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Editorial Open Access

Rett syndrome (RTT) is a X-linked neurodevelopmental disorder 
that affects approximately 1 in 10,000 live female births and is 
characterized by delayed-onset loss of spoken language, loss of hand 
use, problems with ambulation, and the development of distinctive 
hand stereotypes [1-12]. RTT is typically caused by mutations 
in methyl-CpG–binding protein 2 (MECP2) [1,2,5,8-10,13,14], a 
gene encoding a protein involved in regulation of gene expression 
[3,13,15,16]. In addition to the cognitive and motor abnormalities, 
RTT patients also show autonomic dysfunction, with breathing and 
heart rate irregularities [17-20]. Boys with mutations in MECP2 show 
more severe autonomic dysfunction, with marked breathing and heart 
rate abnormalities that usually result in death within the first year of life 
[21]. RTT patients have a high incidence of sudden unexpected deaths 
(26% of all deaths) [22], which are probably of cardiac origin. Previous 
studies have shown that some RTT patients have prolonged QT 
intervals (LQT) on electrocardiograms (ECGs) [23]. In patients with 
other diseases, LQT is a significant risk factor for sudden arrhythmic 
cardiac death [24]. However, so far the causes for LQT in RTT and its 
contribution to the high proportion of sudden death are still unknown. 
As reported recently in Science Translational Medicine, McCauley et 
al. [25] tested the hypothesis that these sudden deaths in RTT patients 
may be due to cardiac dysfunction.

In most cases, inherited LQT are caused by mutations in the 
voltage-gated potassium channels KVLQT1 (LQT1) and HERG (LQT2) 
and in the voltage-gated sodium channel SCN5A (LQT3) [26-29]. Rare 
mutations in genes encoding other channel subunits and other cardiac 
proteins such as caveolin-3 [30], may also contribute to some cases of 
inherited LQT. Since RTT patients have MeCP2 dysfunction, which 
causes the LQT phenotype, McCauley et al. [25] aimed at understanding 
whether (I) MeCP2 dysfunction in mice can recapitulate the long QT 
phenotype and cause predisposition to arrhythmic-induced death after 
programmed electrical stimulation (PES); (II) neuronal tissue specific 
MeCP2 dysfunction is sufficient to reproduce the LQT phenotype; and 
(III) alterations in the sodium current contribute to the LQT phenotype
in this mouse model of RTT.

Firstly, McCauley et al. [25] examined ECGs in 379 female patients 
with typical RTT to define the prevalence of electrophysiological 
abnormalities in RTT. The authors found that 18.5% of these patients 
had long corrected QT interval (QTc), consistent with previous reports 
[23,31,32]. They thought that these 18.5% of affected individuals 
are likely at risk for sudden death since 26% of deaths in RTT are 
sudden and unexpected [24]. The authors then tried to identify 
electrophysiological abnormalities in mouse models of RTT. They 

found that hemizygous male Mecp2Null/Y mice have severe early-onset 
LQT and QRS prolongation, and heterozygous female Mecp2Null/+ 
show prolongation of both parameters that becomes apparent at older 
ages. These data indicate that Long QTc, which is common in people 
with RTT, can be reproduced in the animal model of RTT.

Secondly, McCauley et al. [25] further tested whether these RTT 
mice are more susceptible to developing ventricular arrhythmias since 
there is the association between LQT and development of ventricular 
arrhythmias. The authors electrically stimulated the heart using PES 
to determine susceptibility toward cardiac arrhythmias. They found 
that male Mecp2Null/Y mice developed sustained ventricular tachycardia 
(VT) more often than did wild-type mice immediately after ventricular 
stimulation. The duration of any arrhythmia episodes was significantly 
longer in Mecp2Null/Y mice than in wild-type mice. The authors also 
noticed that only older female Mecp2Null/+ mouse showed PES-induced 
ventricular arrhythmias, which is similar to the age-dependent 
nature of LQT in female Mecp2Null/+ mice. Noteworthily, 29% (two of 
seven mice) of female Mecp2Null/+ mice died of VT during ventricular 
stimulation, suggesting that older female Mecp2Null/+ with LQT are at 
risk for arrhythmia-induced death. These data indicate that RTT mice 
do show increased susceptibility to induced ventricular tachycardia.

Thirdly, McCauley et al. [25] investigated whether loss of MeCP2 
function within the nervous system could result in LQT and increased 
susceptibility to ventricular arrhythmias, since loss of MeCP2 function 
only in the nervous system was found to reproduce all the phenotypes 
of animals lacking MeCP2 in all tissues, including premature death [33]. 
The authors generated a nervous system–specific conditional knockout 
(NKO) using the Nestin-Cre/loxP system, which restricts knockout 
of MeCP2 to the nervous system [34,35]. In these NKO mice, Mecp2 
mRNA expression was absent in the brain in, but was unaffected in 
the heart. Their findings actually confirmed that neuronal deficiency of 
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Abstract
Rett syndrome (RTT) is a neurodevelopmental disorder typically caused by mutations in methyl-CpG–binding 

protein 2 (MECP2). 26% of deaths in RTT are sudden and of unknown cause. A recent study found prolongation of the 
corrected QT interval (QTc), a risk factor for unstable fatal cardiac rhythm, in both RTT patients and animal models. 
It further demonstrated that cardiac abnormalities in RTT are secondary to abnormal nervous system control, which 
leads to increased persistent sodium current, suggesting that treatment of RTT would be more effective if it can target 
the increased persistent sodium current to prevent lethal cardiac arrhythmias. This surprising finding of brain to heart 
connection will have profound implications for therapies of neurological diseases which are in the situation similar to 
RTT.
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Mecp2 is sufficient to cause both LQT and pacing-induced arrhythmias 
and arrhythmia-induced death.

Fourthly, McCauley et al. [25] evaluated the effectiveness of 
different treatments and tried to find out the right medication for 
preventing arrhythmias in RTT, since current strategies to prevent 
sudden arrhythmic events in RTT are just empirical due to lack of 
knowledge of the exact etiology of LQT in RTT. The authors found 
that β-adrenergic receptor blocker (propranolol), which is currently 
a standard therapy to prevent arrhythmias in RTT, is actually not 
effective for the treatment of QT prolongation and arrhythmias in 
RTT mice. Since β-Adrenergic receptor blockers, are efficacious 
primarily in LQT1 and LQT2 syndromes, which are ascribed to 
potassium channelopathies, but not effective in primary sodium 
channelopathies such as LQT3 or Brugada syndrome [36], it is likely 
that LQT phenotype in RTT is caused by alteration in the voltage-gated 
sodium channel current. To test this, the authors performed patch 
clamping in isolated ventricular myocytes to measure the voltage-gated 
sodium channel current from male Mecp2Null/Y mice. They found that 
measurements of persistent sodium channel current (INa) showed a 
larger INa in Mecp2Null/Y mice versus wild-type. Isolated ventricular 
myocytes from NKO animals also showed an increased persistent INa. 
Since the β-adrenergic receptor blocker propranolol could not alter 
either QTc interval or arrhythmia incidence in Mecp2Null/Y mice, and a 
persistent late INa current existed in Mecp2Null/Y mice, the authors then 
evaluated the potential therapeutic effect of phenytoin (PHT), which 
blocks the persistent late INa and thus prevents cardiac arrhythmias 
and neurological epileptic seizures, in RTT mice. They found that PHT 
could reverse persistent late INa and completely abolished ventricular 
arrhythmias in Mecp2Null/Y mice. These data indicate that alteration in 
sodium current underlies LQT and the susceptibility to ventricular 
arrhythmia, and that PHT or drugs with similar pharmacology may 
reduce arrhythmia risk in RTT patients. 

Thus, McCauley et al. [25] systemically determined LQT and 
the susceptibility to VT and sudden cardiac death in RTT. Their 
study eventually unveiled mechanisms underlying the lethal cardiac 
arrhythmias in RTT. A surprising finding in this study is that the 
cardiac arrhythmias present in the animals are the result of changes in 
MeCP2 function within the nervous system. This was really unexpected 
because LQT usually reflects alteration in the repolarization property 
of cardiomyocytes themselves, and idiopathic LQT are directly resulted 
from mutations in genes that encode proteins within the cardiomyocytes 
that control the electrical properties of those cells. However, electrical 
properties of cardiomyocytes from both Mecp2Null/Y and NKO animals 
were indeed changed. It is reasonable that the alteration in the electrical 
properties in the cardiomyocytes is a response to alterations in the 
nervous system control of the heart. This study reveals a brain to heart 
connection which may have farreaching implication for therapies of 
RTT and other neurological disorders.

It has been known that neurological dysfunction could affect the 
control of cardiac rate and rhythm. Previous studies showed that 
repetitive seizures can induce remodeling of the potassium and sodium 
channels within the heart, leading to QTc prolongation and cardiac 
arrhythmias [37], and that autonomic neuropathies can prolong QTc 
interval in patients with primary central nervous system disease [38-
42], autonomic neuropathy [43,44], and amyotrophic lateral sclerosis 
[45]. The exact mechanism by which altered nervous system control 
leads to cardiac arrhythmias in these cases is unknown. It has been 
suspected that sympathovagal imbalance in people with RTT may 
contribute to sudden cardiac death [23,46]. RTT patients often have 

recurrent seizures [47], and a similar situation may occur in patients 
with other neurogenetic disorders, such as fragile syndrome [48-50], 
Angelman syndrome [51-53] and Prader-Willi syndrome [54,55]. 
The authors hypothesized that nervous system abnormalities cause 
remodeling of the heart in RTT patients, including elevation of 
persistent sodium current, and suggested that sodium channel blockers, 
such as phenytoin, be tested as therapeutic agents.

In the 12 years since the identification of MECP2 as the causal gene 
for RTT, progresses towards an understanding of the mechanisms 
behind RTT have been swift [3,5,56-64], with recent efforts at 
pharmaceutical interventions being particularly noteworthy [65-
68]. But McCauley and colleagues’ observation of the brain to heart 
connection in RTT is a reminder that we still have much to learn 
about this disorder at the systems levels. Given the similar situation in 
many other neurological disorders, the significance of this connection 
between brain and heart will definitely transcend the exact nature of 
RTT itself.
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