

ISSN: 2157-7463

Journal of Petroleum
& Environmental
Biotechnology

OPEN ACCESS Freely available online

Perspective

Role of Biosurfactants in Hydrocarbon Biodegradation and Sustainable Petroleum Management

Manli Xu*

Department of Biotechnology, National Kaohsiung Normal University, Yanchao Dist, Kaohsiung, Taiwan

DESCRIPTION

Biosurfactants are surface-active compounds produced by microorganisms, offering environmentally alternatives to synthetic surfactants widely used in petroleum exploration, production, and remediation. Due to their biodegradability, low toxicity, and effectiveness under extreme environmental conditions, bio surfactants have gained significant attention in petroleum biotechnology. They play vital roles in enhancing oil recovery, promoting hydrocarbon degradation, and supporting the treatment of petroleum-contaminated environments.

Biosurfactants reduce surface and interfacial tension between liquids, solids, and gases, promoting emulsification and improving the mobility of hydrophobic compounds. These molecules are produced by bacteria, yeasts, and fungi, with prominent producers including *Bacillus*, *Pseudomonas*, *Rhodococcus*, and *Candida* species. Biosurfactants vary structurally, encompassing glycolipids, lipopeptides, phospholipids, fatty acids, and polymeric biosurfactants. Among them, rhamnolipids, produced by *Pseudomonas aeruginosa*, and surfactin, produced by *Bacillus subtilis*, are among the most extensively studied due to their high surface activity and broad industrial potential.

In petroleum applications, biosurfactants significantly contribute to Microbial Enhanced Oil Recovery (MEOR). Their ability to lower interfacial tension facilitates the mobilization of trapped oil in porous rock formations, improving displacement and increasing oil production. Biosurfactants also modify reservoir wettability, making oil-wet surfaces more water-wet, which enhances oil detachment from reservoir rock surfaces. Unlike chemical surfactants, biosurfactants maintain efficiency under harsh reservoir conditions, including high salinity, temperature, and pressure. Field and laboratory studies have demonstrated that biosurfactant producing microbial consortia can generate biosurfactants *in situ*, reducing the cost of production and injection.

Biosurfactants are also essential in hydrocarbon degradation and bioremediation. Their emulsifying properties increase the bioavailability of hydrophobic pollutants, enhancing microbial access to hydrocarbons and accelerating biodegradation rates. For example, rhamnolipids have been shown to significantly improve the breakdown of Polycyclic Aromatic Hydrocarbons (PAHs) in contaminated soils and marine environments. In oil spill scenarios, biosurfactants enhance natural attenuation by dispersing oil droplets and supporting the growth of hydrocarbon-degrading bacterial populations. Their compatibility with ecological systems makes them particularly valuable for environmental restoration efforts where minimal ecological disruption is desired.

In produced water treatment, biosurfactants facilitate the removal of residual hydrocarbons through emulsification and separation processes. They can enhance the performance of biological wastewater treatment systems by increasing solubility and degradation rates of petroleum-derived contaminants. Biosurfactant-producing microbes also contribute to the formation of stable biofilms that improve treatment efficiency in bioreactors and constructed wetlands.

Despite their advantages, several challenges limit the widespread industrial use of biosurfactants. High production costs remain a major barrier, largely due to complex fermentation processes and downstream purification requirements. Additionally, some biosurfactants, such as rhamnolipids, are produced by opportunistic pathogens, complicating large-scale application. Advances in biotechnology, including metabolic engineering and synthetic biology, are addressing these challenges by developing safer, more efficient microbial producers and optimizing fermentation conditions. The use of low-cost substrates such as agricultural waste, glycerol, and industrial by-products has further reduced production costs, making biosurfactants increasingly competitive with conventional surfactants.

Emerging research focuses on tailoring biosurfactants for specific petroleum applications. Novel biosurfactants with enhanced

Corresponding to: Manli Xu, Department of Biotechnology, National Kaohsiung Normal University, Yanchao Dist, Kaohsiung, Taiwan, E-mail: manli@xu.tw

Received: 30-May-2025, Manuscript No. JPEB-25-30412; **Editor assigned:** 02-Jun-2025, Pre QC No. JPEB-25-30412 (PQ); **Reviewed:** 16-Jun-2025, QC No. JPEB-25-30412; **Revised:** 23-Jun-2025, Manuscript No. JPEB-25-30412 (R); **Published:** 30-Jun-2025, DOI: 10.35248/2157-7463.25.16.607

Citation: Xu M (2025) Role of Biosurfactants in Hydrocarbon Biodegradation and Sustainable Petroleum Management. J Pet Environ Biotechnol. 16:607.

Copyright: © 2025 Xu M. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

stability, antimicrobial properties, and selective emulsification abilities are being developed for reservoir stimulation, pipeline cleaning, and corrosion mitigation. Additionally, the integration of omics technologies genomics, proteomics, and metabolomics is enhancing understanding of biosurfactant synthesis pathways, enabling the design of high-yield microbial strains.

In conclusion, biosurfactants represent an environmentally sustainable and technologically versatile tool in petroleum

biotechnology. Their unique properties make them valuable for enhanced oil recovery, bioremediation, and wastewater treatment. Continued advancements in microbial engineering, process optimization, and cost reduction strategies will accelerate their adoption and position biosurfactants as vital components of cleaner and more efficient petroleum industry practices.