flavonoids have been assayed for mutagenicity and their mutagenic
activities were correlated with the flavonoid content [30]. Further
mutagenic activities of flavonoids were correlated with their structure
[31]. Ames test has been widely used to screen mutagenic potential of
various flavonoids. Hydroxylation pattern and presence of metabolic
activation are important determinants of the mutagenic activities of
flavonoids; this was suggested by using Ames test in Salmonella
typhimurium strains [32]. Several flavonoids such as Catechins [33],
flavonoids of propolis [34] can induce oxidative DNA damage through
the generation of reactive oxygen species (ROS). Dietary flavonoids
such as quercetin, luteolin and genistein, reduced oxidative DNA
damage through inhibition of ROS [35]. Further the protection of
DNA from oxidative damage and pro-oxidative effects was shown to
depend on flavonoid concentration and the incubation period [36].

Interaction of Flavonoids with DNA
It has been proposed that flavonoids can form complexes with DNA

and protect it against oxidative damage. The antioxidation potential of
antioxidants are related to their binding modes to the DNA duplex
[37]. Cumulative studies have suggested that flavonoids can interact
with DNA; FTIR and UV-Visible difference spectroscopic methods
have been used to study the interactions of flavonoids quercetin,
kaempferol, and delphinidin with DNA at molecular level and found
that delphinidin induces more stabilizing effect on DNA duplex than
quercetin and kaempferol [38]. The interactions of flavonoids, such as
quercetin, kaempferide and luteolin, with fish sperm DNA were also
reported [39]. Flavonoids such as hesperitin and naringenin interacted
with calf thymus DNA and stabilized it [40].

Recently it was reported that flavonoid Quercetin can interact with
human telomerase sequences and stabilizes the G-quadruplex
structure [41].

DNA damage prevention by flavonoids with implications to
carcinogenesis prevention

Silibinin: Flavonoids have shown promising results both in the
inhibition of initiation and progression of cancer. DNA damage
protective properties of flavonoids are well reported. We previously
reported radioprotective and anti-cancer properties of flavonoid
Silibinin, a major active component of Silymarin which is obtained
from milk thistle [42-44]. Silibinin protected human lymphocytes
against gamma-radiation induced DNA damage and micronuclei
formation.

Silibinin also protected plasmid pBR322 DNA and mice leukocytes
DNA against gamma-radiation-induced damage [44], Cancer
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chemopreventive nature of Silibinin was also attributed to its ability to
inhibit both cell growth and DNA synthesis [45]. Silibinin inhibits
UVB-tumor initiation, promotion and carcinogenesis in SKH-1
hairless mouse skin [46]. Silibinin accelerated the repair of cyclobutane
pyrimidine dimers (CPD) induced by UVB radiation JB6 mouse
epidermal cells and SKH1 hairless mice. Silibinin protected against
UVB-induced photodamage by upregulating p53-mediated GADD45α
signaling (Roy S, Carcinogenesis, 2012). Further investigation showed
that silibinin also induced endogenous IL-12 to protect against UVB-
caused skin damages [47]. Silibinin also inhibited carcinogen
azoxymethane and 1,2-dimethylhydrazine induced initiation and
progression of colon cancer [48-50] and spontaneous intestinal
tumorigenesis [51,52].

Apigenin: Apigenin is a natural flavonoid found in many plants and
has shown promising results in chemotherapy [53,54]. Apiginin has
also shown cancer preventive and DNA damage protective properties.
For instance, Apigenin inhibited skin carcinogenesis initiated by 7,12-
dimethylbenz(a)anthracene (DMBA) and promoted by 12-O-
tetradecanoylphorbol-13-acetate (TPA) by inhibition of epidermal
ornithine decarboxylase induction [55]. UVA/B induced skin
carcinogenesis was also inhibited by Apigenin (Brit DF, 1997).
Apigenin stimulated Nucleotide excision repair genes and protected
against UV-B induced DNA damage in HaCaT skin keratinocytes and
animal models [56]. Furthermore, it was found that that apigenin can
preferentially accumulate in the nuclear matrix, binds with the nucleic
acid bases and reduce oxidative DNA damage in prostate epithelial
cells [57].

Quercetin: Quercetin a potent antioxidant flavonoid has shown
many health benefits including cancer prevention and treatment
[58-60]. Quercetin prevented N-nitrosodiethylamine (NDEA)-induced
lung tumorigenesis in mice [61]. Quercetin also prevented early stages
of azoxymethane induced colorectal carcinogenesis [62]. Further
studies showed preventive effects of Quercetin against NDEA induced
hepatocellular carcinoma by inhibiting DNA specific mutations [63].
Quercetin protected Caco-2 and Hep G2 cells against H2O2-induced
DNA damage [64]. Quercetin also protected against Benzo[a]pyrene-
induced DNA damage and pulmonary precancerous pathologic
changes in mice through inhibition of cytochrome P4501A1 activity
[65]. Further study showed that quercetin can inhibit ROS formation
and the formation of strand breaks in PC12 neuronal cells [66]. A
recent study suggested that quercetin can interact with DNA and
inhibits tumor growth by cell cycle arrest and induction of
mitochondrial pathway of apoptosis [67].

Genistein: Genistein is a natural flavonoid which acts as
phyestrogen [68]. Dietary Genistein has shown chemoprotective
properties against mammary and prostate cancers by modulating
specific receptors and growth factor signaling pathways such as
androgen receptor, estrogen receptor-alpha, progesterone receptor,
epidermal growth factor receptor, insulin-like growth factor-I, and
extracellular signal-regulated kinase-1 [69]. DNA damage protective
properties are also reported. Genistein inhibited DMBA initiated and
TPA promoted skin carcinogenesis in mice [70]. Genistein significantly
inhibited DMBA-induced bulky DNA adduct formation while TPA-
induced ornithine decarboxylase activity was moderately inhibited.
Later, the photoprotective effects of Genistein were found using human
reconstituted skin. Genistein inhibited UVB-induced pyrimidine
dimer formation and preserved cutaneous proliferation and repair
mechanisms [71]. Genistein also prevented DMBA induced mammary
tumors [72]. And N-methyl-N-nitrosourea induced endometrial

carcinogenesis [73]. Genistein protected calf thymus DNA against UV
radiation or Fenton reaction system induced damage by inhibiting 8-
hydroxy-2’-deoxyguanosine (8-OHdG) formation [74].

Genistein also protected LAPC-4 prostate cells from hydrogen
peroxide-induced DNA damage through induction of three genes with
antioxidant activities, namely glutathione reductase, microsomal
glutathione S-transferase 1 and metallothionein 1X, at 1-30 microM
genistein [75]. In breast cancer cells, genistein depleted the G1
population of cells and increased the accumulation of cells at G2. Few
cells showed chromosome abnormalities and some cells showed
polyploidy, which lead to increased cell death through activation of
DNA damage response. Also Brca1 mutant cells were found to be more
sensitive to genistein [76].

Luteolin: Anticancer properties of Luteolin are well documented
[77] few studies have also shown its role in carcinogenesis initiation
preventive. Luteolin protected from 2-dimethyl hydrazine (DMH) and
azoxymethane-induced colon carcinogenesis [78,79]. Luteolin
inhibited formation of 8-hydroxy-2′-deoxyguanosine (8-OHdG)
induced by either UV or Fenton reaction in calf thymus DNA and
reduced oxidative DNA damage by reducing free radical hydrogen
peroxide and superoxide anion (O2−) [35]. Luteolin also inhibited
ROS and prevented DNA damage in PC12 neuronal cells [66].

Luteolin was also reported to increase repair activity in Caco-2 cells
[80]. Luteolin also inhibited UVB-induced human skin damage,
erythema and the upregulation of cyclooxygenase-2 and prostaglandin
E₂ production via MAPK pathway [81].

Rutin: Rutin has shown promosing results in the treatment of
various diseases including cancer [82,83]. Rutin also protects DNA
against damage. Rutin protected against hepatocarcinogens aflatoxin
B1 and N-nitrosodimethylamine induced single-strand breaks in
nuclear Rutin also reduced induction of repair enzymes polymerase,
DNA polymerase beta and DNA ligase [84]. Rutin also protected
against hydrogen peroxide induced DNA damage in Caco-2 and
HepG2 cells [64]. Flavonoids, quercetin and rutin, protected Caco-2
cells against tert-butylhydroperoxide and menadione-induced DNA
single strand breaks by their metal ion chelating ability [85].

Naringenin: Naringin is found in grapes and citrus fruit and and
have shown promising results in the treatment of obesity, metabolic
disorders [86] and its anti-cancer and chemo-sensitizing properties are
also reported [87-89]. For instance, Naringenin inhibited
azoxymethane induced colon carcinogenesis and lowered the number
of high multiplicity aberrant foci [90]. Moreover, Naringenin protected
plasmid DNA from UVB-induced DNA damage [91]. Naringenin also
protected against alloxan-induced DNA-damage in the peripheral
lymphocytes of diabetic mice [92].

Morin: Morin is obtained from figs and other Moraceae have shown
anti-oxidant [93] and anti-cancer properties [94]. For instance, Morin
inhibited azoxymethane-induced bowl tumorigenesis [95] and 4-
nitroquinoline 1-oxide (4-NQO)-induced tongue tumorigenesis and
PCNA index in rats [96] and also protected from NDEA induced
hepatocellular [97]. Furthermore, Morin inhibited cancer progression
in breast cancer cells MDA-MB-231 [98] and protected against
hydrogen peroxide induced DNA-damage by inhibiting DNA strand
breaks, 8-OHdG formation and decrease of nuclear phospho histone
H2AX expression [99]. Morin also protected rat hepatocytes DNA
from high glucose induced DNA fragmentation, chromatin
condensation and hypodiploid DNA [100] and was also observed to
protect against gamma-radiation induced oxidative DNA damage by
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attenuation of SEK1-JNK-AP-1 pathway [101]. These studies strongly
suggest the therapeutic potential of flavonoids not only in cancer
therapy but also in cancer initiation and DNA damage prevention
(Figure 2).

Figure 2: Carcinogenesis prevention by flavonoids.

Concluding Remarks
Flavonoids have shown promising results in protection against

various DNA damaging agents, especially since they have antioxidant
properties and they can also modulate DNA damage and repair
pathways. These effects of flavonoids may therefore, contribute to their
anti-carcinogenic effects. In general these properties cannot be used for
apoptosis induction in cancer cells. Flavonoids can be useful in the
prevention of carcinogenesis by protecting DNA damage and inducing
repair pathways. However their carcinogenesis preventive properties
cannot be solely linked to DNA damage protection as they also
regulate many other important cellular events such as cell cycle and
apoptosis. Though flavonoids show excellent health benefits and
anticancer properties, more studies are needed before their use in
therapy. Flavonoids can be bio transformed into more harmful
genotoxic agents and purified compounds may have toxicity and
solubility issues. These aspects should be carefully considered before
their use in therapy.
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