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Introduction 
Swarm robotics (SR) [1-3] is a novel approach inspired by the 

observation of social insects, such as ants and wasps. These examples of 
social insects show that simple individuals can successfully accomplish 
difficult tasks when they coordinate as a group. This kind of system-
level behaviour, which appears to be robust, scalable and flexible, is 
impressive to researchers working on robotics. Similarly to these social 
insects, SR systems (SRSs) are expected to accomplish tasks beyond the 
capabilities of a single robot. By definition, an SRS comprises a number 
of relatively simple and typically homogeneous robots that a desired 
collective behaviour emerges from the local interactions among the 
agents and between the agents and the environment, similar to the 
social insects. 

The expression swarm intelligence was first conceived by Beni to 
denote a class of cellular robotic systems in 1980s. These works used 
many simple agents occupy one-or two-dimensional environment 
to generate patterns and self-organize their nearest neighbour 
interactions. At that time, the definition swarm intelligence only 
marginally covers works on cellular robotic systems, which does 
not take the inspiration from social insect behaviour. Recently, the 
expression ”swarm intelligence” moved on to cover a wide range of 
researches from optimization to social insect studies, losing its robotics 
context in  the meantime. Nowadays, the term SR has started to be used 
as the application of swarm intelligence to multi-robot systems. This 
concern was first explicitly started by Sahin in 2005 [2]. 

As previously mentioned before, an SRS must have three functional 
properties at the system level that are observed in natural swarms:

Robustness is the ability to operate despite disturbances resulting 
from the malfunctioning of its individuals. For instance, lost 
individuals can be immediately replaced by others, with the operation 
will continuing smoothly. This is seen as the key advantage of the SRS 
approach [4,5].

Flexibility is the ability of an SRS to generate modularized 

solutions to various tasks, meaning that an SRS must be able to adapt 
their behaviours to different environments.  

Scalability is the ability of an SRS to operate with a wide range of 
group sizes and support a large number of individuals. 

The concept of swarm engineering was introduced by Kazadi [6] 
in 2000 and the first formal introduction of swarm engineering was 
released by Winfield et al. in 2004 [7]. Researchers indicated that 
finding a predictable and controllable design methodology for swarms 
is the core research direction of swarm engineering [8,9]. Today, 
although swarm engineering is still in a very early stage, core topics 
of swarm intelligence, the design, and analysis have already received 
attention from SR researchers. The notable swarm-bots project [10] 
was begun in 2001 and terminated in 2005, and was followed by the 
swarmanoid project in 2006 [11]. New approaches to the design and 
implementation of self-organizing and the self-assembling problem of 
autonomous robots were studied in the project [12]. 

In this study, a cooperative food foraging problem with obstacles 
in the environment is investigated. We have augmented the covariance 
matrix adaptation evolution strategy (CMA-ES) with an artificial 
neural network to create an efficient approach, CMA-NeuroES, for 
an SRS to solve simple food foraging problems [13]. However, when 
an evolutionary approach meets a complex task, it is typical that a 
simple ER strategy will face a situation that all individuals of the first 
generation are scored with the same null value; moreover, the selection 
process cannot operate as expected. This bootstrap problem occurs very 
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Abstract
Swarm robotics (SR) is a novel approach to the coordination of large numbers of homogeneous robots; SR 

takes inspiration from social insects. Each individual robot in an SR system (SRS) is relatively simple and physically 
embodied. Researchers aim to design robust, scalable, and flexible collective behaviours through local interactions 
between robots and their environment. In this study, a simulated robot controller evolved by a recurrent artificial 
neural network with the covariance matrix adaptation evolution strategy, i.e., CMANeuroES is adopted for incremental 
artificial evolution. Cooperative food foraging is conducted by our proposed controller as one of the most complex 
simulation applications. Since a high level of robustness is expected in an SRS, several tests are conducted to verify 
that incremental artificial evolution with CMANeuroES generates the most robust robot controller among the ones 
tested in simulation experiments. 
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often with difficult tasks. To avoid this kind of failure, an incremental 
evolution approach with staged evolution and environmental 
complexification for a cooperative food foraging task is adopted. 

In addition, an SRS can work dynamically as the individual robots 
are deployed respectively. This kind of decentralized control ensures 
that SRS has no common failure point. The failure of individual 
robots will hardly affect SRS performance. The resulting high-level 
robustness contrasts with the high engineering cost of fault tolerance 
in conventional robotics systems, and this is free as a basic property 
of an SRS. Consequently, we compare the best controllers evolved by 
CMA-NeuroES with two other evolutionary algorithms, fast evolution 
strategies (FESs) [14,15] and real-coded genetic algorithms (GAs), 
[16] through random breakdown tests in computer simulations. As 
an intrinsic property of SRS, we want to find out whether the loss of 
some individuals can be compensated for by others or not and also 
whether the destruction of a particular part of the swarm is will stop its 
operation or not. 

This paper is organized as follows: in Section 2, the related work to 
SRS and the benchmarks of SRS are presented. Section 3 introduces the 
cooperative food foraging problem we use in our experiments. Section 4 
explains neuro evolution based on a CMAES, and a pre-experiment on 
a CMA-NeuroES controller for cooperative food foraging problem is 
described. In Section 5, we explain why and how we apply incremental 
evolution to a cooperative food foraging problem. Section 6 discusses 
the computer simulation setup and the results of our proposed 
method. Section 7 draws conclusions and describes our future studies.  
 
Related Works

SRS’s design methods can be divided into two categories [17]. (i) 
Behaviour based design, where in the individual behaviours of robots 
are designed by hand, is the most commonly used design method. 
Researchers in this field have proposed various behaviour-based design 
approaches for controlling an SRS. A typical example can be found in 
Kube and Zhang [18]. They used a design method, i.e., task modelling, 
where in a robot controller with a finite state machine is carefully 
designed by a human programmer without a global controller. In this 
case, individual behaviours were iteratively adjusted until the desired 
collective behaviour was obtained. They demonstrated its effectiveness 
in box-pushing problems, wherein the collective behaviour was 
obtained after individual behaviours were iteratively adjusted and 
tuned [19]. However, this approach might have a limitation in problem 
complexity since no other applications have been published since then. 
(ii) Automatic design methods are famous for applying evolutionary 
robotics (ER) that add artificial evolution to robotic systems with a 
sensory-motor interface to the environment, i.e., evolving a robot 
controller represented as an artificial neural network [20-22]. 

Although the evolutionary robotics approach had been successfully 
applied to the single robot domain, it recently has been used for evolving 
group collective behaviours and the performance of an evolutionary 
computation approach is strongly dependent on the performance of the 
artificial neural network optimization [23]. Reynolds was among the 
first to apply evolutionary robotics techniques to collective behaviour 
making in 1993. He improved on his early work on the simulation of 
the flocking behaviour of birds, i.e., the boids. Visual apparatus and the 
control system was evolved to avoid collisions and to escape from the 
predator. Based on the experiment of the boids, Ward et al. evolved 
e-boids that groups of artificial fish capable of displaying schooling 
behaviour in 2001. In these studies above, the author reported that the 

creatures were not explicitly rewarded for coordinated motion. On 
the other hand, Quinn explored two ways of evolving controllers for 
coordinated motion behaviour by using two simulated Keeper robots. 
The first approach called clonal emphasize the member of the group 
are homogeneous and share the same geno type. The second approach 
called a clonal requires each member of the group with different 
genotypes, which means a heterogeneous group. The results indicate 
that alcohol evolution got better performance than clonal evolution. 
However, the authors report the heterogeneous approach may not be 
suitable when the group size becomes larger and the role allocation 
in the group may be not clear. Perez- Uribe et al. successfully evolved 
small groups of artificial ants for a simple foraging task by simulation 
to prove homogeneous groups achieve a better performance in 2003. 

The collective behaviours of an SRS can be divided into four 
main categories: spatially-organizing, navigation, collective decision 
− making, and other collective behaviours. SRS researchers could use 
these basic collective behaviours to work on complex problems, for 
example, cooperative food foraging problems [24]. Spatially-organizing 
behaviours focus on how to organize and distribute robots and objects 
in space, which an SRS could organize and distribute in several ways: 
for instance, aggregation is the simplest spatial organization of robots 
in an SRS that are spatially close to each other in an environment. 
Navigation behaviours focus on how to organize and coordinate the 
movements of an SRS. These behaviours include collective exploration, 
coordinated motion, and collective transport, which allow an SRS to 
explore an environment, coordinate similarly to a flock of birds, or 
cooperate to transport an object that is too heavy for a single robot. 
Collective decision making behaviours focus on how a group of robots 
influence each other when making choices. For example, to maximize 
an SRS’s performance, task allocation can be specialized by the 
robots themselves over different tasks. The behaviours that cannot be 
categorized are called other collective behaviours [25,26]. 

These collective behaviours are basic behaviours that can be 
combined to take over complex real world applications [27]. In 
cooperative food foraging problems, an SRS requires the most basic 
behaviours among benchmark problem in SRS. Self-organization 
of swarm behaviour is needed to cooperate and to move heavy food 
sources, cooperatively. It also requires navigation behaviour to search 
for food sources and to find a way back to the nest. Last but not 
least, decision-making behaviours allow robots in a cooperative food 
foraging problem to change their roles in seconds [28]. 

Methodology
Problem formulation

The cooperative food foraging problem was inspired by the 
behaviour of ants searching for food sources and bringing the food to 
the nest. The task is to find better search strategies that maximize the 
ratio of bringing food to the nest in a specified environment [29,30]. 
Figure 1 shows the food foraging problem we investigate in this paper. 
The field is a 5,000 × 5,000 length square unit. The nest, a 1,000 × 1,000 
square unit goal area, is located at the centre of the field. One hundred 
autonomous mobile robots are randomly placed in the nest as the initial 
condition. Three food sources, F, are randomly placed in the field. Every 
robot is set to be able to move a food source up to a five-unit weight. 
However, all of the food sources are 24-unit weight, which means that 
one food source requires at least five robots to move it cooperatively 
in a specific direction. A new food source appears soon after one food 
source is collected during 5,000 time steps. Three obstacles are fixed in 
the field at a given point that we set in the field. The large static friction 
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we set for each obstacle are impossible for robots to move it, which 
means the SRS must avoid these obstacles and maximize the ratio of 
bringing food sources to the nest. The goal of cooperative food foraging 
task is that SRS should collect as many food sources as possible. 

Robot setup

The SRS in this paper is assumed to be homogenous, i.e., all the 
robots in the system are assumed to have the same specifications, as 
shown in Figure 2. Each robot is 50 length units in diameter and has 
two types of sensors: eight infrared (IR) sensors and an Omni Vision 
camera. The eight IR sensors are arranged around a robot. 4 IR sensors 
equally distributed in the front of the robot, and 2 IR sensors are 
equally distributed in the back of robot. The other 2 IR sensors are set 
at two sides of the robot, separately. Each IR sensor provides a value 
that is inversely proportional to the distance to an object, which might 
be a food source, an obstacle, a wall, or other robots within the sensor 
range of 64 length units. The values are normalized between zero and 
one. The Omni-Vision camera is located at the centre of each robot. 
The robot’s sensor abilities are summarized as follows: 

• Distance from an IR sensor to objects: Oi (i=0, 1, · · ·, 7). 

• Distance and direction to the nearest robot: rR1, sin θR1 and cos θR1. 

• Distance and direction to the second nearest robot: rR2, sin θR2 
and cos θR2. 

• Distance and direction to the nearest food source: rF1, sin θF1 and 
cos θF1. 

• Distance and direction to the second nearest food source: rF2, sin 
θF2 and cos θF2.

• Direction to the nest: sin θN and cos θN. 

• Global direction of the robot: sin θD and cos θD. 

Information obtained by the two types of sensor forms an input 
layer of a robot controller comprising 24 inputs connected to a motor 
on the right and another motor on the left that controls two differential 
driven wheels, enabling robot to move forward or to turn left or right 
using the rotational difference between wheels. In addition, each input 
neuron receives Gaussian noise, whose mean and standard deviation 
(SD) are 0 and 0.03, respectively. Four fully inter-connected hidden 
layers are adopted from our preliminary experiments for computer 
simulation. Because the two motor wheels are controlled by EANN 
output, the output layer consists of two neurons. The neurons of 
recurrent artificial neural networks (RANN) are connected as shown 
in Figure 3, as in our previous study [30]. Therefore, the number of 
synaptic connections is 162. All robots are assumed to have the same 
RANN controller.

Neuroevolution based on CMA-ES for cooperative food 
foraging problem

CMA-NeuroES: CMA-ES is a stochastic, iterative method for 
difficult nonlinear and non-convex optimization problems. It has 
been proven to be a powerful evolutionary optimization algorithm for 
a variety of test functions, and benchmark problems, and it performs 
especially well in searching landscapes with discontinuities, noise, and 
local optima [31,32]. CMA-ES was introduced by Hansen Ostermeier 
in 1996 [33], and its use of covariance matrix adaptation made this 
evolution strategy a highly elaborate optimization algorithm. After 
weighted recombination was introduced to CMA-ES in 2001 [34], the 
so-called rank-μ-update greatly reduced time complexity [35] in 2003. 
The performance of CMAES was improved after researchers found that 
increasing the population size can enhance global search characteristics 
[36]. In 2008, Raymond and Hansen presented a new approach that 
reduces evaluation time and space complexity for CMA-ES [37].

Algorithm 1 CMA-ES

1: Procedure CMA–ES

2: Initialize:

3: 
( ) ( ) ( )( )21 0,g g gg g

k kX m N Cσ+ = +

4: While Stop condition is not satisfied do

5: for k=1 to λ do

6: ( ) ( ) ( )( )21 0,g g gg g
k kX m N Cσ+ = +

7: End for

8: Select μ solution points from offspring λ

9: Adapt mean value gm accordingly

10: Adapt step size σ accordingly

11: Adapt covariance matrix C accordingly

12: End while

13: End procedure

Figure 1: The cooperative food foraging problem.

 

 

 

�D 
 

�F Direction 

  

 

 

 

Figure 2: Robot information.
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In CMA-ES, the offspring for the next generation (g+1) are 
generated by sampling a multivariate normal distribution with mean 
m ∈ nR and covariance C ∈ n nR × [38]. Each solution point ( )1g

kX +

at generation (g+1) in this algorithm presents an n-dimensional 
real-valued decision variable vector. These variables are altered by 
recombination and mutation, which correspond to the calculation 
of the mean value of μ solution points selected from offspring λ. In this 
algorithm, mutation is used to add a normally distributed random vector 
with zero mean, and the covariance matrix is updated during evolution to 
improve searching. Formally, solution points ( )1g

kX +  of offspring k = 1, ..., 
λ created in generation g are calculated as Algorithm 1. 

This is realized by adding a zero-mean random vector drawn 
from a multivariate normal distribution specified with step size σ and 
covariance matrix ( ) ( )g gc m⋅  is the mean value of the population 
in generation g, and N(g) k (0, σ ( )g 2 C ( )g ) is a multivariate normal 
distribution with zero mean and covariance matrix C in the gth 
generation.

CMA-ES efficiency is provided by self-adaptation of C and σ. This 
allows CMA-ES to search efficiently in a highly correlated search space. 
For details, see reference [33,39,40].

CMA-NeuroES is a weight-evolving artificial neural network 
that applies CMA-ES to weight optimization. Since the adaptation of 
C allows efficient searching in the existence of correlation between 
parameters, we expect that CMA-NeuroES will show good performance 
on the optimization of the synaptic weights for our robot controller 
[31,41,42]. Every robot in our SRS has the same type of CMA-NeuroES 
controller. Each robot receives 16- input information from the 
environment. Swarm behaviour fitness is calculated from a fitness table 
to evaluate a robotic swarm and update the mean value m, covariance 
matrix C and global step-size σ. CMA-NeuroES operates in five steps:

Step 1: Set all synaptic neural network weights randomly at the initial 
generation. If it is not the first generation, create offspring from (1). 

Step 2: Start the simulation, then evaluate the fitness of λ offspring 
by using the fitness table. 

Step 3: Send fitness and μ parents to CMA NeuroES to create new 

offspring, and update all synaptic weights. 

Step 4: Choose synaptic weights with higher fitness as parents for 
the next generation. 

Step 5: Repeat Step 1 to start a new generation until the terminal 
condition is met.

Incremental evolution

In evolutionary robotics approaches, the situation where no initial 
search pressures exist can occur when solving highly complex tasks. 
The result of our experiment on CMA-NeuroES with conventional 
evolution for the cooperative food foraging problem shows that there 
are three runs wherein the SRS collected nothing. This situation, the 
bootstrap problem in ER, occurs when all of the individuals in the 
initial generation are scored with null fitness prohibiting the progress of 
evolution. Overcoming the bootstrap problem is one of the difficulties 
in the ER approach. Incremental evolution is an approach for solving 
bootstrap problems in highly complex tasks with evolutionary 
approaches. Mouret and Doncieux [43] categorized incremental 
evolution into four main approaches: staged evolution, environmental 
complexification, behavioural decomposition, and fitness shaping. 
Staged evolution is an approach in which an objective task is divided 
into ordered sub-tasks, with every sub-task having a corresponding 
fitness function. A navigation task performed with staged evolution 
was presented by Bajaj and Ang Jr. [44]. A mobile robot was placed in 
a simple environment wherein only one obstacle existed. The fitness 
value was calculated using a straight navigation component and an 
avoiding obstacles component. At a later stage, the robot was placed 
in a more complex environment, in which closer walls and sharp turns 
had been added to the environment. The fitness value was calculated in 
the same manner as that in the first stage. In the third and final stages, 
the fitness value was calculated as the product of the value calculated 
in the previous stage and the wall-following factor. The final result was 
that the robot acquired the wall-following behaviour.

Environmental complexification works on a fitness value 
calculation in which the task complexity can be continuously modified 
by operating on certain parameters. A typical example was presented 
by Gomez and Miikkulainen [45] in 1997. The task was for a predator 
whose behaviour was controlled by an evolving artificial neural network 
to capture a prey within a fixed number of time steps. Behavioural 
decomposition is an approach in which the robot controller is divided 
into sub controllers. Every robot controller is evolved separately to 
solve a sub-task. Nardi et al. [46] evolved a position controller for an 
autonomous helicopter with three phases of incremental evolution. 
In the first phase, a simple yaw controller was evolved. In the next 
phase, the rest of the controller, comprising three modules, specifically, 
guidance, pitch, and role modules, was evolved independently. In the 
final phase, these modular controllers were simultaneously evolved to 
enable them to adapt to each other. 

Fitness shaping uses a weighted sum of multiple evaluation criteria 
to create a fitness gradient for artificial evolution to follow. Nolfi and 
Parisi [47] evolved an autonomous robot that picks up objects. They 
used a fitness formula with five components, which correspond to the 
following scenarios: the robot is approaching the target object, the 
target object is in front of the robot, the robot tries to pick up the object, 
the robot has the object in its grasp, and the robot releases the object 
outside the area.

To improve the performance of the SRS in solving a complex 
cooperative food foraging problem, we proposed staged evolution with 

 

 

 

 

 

 

Figure 3: Artificial neural networks for robot controller.
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environmental complexification using the CMA-NeuroES approach. 
In our cooperative food foraging task, we assume that three basic 
behaviours, (1) food-exploration, (2) food-transportation, and (3) 
obstacle avoidance, are required to solve our problem. Therefore, three 
stage incremental evolutions were provided, as shown in Figure 4.

Sub-Task 1 is a very simple problem, in which all three food sources 
are placed in the field without any obstacles in the environment. 
Every food source in Sub-task 1 requires at least three robots to move 
it (The dynamical friction for every food sources is 14 power units). 
The expectation is that SRS will acquire the basic behaviour of food 
exploration and food-transportation to the nest, i.e., collects three food 
sources. When the SRS solved Sub-Task 1, Sub-Task 2, in which two 
obstacles are added to the field and the positions of food are changed is 
given to the SRS. The third basic behaviour of obstacle avoidance will 
be acquired after Sub-Task 2. At that time, every food sources needs 
at least four robots to move it (We increased the dynamical friction to 
19 power units). Our simulation will then randomly add a source after 
the first food source is collected. When the SRS has solved Sub-Task 
2, a final task, Goal Task, in which two new obstacles are placed into 
the field with a narrow path between them, is posed. In that case, food 

sources are too large to be moved through the narrow path. This trap 
makes our cooperative food foraging task much more difficult. The SRS 
learns more advanced food-transportation through obstacle avoidance 
behaviour. In Goal Task, new food sources are randomly created after 
each food source has been collected. Every food source in Goal Task 
requires at least five robots to move it. In our cooperative food foraging 
task, task transitions to the next sub-task occur only when the SRS 
has solved the current sub-task continuously for ten generations. The 
number of generations for task-transition has been optimized in our 
preliminary experiment.

The performance of SRS was also evaluated using the four 
components shown in Table 1. In the case of Sub-Task 1, the fitness 
value f of the SRS is calculated as f1+f2+f3+f4. In the case of Sub-Task 
2, the fitness value f is calculated as f2+f3+f4. The f1 is omitted; because 
the SRS has already learned the aggregation behaviour for food sources 
through Sub-Task 1. In the case of Goal Task, the simulation will run 
5,000 time steps to see how many food sources the SRS can collect. The 
fitness value of Goal Task f is calculated as f2+f3, because the SRS has 
already learned to touch food sources, and food sources will be added 
to the field continually during the 5,000-time step simulation.

Experiments 
CMA-NeuroES controller for cooperative food foraging 
problem

The performance of SRS is depicted by four components shown 
in Table 1. The SRS collects 0.0015 at each robot and each time step 
when a robot touches one of the food sources. The sum of the points 
is set at the f1 component. The SRS collects a bonus point each time 
the swarm successfully returns to the nest with a food source. The sum 
of the points is set at the f2 component. However, since there can be 
cases wherein they cannot finish bringing the food source to the nest 
within the time limit, partial evaluation for moving a food source is 
considered. For each food source, the points awarded are calculated as 
1,500 × (1 - drem/dinit) at the end of the run, where drem and dinit, 
the remaining distance to the nest and the initial distance from the nest, 
respectively, are produced as points. The sum of these points is set as 
the f3 component. When all the food sources have been moved to the 
nest, the f4 component is calculated as 1.0 × [remaining time steps] 
when the task is achieved. Otherwise, f2+f3+f4 are evaluated as zero. 
The CMA-NeuroES parameter setting is as follows. The offspring λ are 
set at 100, and the initial SD is set at 0.2, with the initial covariance 
matrix C= I. The computer simulations’ last generation is set at 500 and 
10 independent experimental runs are conducted.

Applying incremental evolution to CMA-NeuroES for the 
cooperative food foraging problem

In our compearation computer simulation, (μ, λ)-FastES (FES) 
[48,49] and a real-coded GA [50-53] were also used to evolve the synaptic 
connection weights of the artificial neural network that generated the 
robots’ actions. To make the experiment comparable, four approaches 
are proposed to solve the cooperative food foraging problem: CMA-
NeuroES with conventional evolution, CMA-NeuroES, FES, and real-
coded GA with incremental evolution. The parameter settings of the 
other evolutionary algorithms are as follows. The real-coded GA’s 
population size is also set at 100. Tournament selection with size two 
and elite preservation with size one are adopted. The mutation rate is 
set at 1.0. This means that all the synaptic connections are mutated for 
each generation by adding Gaussian noise, whose mean and SDs are 0 
and 0.05, respectively. No crossover was used. These parameter tunings 

Figure 4: Three-stage incremental evolution for CFFT.
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had been performed in our preliminary experiments. All the last 
generation of the artificial evolution are set at 500, and ten independent 
experimental runs were conducted.

Robustness test

The robustness of the best robot controllers with each approach was 
measured by conducting a breakdown test with the Goal Task (Figure 
4c). In this test, the robots with the best controllers of each approach 
were selected. The fact that an SRS can work dynamically as individual 
robots are deployed has the advantage that the failure of indi560 visual 
robots will hardly affect the performance of an evolved SRS. In our 
test, the SRS continued its collective behaviour for searching food 
sources and returning food sources to the nest, even after a few robots 
had stopped working. Every robot is tested to determine whether it is 
broken at every time step. The breakdown coefficient (Bc) is calculated 
as follows: 

            rS                                                                                                                                                (1) 

In this equation, rS is the stop rate, the sR are the random steps 
from 0 to 5,000, and N is the number of robots. The test system will 
decide if any robot is broken by comparing cB with a uniformly 
distributed double value between 0.0 and 1.0 from a random number 
generator’s through at every time step. If cB  is larger than the random 
number, then the robot will stop. All the broken robots remain in the 

field and can be detected by robot sensors. Stop counter cS will count 
one after a robot is stopped to control the number of broken robots. 
Our breakdown simulation runs 5,000 time steps for ten iterations. 
Moreover, we consider the limitation of the stop counter by 10, 20, 30, 
50, meaning that 10, 20, 30, 50 robots in the SRS, respectively, will be 
stopped randomly during the simulation.

Results 
Figure 5 shows the result of the CMA-NeuroES controller for the 

cooperative food foraging problem. Our SRS successfully collected food 
sources in seven of ten runs and the maximum number of collected 
food sources was five. However, three runs performed very poorly; 
in them the SRS collected nothing at all. Figure 6 shows the fitness 
transitions of the best individuals and the averages of each individual in 

f1 
f2

Touching a food source
A food source reaches the nest

+0.0015 × [time steps]
+3000

f3
A food source is moved toward the 
nest +1500 × (1 - drem/dinit)

f4 All foods reach the nest +1.0 × [remaining time steps]

Table 1: Evaluation of SRS behaviour.
Figure 5: Food sources that SRS collected.

Figure 6: Fitness transitions of the best (solid line) and the average (dotted line) for each contgroller's best performed run.
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the best run. Figure 7 shows that the incremental evolution approaches 
with evolutionary algorithms collected at least two food sources, 
indicating that they were successful in solving the Sub- Tasks for all 
the runs. The best run of CMA NeuroES collected eight food sources 
in Goal Task, whereas conventional evolution had three runs that 
collected nothing. It is clear that not only the maximum fitness but 
also the average fitness of CMA NeuroES with incremental learning 
is higher than those of others. Table. 2 show the average number of 
generations and corresponding SDs required by the swarm to succeed 
in solving the sub-tasks. The incremental evolution approach with 
CMA NeuroES required approximately 23 generations solving Sub-
Task 1 and approximately 115 additional generations to solve Sub-Task 
2. Conversely, the FES and real-coded GA required approximately 31 
generations and 41 generations to solve Sub-Task 1, respectively, and 
approximately 149 generations and 136 generations to solve Sub-Task 
2, respectively. Therefore, incremental evolution with CMA NeuroES 
exhibits better search ability to find better solutions.

Table 3 shows the results of the average returned food source 
numbers, and the SD of four approaches for ten iterations. As a result, 
we see that conventional evolution performs poorly. When 50 robots 
stopped during our simulation, only one food source could be returned 
to the nest. In the incremental approach, the number of returned food 
sources of FES decreased to two, when the stopped robots number 

increased from 10 to 50. Real-coded GA shows its robustness, because 
the returned food source numbers decreased from four to three and 
the SD shows its stability. However, CMA-NeuroES with incremental 
evolution performed best overall.

When ten robots in the SRS stopped, the SRS could still return at 
least five food sources to the nest. The robust of CMA-NeuroES enables 
it to return four food sources even when half of the robots in the SRS 
are stopped. 

Typical behaviour observed in robustness tests for an SRS with a 
CMA-NeuroES controller is shown in Figure 8, wherein 50 robots are 
stopped during the simulation. Some robots immediately find a food 
source (Marked 2) after leaving the nest (Figure 8a and 8b). At the same 
time, some robots are stopped at the beginning of our robustness tests 
and become obstacles in the field. In Figure 8c, another food source 
(Marked 1) is found by another group of robots, when the first group of 
robots is trying to return the food sources to the nest. The food source 
(Marked 1) is collected after our SRS successfully bypassed the narrow 
pass in the field (Figure 8c-8e) while two food sources (Marked 2, 3) are 
already near the nest. An additional food source (Marked 4) is added to 
the field as soon as the first food source is collected (Figure 8f). Nearly 
half of the robots are stopped at this moment, after the food sources 
(Marked 4 and 5) are collected (Figure 8h and 8i). At the end of the 
simulation, 50 robots in our SRS have been stopped. Two groups of 
robots are still trying to collect the food sources (Marked 7 and 8) as the 
simulation 660 ends (Figure 8j).

Conclusion 
In this paper, we point out that the definition of swarm intelligence 

was extended in 2004 and there is almost no relationship between the 
cellular robotic systems with SRS. After that we successfully applied 
the ER approach to a specific complex cooperative food foraging 
problem with a large SRS including one hundred homogenous 
robots. Swarm behaviour emerged as a result of CMA-NeuroES with 
incremental evolution. The incremental evolution approach of staged 
evolution and environmental complexification helps ER avoid the 
bootstrap problem. The result of incremental evolution outperforms 
the conventional evolution approach for cooperative food foraging. In 
addition, a robustness test confirmed that the incremental evolution 
approach with CMA-NeuroES is robust, because it can solve the same 
cooperative food foraging problem, even when half of the robots are 
stopped. We expect that our proposed method and robustness test 
will also hold for other SRS benchmarks. In the future, we will focus 
primarily on the analysis of SRSs [54-57]. As an SRS can be considered 
as a large network with interactions among robots, we investigated 
finding subgroups in a robotic swarm [58] using the technology of 
complex networks. The next step will be to describe how subgroups in 
an SRS develop and change in a large robotic swarm using a duration 
table. That will enable researchers to understand the detail of task 
allocation in an SRS from a macroscopic viewpoint.

Figure 7: Food sources that SRS collected.

Average SD
FES 31.8 31.41

Sub-Task 1 Real Coded GA 41.7 15.2
CMA-NeuroES 23.9 11.5

FES 149.4 66.3
Sub-Task 2 Real Coded GA 136.6 46.8

CMA-NeuroES 115.4 38.8

Table 2: Average number of generations in which the swarm succeeded in 
solving sub-tasks for incremental evolution.

Conventional Evolution FES Real Coded GA CMA-NeuroES

Breakdown 10 20 30 50 10 20 30 50 10 20 30 50 10 20 30 50

Average 2.3 1.0 1.3 1 3.5 2.8 3.3 2.8 4.4 4.2 3.9 3.7 5.1 4.5 4.9 4.3

SD 1.1 0.9 0.6 0.7 1.3 1.0 1.4 0.9 1.8 1.2 0.9 0.8 1.0 0.5 0.5 0.8

Table 3: Number of brought back food sources whiles the robots breakdown.
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Figure 8: Snapshots of the best cooperative collective behavior found by CMA-NeuroES with incremental evolution approach of breakdown rate 50%.
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