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Introduction
Microfluidic devices have successfully been applied to produce 

many kinds of particles in the micro [1-3] and nanoscale range [4,5]. 
Microfluidics have applications in the pharmaceutical, cosmetic and 
personal care areas, as well as in chemical processing including paints 
and coatings, food industry among others [6-8]. In pharmaceutical 
applications, particularly, microfluidic devices have been applied 
to synthesize poorly water-soluble drugs with additives in low 
concentrations, improving the bioavailability by size reduction and 
morphology changes, while maintaining chemical composition and 
therapeutic effects [9-12]. Microfluidic devices are utilized to synthesize 
nanoparticles of organic and inorganic materials such oxides, metals, 
semiconductors, polymers, including different types of drugs. In the 
case of pharmaceutical products, there are examples such as liposomes 
[13-15], niosomes [12], PLGA-PEG copolymer nanoparticles [16] and 
some poorly soluble drugs that have successfully been produced in 
microfluidic systems.

The antisolvent precipitation technique is one of the mechanisms 
applied to obtain nanoparticles and can be improved by using 
microfluidic devices [17], leading to particles with a smaller nucleation 
size [18]. Some examples of nanoprecipitation using different kinds of 
devices can be found in the literature, such as amorphous cefuroxime 
axetil prepared by nanoprecipitation to enhance the dissolution rate, 
using a Y-junction micro reactor [19] and a T-junction micro reactor 
[20]. In that work it was observed that the total fluid flow rate, the anti-
solvent to solvent flow rate ratio and the cefuroxime concentration 
influence the particle sizes. Danazol [21] and calcium atorvastatin [22] 
are other examples of pharmaceutical ingredients processed in micro 
reactor, resulting in particles in nanoscale range, with low polidispersity 
and improved dissolution rate. 

Hydrocortisone for ophthalmic delivery was also processed in a 
commercial micro reactor with Y-junction geometry with good results 
[23]. The study involved micro reactor with different microchannel 
diameters and inlet angles. It was observed that smaller microchannels 
diameters as well as the sharper inlet angles resulted in a reduction 
of the particle sizes. In the same way, the total flow rate and anti-
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solvent/solvent ratio affect the particle size. The particle sizes varied 
from 80 to 450 nm, with the particles having an amorphous profile 
and the results indicate that the drug dissolution rate is improved if 
compared with the dissolution rate of raw hydrocortisone. In another 
work [24], the authors compare the microfluidic nanoprecipitation (a 
bottom-up method) with the wet milling process (top-down method). 
It was observed that both methods lead to particles in nanoscale range, 
improving the bioavailability. However, nanoprecipitation requires 
low energy consumption and is considered a simple process, while wet 
milling produces a nanosuspension with more physical stability.

In this work, we present a study of the rifampicin synthesis 
in a microfluidic device, using the anti-solvent nanoprecipitation 
process. Rifampicin (C43H58N4O12) is an antibiotic commonly used in 
Tuberculosis and Hansen disease treatments. However, rifampicin 
presents a large variability in its bioavailability, due mainly to its 
two polymorphic forms. Because of its low solubility, rifampicin 
is administered in high concentrations causing serious side effects 
[25]. Rifampicin is categorized in class II in the biopharmaceutical 
classification system (BCS), in which drugs are characterized for their 
low solubility and high permeability [26,27]. Some methods have been 
used to increase the rifampicin BCS Class, such as amorphization 
[28], pH modification and particle size reduction [29] or rifampicin 
encapsulation in liposomes [30], biodegradable polymers [31]. 
Although these efforts showed promising results, these techniques 
utilize additives that are not approved by health organizations and 
usually cause an increasing in the production costs. 

A glass microfluidic device produced by standard micro fabrication 

Abstract
We present the nanoprecipitation of rifampicin performed in a microfluidic device as a means to reduce the 

particle size and enhance the dissolution rate. The microfluidic device was microfabricated in glass substrate with 
a 45° flow-focusing geometry. The dimensions of the central and side channels are 100 µm and 110 µm in width, 
respectively, and 85 µm in depth. We analyze the influence of different parameters in the rifampicin particles size, 
such as: rifampicin concentration, the presence of surfactant, the total fluid flow and solvent to anti-solvent flow rate 
ratio. The processed rifampicin was evaluated not only in terms of size, but also morphology, crystallinity, thermal 
characteristics and dissolution rate. We produce particle sizes in a controlled manner with sizes ranging from 100 nm 
to 1.2 µm. The particles present an amorphous profile and enhanced dissolution rate as compared to commercial raw 
rifampicin. These results are promising and have enabled us to better understand the rifampicin self-assembly process 
in microfluidic device.
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processes was used for the study presented here [32,33]. The device has 
a flow-focusing geometry with 45° angle between the inlets to enhance 
the diffusion process. The particle sizes and morphology of rifampicin 
were evaluated while observing the influence of fluid flow, anti-solvent 
to solvent flow rates, the presence of surfactants and rifampicin 
concentrations. The nanoparticles were analyzed by techniques of 
Dynamic Light Scattering (DLS) to measure particle sizes and Field 
Emission Gun Scanning Electron Microscopy (FEG-SEM) to observe 
the morphology. Fourier Transform Infrared Spectroscopy analysis 
was used to observe the chemical composition (FTIR) and X-ray 
Diffraction (XRD) to analyze the crystallinity. Differential Scanning 
Calorimetry (DSC) and dissolution tests were used to analyze the 
rifampicin nanoparticles behavior as compared to raw rifampicin. 

Experimental Section
Materials

Rifampicin (C43H58N4O12), Methanol (Sigma-Aldrich), 
Polyoxyethylene (20) sorbitan monolaurate (Tween 20- Sigma-
Aldrich), PBS Buffer Solution pH 7.4 ± 0.1 (Laborclin), soda lime 
microscope glass slides (76×26×1 mm, Knittel, Germany), acetone, 
isopropyl alcohol, hydrofluoridric acid solution (39%, General 
Chemical), hydrochloric acid (38%, General Chemical), UV glue (1201, 
PIZZANI).

Microfluidic device fabrication

Microscope glass slides were used to obtain the microfluidic 
devices using standard photolithographic and wet etching procedures. 
The glasses were patterned with hydrofluoridric acid solution 
combined with hydrochloric acid to improve the etching process 
(HF:HCl:H2O-1:1:3). Chromium films with a thickness of 50 nm, 
obtained by sputtering, were used as masking material for etching the 
microchannels. To seal the channels with a cover glass, we used UV 
glue diluted in 50% pure acetone. Access holes were patterned with 
diamond burs and brass tubing’s used for liquid inlet and outlet was 
glued with epoxy resin. The flow focusing geometry was patterned 
to obtain the hydrodynamic flow focusing phenomena. The angle 
formed between each of the side channels and the main channel is 45° 
degrees (Figure 1a). The side channels, where the anti-solvent flows, 
have a width of 110 ± 1µm and the main channel, where the rifampicin 
solution flows, has 100 ± 1 µm in width. The microchannels have 80 µm 
+ 1 in depth and the diffusion region has 45 + 0.5 mm in length. The 
glass microfluidic system microfabricated is shown in Figure 1b.

Rifampicin solution and nanoprecipitation process

Rifampicin was dissolved in methanol in three different 
concentrations, and different flow rates were tested (QRIF). De-ionized 
water flow (QWATER) was used as anti-solvent and was introduced in 
the side micro channels. The Tween 20 was used as surfactant and we 
also observed the influence of the flow rate ratio R, which is defined 
as QWATER/QRIF. Syringe pumps, PHD 4400 (Harvard Aparatus), were 
used for controlling the fluid flows. The flow focusing behavior on the 
microchannel was observed using an optical microscope (Coleman, 
XTB-2T). 

Statistical data processing using a two-factor experiment with 
repeated measures at central points was applied to study the influence 
of the parameters settings in the particle size and polydispersity. The 
parameters are expressed in 

Particle size: The size measurement was made in a Dynamic Light 

Scattering apparatus (DelsaTM Nano C Particle Analyzer, Beckman 
Coulter). The rifampicin was maintained as a suspension and the DLS 
analyzer performed six measurements on each sample. 

Sample preparation: We filtered and dried the rifampicin 
nanosuspensions for analysis presented on sequence. Rifampicin 
nanosuspensions were filtered in a hydrophilic membrane with 0.22 
µm in pore (Millipore Ind.) with a vacuum system. The membrane 
was maintained in a vaccum desiccator per 24 h to dry the sample 
and obtain the rifampicin powder. We decided also to use a condition 
without surfactant to observe chemical and physical parameters, and 
the process conditions: the flow rate ratio between water and rifampicin 
flow (R) is equal to 10, resulting in particle sizes of 690 nm (Table 1).

Morphology: The nanoparticles morphology was observed by 
FEG-SEM (Quanta 3D model, FEI).The membrane with nanoparticles 
was fixed on the FEG-SEM stub using cooper double-sided adhesive 
tape and sputtered with 20 nm of Au coating. The thickness was defined 
through the sputtering deposition rate, in our case 5 nm/min. 
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Figure 1: Illustration and photograph of the flow-focusing device used for 
rifampicin nanoprecipitation. (a) scheme indicating anti-solvent nanoprecipitation 
process. Rifampicin is focused using water flow on side channels to create a 
narrow stream in the diffusion region. The solvent (Methanol) diffuses in water 
(y direction) promoting rifampicin supersaturation in the diffusion region (x 
direction). (b) Glass microfluidic system, with 110 µm-wide side channels and 
100µm-wide central channel, both having 80 µm in depth. 

Table1: Parameters and conditions used in nanoprecipitation experiments.

Parameters -1 0 1
Total Flow Rate – Q (µL/min) 100 150 200

Fluid Flow Ratio - R (Qwater/QRIF) 10 30 50
Rifampicin Concentration (mg/mL) 10 30 50

Surfactant (% volume) 0 0.5 1



Citation: Schianti JN, Cerize NNP, de Oliveira AM, Derenzo S, Seabra AC, et al. (2013) Rifampicin Nanoprecipitation using Flow Focusing Microfluidic 
Device. J Nanomed Nanotechol 4: 172. doi:10.4172/2157-7439.1000172

Page 3 of 6

Volume 4 • Issue 4 • 1000172
J Nanomed Nanotechol
ISSN: 2157-7439 JNMNT, an open access journal

Chemical composition: The Fourier Transform Infrared 
Spectroscopy analysis (NICOLET 6700 FTIR, Thermo Scientific) was 
performed to evaluate the chemical composition of the rifampicin 
processed in the micro-channel system. FTIR analysis was carried out 
in a range of 500 to 5000 cm-1 with spectral resolution of 2 cm-1, using 
the potassium bromide pellet method, described elsewhere [34]. 

Physical characteristics: The crystalline structure was examined 
using wide X-ray Diffraction (XRD, XRD-6000, and Shimadzu) to 
observe the crystalline profile changes on the rifampicin processed in 
microfluidic channels. Data were collected over an angular range from 
5 to 50º (2θ) in continuous scan mode using a step size of 0.02°. The 
generator was set to 40 kV and 30 mA.

Thermal analysis: Thermograms were performed using a 
Differential Scanning Calorimeter (DSC), Model 822e (Mettler Toledo). 
Samples were weighed in aluminum crimped pans. The parameters 
used for analysis were: heating rate 10°C/min, temperature range 25°C 
to 300°C with nitrogen purge (100 mL/min) and pan partially covered.

Dissolution rate: Dissolution rate tests were performed in a 
dissolution apparatus (Shaker 430, Nova Etica). The speed and 
temperature of the bath were set at 100 rpm and 37.0°C ± 0.5°C, 
respectively. A PBS buffer solution with pH of 7.4 was employed as the 
dissolution medium. Rifampicin samples, both the commercial and the 
rifampicin nanoparticles, with 6 mg of mass were added to different 
vessels containing 100 mL of the dissolution medium. A 3 mL aliquot 
was taken each time at specific time intervals (2, 5, 10, 15, 20, 25, 30, 
35, 40, 45, 50, 60, 90, 120 and 180 minutes) and the concentration 
of samples was obtained by absorbance measurement in an UV 
spectrophotometer (U-2000, UV Hitachi) at 333 nm.

As a reference, a sample of raw rifampicin (pure drug) was 
characterized with the same techniques applied to the rifampicin 
nanoparticle obtained in microfluidic process (FEG-SEM, FTIR, 
DSC, XRD and dissolution tests) and the results are discussed below. 
Commercial Rifampicin was diluted with distilled water and filtered 
in the same way as the nanoparticles. The initial average size of raw 
rifampicin was 42 µm.

Results and Discussion
Flow focusing and particle sizes

Figure 2, presents the images of microfluidic device in two different 
flow rate ratios and their respective particle size measurement. For the 
examples shown below, the initial rifampicin concentration is 50 mg/
mL. In (a) the anti-solvent to solvent ratio R is equal to 10, resulting 
in a 690 nm rifampicin particle size. In (b), the ratio is equal to 50 and 
resulted in a 160 nm rifampicin particle size. In these examples, we 
fixed the water flow rate, QWATER, to 200 µL/min. As expected, for higher 
R values, small particle sizes are obtained. However, this microfluidic 
system allows a maximum R value of 50, since for higher values, the 
flow focusing is no longer achieved. 

Factorial analysis

Under the conditions used in this work, it was possible to obtain 
rifampicin nanoparticles in a range from 100 nm to 1120 nm and 
polidispersity below 0.3. In figure 3, we can see the surface analysis 
response showing the influence on the particle size of each selected 
parameters used in the experiments. It is possible to observe that the 
increase in total fluid flow combined with the increase of QWATER/QRIF 
ratio causes a reduction in the particle size. 

Higher rifampicin concentration results in larger particles, while 
higher surfactant concentration reduces the particle sizes. By varying 
the concentration of surfactant in the range of 0-1% by volume of 
water, there is a reduction in particle size from 800 nm to 250 nm 
approximately, considering an anti-solvent to solvent flow ratio of 
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Figure 2: Optical Microscope images of rifampicin solution in microfluidic flow 
focusing with respective particle size measurement (DLS): (a) the flow rate 
ratio between water and rifampicin flow (R) is equal to 10, resulting in particle 
sizes of 690 nm. (b) R is equal to 50, resulting in particle sizes of 160 nm. In 
these examples the water flow was maintained at 200 µL/min, and rifampicin 
concentration was 50 mg/mL.
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Figure 3: Surface area graphs showing the parameter’s effects on the particle 
size: (a) water flow and flow rate ratio (R); (b) surfactant and water flow; (c) 
rifampicin concentration and water flow and (d) rifampicin concentration and 
flow rate ratio (R).
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50 and water fluid flow of 200 µL/min. The total water flow does not 
present statistically significant influence in the final particle sizes, as 
can be seen in the histograms shown in figure 4, but provides a larger 
final volume of suspension in a given period of time; we thus work with 
higher fluid flow rate (200 µL/min). The histogram was done based on 
the data obtained in our factorial experiments.

Morphology

Figure 5 shows micrographs of rifampicin nanoparticles obtained 
with a FEG-SEM. In this analysis the rifampicin was maintained 
in the membrane used previously to filter rifampicin. In figure 5a, a 
micrograph of raw rifampicin is shown and in figure 5b rifampicin 
processed in microfluidic devices is presented (measured size of 
250 nm). For this analysis we utilized Rifampicin in high initial 
concentration (50 mg/mL), and the microfluidic system was operated 
with a water flow rate (Qwater) of 200 µL/min and R of 50. We observed 
that the particles obtained from the microfluidic process have a 
spherical shape as compared to commercial raw rifampicin.

Chemical composition

FTIR analysis was performed to evaluate the chemical composition 
of the raw rifampicin and the microfluidic processed rifampicin 
nanoparticles. The corresponding FTIR spectra are presented in 
figure 6. The FT-IR spectra curves suggest that there was no chemical 
composition change, because rifampicin nanoparticles have the same 
absorption peaks as raw rifampicin. 

X-ray diffraction analysis

In figure 7, a XRD profile is presented comparing the raw rifampicin 
with rifampicin processed in the microfluidic device. Raw rifampicin 
shows characteristic peaks at 19.50°, 14.35° and 13.65°. As presented 
in the article by Agrawal et al. [27], commercial rifampicin is usually a 
mixture of crystal forms I (presenting peaks at 14.35° and 13.65°) and 
II (19.5°), and amorphous material. Observing the curve for rifampicin 
processed in microfluidic system, the absence of peaks is verified, 
revealing that this material has a significant reduction in crystallinity 
and is mostly amorphous. In many pharmaceuticals applications, size 
reduction is combined with crystal amorphization, since amorphous 

particles have higher solubility compared to crystalline particles, even 
for particles on nanoscale range [34]. 

Thermal analysis

The DSC profile of raw rifampicin showed two peaks at 190°C and 
260°C, which correspond to the melting point and decomposition of 
the raw rifampicin, respectively (Figure 8a). In contrast, in the DSC 
thermal profile of rifampicin nanoparticles, we can see slight bands 
confirming the amorphous state of these particles (Figure 8b). Although 
we could observe some noises on the DSC profile of rifampicin nano, 
we could see that there are marked differences between DSC profiles. 
The XRD analysis presented before helped us maintain this argument.

Dissolution tests

The dissolution profiles of raw rifampicin and the nanoparticles 
(690 nm) in phosphate buffer solution are compared in figure 9. In ten 
minutes, the rifampicin nanoparticles reached 50% drug dissolution 
against 30% of the raw rifampicin in the same period. The green line 
on the graphic highlights the period of 45 minutes stipulated by US 
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Figure 4: Histogram showing the effect of water flow (Qwater) combined 
with flow ratio R (QWATER/QRIF) on the rifampicin particle sizes. The water flows 
(Qwater) used in our experiments do not provide significant differences in 
particle sizes (around 50 nm). The ratio between water and rifampicin flow, 
combined with rifampicin initial concentration causes a relevant influence on 
the particle sizes. 

  
5/19/2011

9:44:43 AM
HV

3.00 KV
HV

2.00 KV
mag

25 000 x
mag
50 000 x

pressure
5.49e-4 Pa

spot
3.0

WD
4.8 mm

WD
10.2 mm

2 µm
IPT FEl Quanta 3D

det
TLD LSI EPUSP by Adir JMoreira

2 µm

Figure 5: SEM-FEG analyses of rifampicin: (a) raw rifampicin was diluted (0.002 
kg) in water and filtered for the analysis and in (b) rifampicin nanoparticles 
obtained by nanoprecipitation in the microfluidic system using 200 µL/min of 
water flow, rifampicin concentration of 50 mg/mL and ratio between phases 
(R) equal 50. 
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Figure 6: FTIR spectra of (a) raw rifampicin and (b) rifampicin nanoparticles. 
Raw rifampicin presents an absorption peak in 3480 cm-1, and rifampicin 
nanoparticles maintained the same absorption peak, indicating there are no 
changes in chemical composition after microfluidic synthesis. 
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Pharmacopeia a for rifampicin dissolution tests [35]. In this point, we 
observed that 80% of nano rifampicin is dissolved in contrast of 60% 
of raw rifampicin. The results indicate that rifampicin nanoparticles 
provide an improved dissolution rate compared to raw rifampicin.

Conclusion
In this work, a glass micro fluidic device was employed to produce 

rifampicin nano-suspension with a relative control over particle size 
and morphology. The nanoprecipitation process in our device leads to 
rifampicin nanoparticles with sizes in a range varying from 100 nm up 
to 1120 nm. When comparing processed with unprocessed rifampicin, 
we observed that the chemical characteristics were maintained, as can 
be seen from the FTIR analysis, however, the particles morphology 
becomes amorphous. The change to amorphous profile was confirmed 
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Figure 9: Dissolution rates profile for raw and nano rifampicin in a PBS buffer 
solution (pH=7.4). The inset shows the dissolution rates for the initial ten 
minutes.The speed and temperature bath were set at 100 rpm and 37.0 + 
0.5 °C, respectively.
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Figure 7: XRD patterns of (a) raw rifampicin and (b) rifampicin nanoparticles. 
Raw rifampicin shows characteristic peaks at 19.50º, 14.35º and 13.65º 
and rifampicin nanoparticles presented changes in this pattern, with an 
amorphous profile. 
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Figure 8: DSC curves of (a) raw rifampicin and (b) rifampicin nanoparticle. 
Raw rifampicin shows melting point at 190 ºC and decomposition at 260 
ºC. The rifampicin nanoparticles do not present these peaks, showing an 
amorphous behavior.

by DSC and XRD analysis. The dissolution profile was evaluated in a 
buffer solution, and we observed that rifampicin nanoparticle has the 
dissolution rate enhanced compared to raw rifampicin. In conclusion, 
the rifampicin nano-precipitation in micro fluidic device offers a 
continuous controlled process to obtain rifampicin nanoparticles. 
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