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Background
RNA interference (RNAi) is nowadays a common used technology 

for gene silencing. It is applied for therapeutic aims or identification 
of drug targets as well as for basic research on gene function. The still 
unsolved major problem with this technique is the potential to cause 
unspecific off-target gene regulations in the treated cell culture or 
organism. These off-target effects are well described in many studies 
[1-3]. Since its discovery [4] and utilisation [5,6] RNAi has become an 
easy tool to use in cell culture assays. Compared to knockout based 
loss-of-function studies RNAi-knockdowns can be applied easily as a 
combined application beside a drug treatment. The reaction of the cell 
culture model to the treatments can subsequently be assessed on RNA 
level. Conventionally expression proofing studies are performed by 
quantitative real-time RT-qPCR or hybridization arrays. To visualize 
the differential gene expression changes hierarchical cluster analysis 
(HCA) or heat maps are very common [7]. Effects of a single treatment, 
like a siRNA-sequence, on a very broad range of genes can be visualized 
that way. An alternative method of visualizing complex datasets is the 
principal component analysis (PCA). This statistical and visualization 
tool reduces the dimensionality of a dataset consisting of a large 
number of interrelated variables, while retaining as much as possible of 
the variation present in the dataset [8].

Using an adenoviral based RNAi knockdown-model, we casted a 
loss-of-function study (data not shown) identifying the influence of a 
plant secondary metabolite (EGCG) under various gene knockdowns in 
an immunological signalling pathway. The outcome of the experiments 
was among others analyzed by PCA. Doing this we observed by chance 
a synergetic side effect exclusively in those of our treatment groups 
in which one particular knockdown was combined with the drug 
appliance. These findings led to the idea that if we can separate the 
roots of an effect applying PCA we can use it vice versa and isolate 
RNAi originating gene regulations from drug effects and this means 
off-target screening.

For an approval of our assumption we tried to find an off-target 
gene regulation in our cell culture model caused by one of the viral 
induced siRNA-knockdowns we had in stock. But without access to 
genome wide transcriptional array results no off-target effect was 
found. Hence we decided to use in silico data modelling to demonstrate 
how PCA can be utilized beneficially for RNAi off-target screening.

Methods
Data modelling

The underlying dataset was justified to the gene expression data 
output of our standard cell culture assays. Thereby the extracted RNA 
initially undergoes a RT (Reverse Transcription) with subsequent 
qPCR (quantitative real-time polymerase chain reaction) gene 
expression analysis. Accordingly the layout of the data model was 
designed. It consists of eight treatment groups (a-h) each containing 
four replicates, leading to 32 samples (Table 1). The eight groups were 
divided into two sections, the drug-treated groups (b,d,f,h) and the 
media control treated groups (a,c,e,g). The sections in turn were sub-
classified in four species each one characterized by a particular gene 
knockdown-combination. The four knockdown-combinations were 
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Abstract
Off-target effects remain the major problem in any RNAi-knockdown application. Casting cell culture loss-of-function 

studies evaluated by heat map and principal component analysis (PCA) we realized that the PCA derived plots can 
clearly visualize off-target effects. Due to the inexistence of off-target effects in our cell culture model we created an in 
silico data model in order to demonstrate how PCA can be utilized therefore. With the presented in silico modulation 
it is possible to simulate the impact of various treatments on changing gene expression. Known effects caused by 
drug treatment or by inserted knockdowns could be clearly separated from unknown off-target effects. By creating 
various randomized gene expression data sets we demonstrate that PCA can assign more effective an off-target effect 
compared to a heat map gene regulation pattern.

Knockdown-combination kd-c kd-I kd-II kd-I&II
Control (cell culture media) a c e g
Treatment (drug appliance) b d f h

Each treatment-variant (control, treatment) is combined with each knockdown-
variant (kd-c, kd-I, kd-II, kd-I&II) leading to eight treatment groups (a - h), each n=4, 
leading to 32 samples

Table 1: Knockdown-assay layout.
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composed from two target knockdowns (named “kd-I” or “kd-II”) and 
one knockdown-control (named “kd-c”). The two treatment groups 
and the four knockdown-groups were combined pair wise (Table 1). 

For each of the 32 samples a dataset of 21 genes was rendered 
using our self designed spreadsheet template (Microsoft Office Excel 
2007, Additional file 1). The 21 genes where group-wise attributed to 

a supposed class of gene regulation. The classes differ in how genes 
respond, either to drug treatment or knockdown-appliance. Four 
of these classes where created: (class I) stabile expressed reference 
genes, (class II) target-genes knocked down by RNAi, (class III) 
genes regulated (up or down) by the drug treatment, (class IV) genes 
influenced by the drug treatment and additionally bearing a RNAi-off-
target effect (Figures 1 and 2). The in silico expression data based on Cq-
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Raw data for the 21 genes from all 32 samples in a virtual RT -qPCR (crossing points indicated)  

(I) Ref -1 
(I) Ref -2 
(I) Ref -3 
(II) KD -1 + 
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(II) KD -2 - 
(II) KD -2 
(III) G1 -up 
(III) G2 -down  
(III) G3 -no  
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(III) G5 -down  
(III) G6 -no  
(IV) OT1 -up 
(IV) OT1 -down  
(IV) OT1 -no  
(IV) OT2 -up 
(IV) OT2 -down  
(IV) OT2 -no  

Figure 1: Cq-values plotted as virtual RT-qPCR. The one random output of our simulation which underlies all graphs in this work represents a raw dataset from a 
RT-qPCR gene expression analysis of 21 genes. The 32 Cq-values (originating from the eight different application combinations multiplied by the four replicates) are 
plotted gene wise on a line, like fluorescence-signals crossing a threshold in an in vitro RT-qPCR reaction. The random data distribution and within the emulated 
CV-value gets visible best in class I genes (unregulated reference-genes). Particular regulation effects become apparent by the separate clusters among the 32 data 
points of a gene.
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Figure 2: Knockdown-evaluation from the in silico data set. Relative expression levels of simulated genes after knockdown and/or drug appliance calculated by 
the ΔΔCq-method plotted against a logarithmic ordinate. Net knockdown-effects are exposed by normalizing data to knockdown control samples. The 21 genes are 
arranged in four classes: (class I) reference genes (Ref-1, Ref-2, Ref-3); (class II) knockdown-targets (KD-1+, KD-1-, KD-1, KD-2+, KD-2-, KD-2); (class III) drug 
targets (G1-up, G2-down, G3-no, G4-up, G5-down, G6-no); (class IV) drug targets with an additional off-target effect (OT1-up, OT1-down, OT1-no, OT2-up, OT2-
down, OT2-no). The additional prefix specification “+” or “-“ indicated at class II genes stands for an additional synergetic gene regulation effect which occurs when 
knockdown appliance is combined with drug appliance. The additional prefix specification “-up”, “-down” or “-no” indicated at class III and IV genes stands for the 
direction of the predestinated gene regulation. For every gene eight expression levels are given corresponding to the eight treatment groups: a - h (Table 1).
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values of every single sample for every individual gene was created by 
our random algorithm (Microsoft Office Excel 2007, Additional file 1). 
The Cq-value represents the number of cycles that are required by the 
fluorescence signal of a single sample in a qPCR-experiment to cross a 
defined threshold [9,10]. All factors which influence the Cq-value of a 
sample were randomly generated: the expression level of each gene, its 
variation coefficient, the range of up- or down-regulation, and the range 
of on-target or off-target knockdown. The data model delivers a dataset 
of 21 x 32 values (genes in columns x samples in rows). This in silico 
modelled dataset represents the raw data outcome of a corresponding 
RT-qPCR gene expression analysis obtained from our standard cell 
culture assays. For all plots presented the same raw dataset was used 
(Additional file 2). All variables influencing the data were completely 
randomized, but expression ranges, gene regulations and the inherent 
variability were chosen to be realistic based on the knowledge about 
gene expression we gained from our cell culture assays. The range of the 
gene regulation here was set from 1-10 folds, the knockdown-efficiency 
between 45% and 95% and the applied CV-value was justified to 35% of 
the emulated gene regulation. In order to evaluate the quality of the raw 
data the distribution of the 32 Cq -values (32 samples) corresponding to 
every gene is plotted in a virtual RT-qPCR (Figure 1).

Data processing

Gene expression analysis: The raw data was analyzed under the 
terms of the ΔΔCq-method [11], and then relative expression values 
(shown in percentage) were plotted gene-wise on a logarithmic 
ordinate.

Hierarchical cluster analysis: Heat maps of the modelled data were 
plotted in GenEx software (version 5.3.2.13, MultiD, Sweden) using the 

ΔCq-values for each sample corresponding to the gene set [12].

Principal component analysis: The data processing using principal 
components analysis (PCA) was as well performed using GenEx 
software. Therefore the ΔCq-values for each sample corresponding to 
the gene set were calculated and then pasted into the PCA-algorithm 
input box. According to the aim of the PCA (results and discussion) 
the data was mean centered to columns or transposed and then mean 
centered to rows [7].

Results and Discussion
For this work we designed a data emulator based on the layout of our 

cell culture assays. Every time used it delivers a unique dataset. Within 
this emulator the range of the RT-qPCR data constituting parameters can 
be set up. Subsequently the values are rendered randomly (Additional 
file 1). In order to show that this data is authentic compared to a cell 
culture experiment we plotted the raw data (Cq-values) in a virtual RT-
qPCR (Figure 1). When this data is normalized to the control samples 
of the knockdown-treatments (group’s a and b) the net knockdown-
effects get visible (Figure 2). As a result this plot shows explicitly the 
knockdown-effect which weighs on a particular gene. The six genes in 
class II are all predestinated to be knockdown-targets by the simulation. 
Thus they show down-regulation after the normalization used in this 
plot. All other genes are no knockdown-targets. But nevertheless 
some of them show a significant down-regulation. These are the genes 
from class IV which bear an off-target effect. Slight regulations on the 
remaining genes (classes I and II) emerge from the random variation 
coefficient integrated in the data simulation. We inflicted additional 
gene regulations on some of the class II genes (Figure 2). The additional 
prefix specification “+” or “-” at the gene name indicates a synergetic 

Heatmap-pattern of relative gene expression (data normalization to reference genes of class l)
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Figure 3: Heat map of relative expression data. ΔCq-values (normalized against reference gene means) for all 32 samples corresponding to the 21 genes are plotted 
in GenEx software. Green indicates a relative up-regulation, red a relative down-regulation. The same dataset as in Figure 2 was applied.
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effect on the gene regulation when the RNAi-knockdown and the drug 
appliance are inserted simultaneously. We include this special scenario, 
because it is a well known phenomenon in in vitro or in vivo models as 
we experienced it from our own cell culture assays (data not shown). 
The same gene expression data is plotted in a heat map in Figure 3. In 
this visualization mode the ΔCq -values are directly used without any 
further normalization to control samples.

The randomly created dataset plotted in Figures 2 and 3 contains 
some special cases by chance. In the heatmap (Figure 3) we realize 
a separation between strong knockdown-effects evoked either by 
knockdown kd-I or knockdown kd-II. However only the genes 
influenced by knockdown kd-I can be globally separated clearly 
(KD-1, KD-1+, KD-1-, OT1, OT1-up, OT1-down). kd-II influenced 
genes fractionally merge undefined between red and green (KD-2, 
KD-2-, OT2-no). This happens due to the by chance relatively low 

knockdown-originated regulations on these genes. So, how can I adjust 
the undefined genes in order?

Therefore we additionally utilized PCA. A plot from a PCA will 
always have as much data points as the underlying dataset has rows. 
In every single data point you can include as much resources as you 
are interested in by integrating more or less columns of a dataset. In 
our case this means to consider more or less genes measured from one 
RNA-sample. Each gene will contribute its impact to the sample and 
influence its position in the PCA-plot. If a gene is strong regulated its 
impact is high. On the other hand a low regulated gene like a reference 
gene has poor impact on a sample. If such a gene (column) is included 
the position of a data point (sample) will not move in the PCA-plot. 
Figure 4a/b uses the same dataset as Figures 1,2 and 3. In the plots 
from Figure 4a/b the data was sorted as rows = samples. With the 
data arranged like this the PCA algorithm regards the impact which 
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Figure 4: PCAs of the in silico data set from Figures 1,2 and 3. (a) PCA of all 32 samples (columns = genes, rows = samples) embracing exclusively genes of classes 
I and III. The samples cluster in two clouds according to media control (circles) or drug treatment (triangles). (b) PCA from the same data pool as in Figure 4a but 
including the class IV gene OT2-up. The incorporation of OT2-up divides the two clouds from Figure 4a by separating the samples which bear the off-target effect. 
(c) PCA with data transposed columns by rows including the complete dataset (32 samples x 21 genes). Genes of class II are indicated as squares (kd-I) or triangles 
(kd-II). Circles indicate genes from the three remaining classes. (d) Plot Identical with Figure 4c, but layout adjusted: gene names are given and class IV genes (with 
off-target effect) are now labeled in color according to the knockdown they originate from.
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lies on each of the 32 samples. On the algorithm level that means the 
dimension of the collective gene regulation corresponding to a single 
sample is expressed as a vector. The resulting PCA-plot then simplifies 
the multi dimensional dataset and adjusts it to the biggest vectors. That 
way the major gene regulations are exposed in a two dimensional plot. 
The way one single gene can influence the plot from a PCA gets clear 
in Figures 4a/b. While in Figure 4a we can recognize two clouds, there 
are four clouds in Figure 4b. This is due to the impact that is load on 
the data points (samples) by integrating more or less resources (genes). 
In Figure 4a the PCA is cast only with genes that explicitly bear no 
knockdown-effect (classes I & III). As a result the data points cluster 
only in accordance with media (circles) or drug (triangles) appliance. 
In Figure 4b there is only one more column (only one class IV gene: 
OT2up) included into the dataset. This single load has enough impact 
to split the two clouds into four. The knockdown lying on OT2up 
represents a second vector of regulation. For those of the samples 
in Figure 4b which are treated with the knockdown kd-II the PCA 
algorithm exposes another vector because the provided effect (an off-
target effect) is strong enough. For a screening that means if a gene set 
we want to analyze is not harassed by any off-target effects the PCA plot 
will remain in a treatment and a control cloud. 

But we can go deeper into data analysis and retrieve more 
information about the gene regulation. In Figure 4c the PCA casted 
with the entire dataset is plotted. The major difference is that the data 
now is transposed columns by rows. In consequence every data point 
represents one gene including all 32 values from the corresponding 
samples. Three different kinds of symbols were attributed. Genes 
which are designated as knockdown-targets (class II) are labeled with 
squares (kd-I) or triangles (kd-II). All other genes (classes I, III & IV) 
are labeled as circles. The result is a pattern of the data branching into 
two directions (or vectors). In our model we have the advantage that 
we know which genes are additionally charged by an off-target effect 
(class IV genes). In an off-target screening this information would be 
the task. If we now label these genes with the color for the knockdown 
they bear we get a very clearly terminated evaluation (Figure 3d). Genes 
having an off-target effect from the knockdown kd-I cluster to the 
branch of kd-I target genes and accordingly behave genes with a kd-II 
originating off-target effect. This outcome is what we can use to screen 
for off-target effects using PCA. Genes clustering in a cloud containing 
a knockdown target are likely influenced by an off-target effect. They 
should be exclusively checked for off-target effects in an extra RT-
qPCR experiment.

But where is the advantage compared to a heat map analysis? The 
trouble in any case is when weak regulated genes shall be assigned. At 
that point the vectors in a PCA plot provide us extra information. A 
very low regulated gene in our dataset is OT2-no. In addition to that 
the two knockdown targets KD-2 and KD-2- are only weakly down-
regulated by the knockdown kd-II (Figures 2 and 3). If we look at these 
genes in the PCA-plots of Figure 4c/d we realize that this evaluation 
locates these genes in direction towards the cloud of genes affected by 
kd-II. Of course OT2-no merges slightly with the cloud of generally 
low regulated genes, but it settles at the border towards the kd-II 
containing cloud and explicitly not towards the kd-I influenced genes. 
In the heatmap these genes cannot be attributed to any treatment 
group and fade between other low regulated genes. At that point PCA 
can clearly provide more information about a gene regulation pattern 
than the HCA alone.

By using virtual RT-qPCR data modelling it is easy to create 
more similar datasets to demonstrate this evaluation method. For 

your concern we posted additional twelve PCA-plots online, even 
with extreme values for the regulative parameters or the CV-value 
(Additional file 2).

Conclusions
PCA in its innate manner takes that point of view on a dataset that 

visually maximizes the variation present in a dataset. As a result PCA 
cannot distinguish information which is not present in a dataset. But 
the task for the scientist is to pick the most vivid visualization mode 
for that what was measurable out of the processes which took place on 
biological level. Analyzing off-target effects using HCA and PCA gives 
us the advantage that a side effect can be easily attributed to its origin. In 
the PCA-plot the knockdown targets will cluster with genes regulated 
by the same cause. In a heat map only strong effects can be identified 
clearly. Weak regulations will fade between red and green. In addition 
the PCA assigns a direction to every source of gene regulation. Even 
when an effect is weak it will cluster towards that cloud of genes which 
are regulated by the same originator. Separated that way transcript 
expression patterns can efficiently be analyzed for siRNA specific gene 
regulations which means off-target screening in a very new mode.
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