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Bacteria are the most ancient and abundant organisms on the earth. 
Whereas bacterial organisms served as first cellular model systems for 
explorations of genetic control by approaches of molecular biology, 
our understanding of bacterial gene regulatory mechanisms is still far 
from complete. Yet, deep insights into genetic regulation are urgently 
required due to the increased frequency of nosocomial infections caused 
by multidrug-resistant bacteria [1], as well as increased agricultural 
damage caused by the bacterial plant pathogens [2,3]. 

 In most general terms, understanding of bacterial genetic regulation 
needs the knowledge of mechanisms coordinating the interactions 
between the regulatory factors (proteins or small RNA molecules) and 
the structural entities (genes or groups of genes) harboring the genetic 
functions. The prerequisite for this is the knowledge of all the regulatory 
factors and the mechanisms coordinating their inputs. This complexity 
of organization presents a profound methodological problem.

 However, recent studies implementing high-throughput approaches 
to study the genetic regulation system may provide a breakthrough 
leading to a paradigm shift in the field. First of all, advances of the 
experimental technology and associated bioinformatics tools revealed 
widespread antisense transcription in the genome [4], as well as new 
levels of spatial organization of genes beyond the classical operon 
structure [5,6], which dominated the field for the last five decades. The 
bacterial genome is assumed to be organized in topologically isolated 
domains of about 10 kb size on average [7]. The functional role of these 
topological domains remains unclear, yet it is revealing, that the relative 
spatial organization of the transcription units in the genome appears 
to play an important role in mediating genetic regulation by relaying 
the DNA supercoil dynamics induced by translocating transcription 
machineries to neighbor genes over distances (≥10 kb), substantially 
exceeding the size of individual operons [8,9]. Furthermore, extended 
genomic spatial transcript patterns have been observed that cannot 
be readily explained on the basis of classical transcription factor (TF) 
-target gene (TG) interactions [5,9]. Recent studies made it increasingly 
evident that regulatory mechanisms based on spatial proximity and
orientation of genes are evolutionarily conserved [6] and at least as
important, as those mediated by TF-TG interactions [10,11].

 Obviously, genetic control based on spatial proximity of genes 
depends on the configuration of the DNA, which in turn depends on 
the supercoiling level and structural dynamics of the chromosome. 
Recent studies suggest a high degree of structural organisation of the 
bacterial chromosome. Various spatial organisation patterns revealed 
in E. coli include the polarity of chromosomal Ori and Ter ends [12], rrn 
functional domain spanning the chromosomal Ori end [13], megabase-
sized macrodomains [14], 200-900 kb size transient structural-
functional domains [9], periodic patterns of regulated genes [15], 
clusters of nucleoid-perturbation sensitive genes [16], spatial transcript 
patterns spanning regions of 16 to 800 kb size [5], 33 kb size functional 
domains of "core genes" [17], 30-50 kb size "folding domains" [18], 10-
20 kb topological domains [7] and 5-10 kb size gene proximity clusters 
[10]. Interestingly, recent studies reported rapid movements (snaps) 
of the chromosomal loci [19] and fast longitudinal density waves 
fluxing forth and back along the nucleoid that are independent of the 
ongoing replication [20]. An important future direction of studies is the 
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elucidation of relationships between the chromosomal dynamics and 
different levels of structural organization, aiming at integration of these 
dynamical/organizational features with regulation of genetic function.

 One promising approach is the determination of chromosomal 
domains as discrete structural-functional units distinctly responding 
to particular TFs (or combinations thereof). In this respect the best 
candidates are the global TFs, such as the highly abundant nucleoid-
associated proteins (NAPs) in bacteria. The NAPs can regulate the 
activities of individual genes acting as bona fide TFs [21,22] but they 
can also bind at numerous genomic sites in a quasi-continuous manner 
with a wide range of affinities (spanning three orders of magnitude) and 
so modulate the chromosomal dynamics [23,24]. Such an integrative 
approach has been conducted recently in E. coli cultures during the 
growth cycle [25], and in the plant pathogen Dickeya dadantii, exposed 
to environmental stress [26]. The chromosomal domains have been 
identified on the basis of physical properties of the expressed sequences 
such as their dynamical behavior (preferred supercoiling regimen) 
thermodynamic stability (average negative melting energy), and spatial 
orientation in the genome (leading/lagging strand bias). It turned out 
that in D. dadantii the domains are formed transiently in response to 
the environmental stress, whereby it was possible to identify unique 
couplings between the dynamical and physicochemical properties of 
the expressed sequences, their functional content and the impacts of 
major NAPs, such as FIS (factor for inversion stimulation) and H-NS 
(histone-like nucleoid structuring protein). In particular, FIS activated 
the genes requiring high negative supercoiling of the DNA and mostly 
encoded on the leading strand, whereas H-NS repressed the genes 
requiring DNA relaxation that were preferentially encoded on the 
lagging strand [26]. Furthermore, since the domains were identified 
on the basis of expressed sequences, it was possible to link their 
physical characteristics to harbored genetic function. More specifically, 
chromosomal domains formed in response to particular stress were 
found to express different adaptation traits and virulence determinants, 
such that their transient activation mediated by global TFs conferred 
also the ability to cope with a specific challenge (Figure 1) [22,26-29]. 

 Application of integrative approach enabled to reconstruct the 
pathogenicity process of D. dadantii in unprecedented detail. It turned 
out that this plant pathogenic bacterium uses transient organization 
of the chromosomal structural-functional domains under hostile 
conditions as a means to successfully invade and colonize its host. It 
thus appears that the rich information provided by such an integrative 
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approach is crucial for identification of new adaptation and virulence 
traits and designing tools for their targeted inactivation.

Whether the revealed mechanism of induction of transient 
chromosomal structural-functional domains harboring distinct 
adaptation/virulence functions is used as a means of adaptation by 
bacterial organisms in general remains to be elucidated, but since the 
changes of DNA supercoiling and modulatory effects of the NAPs are 
employed by most of the known bacterial pathogens [30,31], it is to be 
expected that the unveiled organizational principle will be widespread.
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Figure 1: Response of the chromosomal domain d7 (indicated as a square composed of for horizontal rods corresponding to different growth media as numbered) 
spanning 560kb of D. dadantii chromosome to oxidative and acidic stress involves sequences with different couplings of the parameters [26]. The colors indicate 
parameter values (red for high, and blue for low). During acidic stress encountered initially in the plant, the domain d7 demonstrates low gene expression density 
(dens) in combination with de-repression of the genes requiring DNA relaxation (rel) by H-NS (downward arrow). However, under these conditions the domain 
expresses the cfa gene involved in cell wall stabilisation in adaptation to acidic stress [22,27]. Oxidative stress following the acidic stress as a defense response of 
the plant increases the gene expression density of genes in d7. These genes require high levels of negative supercoiling (hyp) and are activated by FIS (upward 
arrow). Under these conditions the domain expresses the fliF-R and cheRBYZ genes involved in motility and chemotaxis and supporting plant colonization, as 
well as pel virulence genes involved in plant cell wall degradation [28,29]. Thus the expression of these specific adaptation/virulence genes is dictated by peculiar 
coupling of DNA sequence parameters involved in formation of the entire “stress-response” domain.
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