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Abstract 
This work was carried out on un-or mycorrhizal Tephrosia vogelii, at an early growth phase, to study 

responses of biochemical traits under drought stress.  A completely randomized blocks design was used and the 

various levels of water stress were adjusted daily by moisten each pot with the amount of water loss by 

transpiration. The various parameters measured were: total amino acid content and proline; total soluble sugar 

content; total soluble proteins content and acid phosphatases specific activity. The results obtained show that, under 

water stress conditions, mycorhization significantly improves all the parameters studied. The improvement of water 

status, nutritional status and water stress tolerance by mycorhization, provided to the plant a normal functioning and 

better yield where water is scare. On the basis of these results, we can advise mycorrhizal biofertilizers like sure 

means to fight against drought and to increase agricultural yield on grounds victims of the dryness. 
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1. Introduction  
Leguminous plants are characterized by their fruit called pod or vegetable (Westphal and al., 1985).Thanks to 

their autotrophy for nitrogen they play the role of pioneer’s plants on poor and strongly degraded lands (Azzouz, 

2009; Akédrin and al., 2010).They improve soil fertility and would play increasing roles in natural ecosystems, in 

agroecosystems, in sylviculture and agroforestry (Hindumathi and Reddy, 2012; Gao and al., 2012). Several work 
put forward the importance of leguminous plants in human and animal nutrition, in consolidation of food safety, in 

economic, in medicine, in decorative point of view (Duke, 1981; Visitpanich and al., 1985a; Vance and al., 2000; 

Westphal and al., 1985; Makoshi and Arowolo, 2011; El Sohaimy, 2012). Since work of National Academy of 

Sciences (NAS) in 1979 published in the book title "tropical legumes: resources for the future ", research has been 

intensified on leguminous plants. 

Leguminous plants have to play foreground roles: in mitigation of the effects of climatic change (Jensen and 

al., 2012); like raw material for biofuels and biorefineries (Jensen and al., 2012). Considering huge services 

provided to ecosystems, their skill to reduce green-house gas emission, to lower the use of fossil fuel, to accelerate 

the speed of carbon sequestration in grounds and feedstock for biorefineries, leguminous plants could be regarded 

as significant components in the development of the futures agroecosystems (Jensen and al., 2012). 

For several decades, efforts have been made everywhere in the world to highlight leguminous plants, for the 
optimal exploitation of their huge potential; this work concerns T. vogelii, shrubby leguminous plant whose 

importance is clarified in several former works (Makoshi and Arowolo, 2011; Orowa and al., 2009; Tsoata and al., 

2015). It is in this context that UNO in its sixty-eighth General Assembly proclaimed 2016 international year of 

leguminous plants (Anonyme, 2013). However leguminous plants culture is confronted with several obstacles. 

Among constraints of leguminous plants production water stress is most complex and devastator on a total 

scale (Pennisi, 2008).There is water stress when water requirements of plant are higher than the quantities available 

for roots (Gaye and Bloc, 1992).The frequency of this stress should increase as consequence of climatic change 

(Ceccarelli, 2010). Water is a determining element for plants growth, particularly in areas where this resource is 

scare; withholding of water can impair crops yield up to 50% even more (UNDP BCPR, 2003; Gholamhoseini and 

al., 2013). It constitutes a serious threat for everlasting food safety in actual conditions and will be more than a 

danger in next year because forecast provide that climatic changes will cause frequent and high temperatures, as 
well as drought conditions in many world areas (Ficher and Schär, 2010 ;Smith, 2011). 

In Cameroon where agriculture is primarily rain feed, water stress leads to falls in agricultural production 

everywhere, especially during small rainy season where rains can stop suddenly or become sporadic. Roots 

symbiosis realized with arbuscular mycorrhizal fungi (AMF) can in general protect plants and leguminous plants in 

particular, against harmful effects of water stress (Gholamhoseini and al., 2013). Research relating to the 

physiology of leguminous plants under drought stress are scare, furthermore those bearing on their first stages of 

development. The goal of this work is to evaluate the effect of water stress on some biochemical parameters of un-

or mycorrhizal T. vogelii at an early stage. 



 
 

G.J.B.A.H.S. 

31 

Legend 

 

 

 

Figure1. Total amino acids (A); proline (B) ; solubles sugars (C) content in mycorrhizal and non-

mycorrhizal T. vogelii plants under severe, moderate ; mild and no drought stress (control) conditions. 

2. Materials and Methods  
Healthy seeds of T. vogelii are disinfected, germinated in darkness; seedlings are sowed on sterilized substrate 

inoculated or not with AMF and various levels of stresses applied immediately and during 31 days. A completely 

randomized blocks design is used and various levels of water stress were adjusted daily by moisten each pot with 

the amount of water loss by transpiration. The different measured parameters are: total amino acid content and 

proline; total soluble sugar content; total soluble proteins content and acid phosphatases specific activity using 

Tsoata and al. (2015) method. 

  

Data analysis  

Data analysis is carried out with software SPSS 18.0 for ANOVA and correlations between various measured 

parameters. The averages obtained are compared according to water stress level for each treatment (mycorrhizal or 

not) by DUNCAN’s test; differences are declared significant at p ˂ 0.05%. The results, presented in the form of 

tables and histograms are produced using Microsoft Excel 2007 software. 
 

3. Results    
3.1 Total amino acids  

The TAA (Fig. 1A) produce by unmycorrhizal control are significantly (p ˂ 0.05) lower than that of 

mycorrhizal ones; it increase by 31 % for mycorrhizal blank.  Foliar TAA increase significantly by 18 and 38 % for 

soft and average stress respectively; but drop by 21 % for severe stress for unmycorrhizal seedlings. For 

mycorrhizal seedlings this parameter records a non significant lessen of 3 % for soft stress and a significant increase 
of 15 and 9 % respectively for average and severe stress. Mycorhization increases the TAA significantly, but this 

increment is weak for soft and average stress, very significant 81 % for severe stress, nearly 10 times compared to 

soft and average stress.  
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3.2 Proline  

Proline produced by unmycorrhizal control seedlings (Fig. 1B) are high compared to that of mycorrhizal ones; 

nearly 29 % reduction for mycorrhizal ones. When water stress level increases for unmycorrhizal seedlings, proline 

content raise; the increase is 68, 145, 204 % for soft, average and severe stress respectively. For mycorrhizal 

seedlings, the increase in proline content is weak compared to unmycorrhizal ones and is 45, 53, 68 % for soft, 
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average and severe water stress respectively. The mycorhization stimulates the production of proline in mycorrhizal 

seedlings compared to unmycorrhizal control, this stimulation declines when the water stress level rises; it is: 41, 

19, 15, 8 % for blank, soft, average and severe stress. 

 

3.3 Total soluble sugars (TSS)   

The TSS (Fig. 1C) produced by unmycorrhizal control seedlings is weak compared to that of mycorrhizal 
ones: 38 % of increase for mycorrhizal seedlings. When water stress level increases, the TSS content increases 

significantly for unmycorrhizal T. vogelii; for about: 3, 52, 55 % respectively for soft, average and severe stress. 

This increase is relatively weak for mycorrhizal T. vogelii where highest increase is observed for average stress and 

weakest for control; the increment is: 1, 14, and 25 % for soft, severe and average stress respectively. 

Mycorhization stimulates production of total soluble sugars, but the increment lessens when level of stress rise; 

increment is: 38, 35, 14, 2 % for control, soft, average and severe stress respectively.  

 

3.4 Total soluble proteins (TSP) 

The TSP amount produces by unwater stressed seedlings of T. vogelii (Fig. 2A) is always significantly weak 

for unmycorrhizal seedlings compared to mycorrhizal ones; the observed increase is 35 %.  For all seedlings an 

increment of total soluble protein is noticed, it rises with water stress level, for soft and average stress: 16, 24 % and 

6, 11 % for unmycorrhizal and mycorrhizal seedlings respectively. For severe stress there is inhibition of total 
soluble proteins production whatever the treatment; this inhibition is strong 10 % for mycorrhizal seedlings and 

weak 0.5 % for unmycorrhizal ones.  Mycorhization stimulates production of total soluble protein for all stress 

levels; increment being high for control compared to stressed seedlings: 35, 23, 21, and 23 % for control, soft, 

average and severe stress respectively. 

 

3.5 Specific activity Acid phosphatases (SAAPases) 

It is significantly (p ˂ 0.05) weak for unmycorrhizal control seedlings compared to mycorrhizal ones (Fig. 

2B), where it increases by 40 %. This activity rise with water stress level whatever the treatment: 96, 113, 367 % 

and 455, 881, 318 % for soft, average and severe stress respectively for unmycorrhizal and mycorrhizal seedlings. 

However for severe stress increase is weak compared to the other levels of stress. Mycorhization stimulates this 

activity for mycorrhizal seedlings comparatively with unmycorrhizal ones. This SAAPases is high for mycorrhizal 
control: 40 %; rise with the level of stress: 4, 23, 25 % for soft, average and severe stress respectively.  

   

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 
Figure 2. Total solubles proteins content (A); Specific activity of acids 

phosphatases (B) in mycorrhizal and non-mycorrhizal T. vogelii plants 

under severe, moderate, mild and no drought stress (control) conditions. 
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Table 1. Pearson correlation of evaluted parameters: Roots colonisation (RC), Total solubles sugars (TSS), Proline, 

Specific activity of acids phosphatases (SAA Pases), solubles proteins (TSP) and Total amino-acids (TAA 

 

 

                 Note :* significant correlation at 5 % ; ** significant correlation at 1 % 
   

3.6 Pearson correlation 

The Pearson correlation (Table 1) between root colonization: RC (Tsoata et al., 2015) is negative for proline 

content (-0.561**) and    acid phophatase activity (-0.193) in one hand; weak and non significant for TAA (0.363) 

and TSS (0.179) in the other hand. For TSP, the correlation is positive and significant (0.516*). 

 

 4. Discussion  
Nitrogenized compound and amino acids are essential in plant metabolism as first products of assimilation of 

molecular nitrogen and as precursor of proteins and nucleic acids (Shao and al., 2009). The significant increase in 

the TAA observed for mycorrhizal control (31 %) compared to unmycorrhizal control, could be correlated with 

multiple beneficial roles that mycorrhizae renders to host plant (Ruiz-Lozano, 2003; Rillig, 2004; Wright, 

2005).Under water stress, for all plants, mycorrhizal or not, there is significant accumulation of TAA in T. vogelii. 

This accumulation of TAA is a common answer of plants subjected to environmental stresses (Ranieri and al., 

1980; Aspinall and Paleg, 1981). It was observed in groundnut (Asha and Rao, 2002); Oryza sativa (Hsu and Kao, 

2003); bel pepper (Nath and al., 2005);  Vigna subterranea (Tsoata and al., 2015).The accumulation of TAA under 

stress is observed for all growth phase; it suggests that their accumulation helps probably plant to tolerate 

conditions of water restriction through osmotic adjustment (Yadav and al., 2005); for sorghum variations of osmotic 

potential are must ascribable with accumulation of free amino acids (AA) (Greenway and Munns, 1980;Yadav and 
al., 2005). Osmotic adjustment slows down damage due to dehydration in environments where water is scare, by 

maintaining cells turgidity and physiological processes (Taiz and Zeiger, 2006).The significant decline of TAA 

observed for unmycorrhizal control under severe water stress, could be correlated with the negative effects of strong 

water deficit on metabolism and in nitrogen metabolism particularly (Ruiz-Lozano, 2003).Under water stress TAA 

are accumulated in mycorrhizal plants more than in not unmycorrhizal ones. This result could be justified by the 

fact that mycorhization increases the level of tolerance of host plant (Rabie and Almadini, 2005), also by deficit of 

photosynthetic products diverted by fungi (Cooper, 1984; Plenchette, 1991; Thomson and al., 1994). Mycorhization 

improves more than 10 times the amount of TAA for severe stress compared to soft and average stress. This 

increment would allow plant to maintain its water status using less AA for osmotic adjustment for soft and average 

stress, but much more for severe water stress. 
The unmycorrhizal plants accumulate more proline than mycorrhizal ones. This result could be correlated with 

the fact that mycorhization improves water status of plant and its tolerance to water stress (Abdelmoneim and al., 
2014), but also with the fact that mycorrhizal symbiosis uses for its needs part of plant host organic compounds 

(Plenchette, 1991; Thomson and al., 1994). Leaves proline contents increase with water stress level for un-or 

mycorrhizal plants; this increase declines when level of stress rises for mycorrhizal plants. This stimulation was 

already observed in several former works: Tamura et al. (2003); Feng et al. (2003); Hireche (2006); Tsoata et al. 

(2015).   This proline accumulation in plants is an adaptive strategy frequently observed in order to limit effects of 

water stress (Acevedo and al., 1989) and would be connected directly to the application of water stress (Cechin and 

al., 2006; Abdelmoneim and al., 2014). It would be due to hydrolysis of proteins or inhibition of proteins synthesis 

by oxidative stress, leading to accumulation of proline (Feng and al., 2003; Shao and al., 2005, 2006). Furthermore 

it could be due to activation of biosynthesis join to inactivation of proline degradation. Proline accumulated in 

plants under water stress would intervenes in several phenomena: osmotic adjustment, tolerance to water stress 

(Szabados and Savouré, 2010; Karimi and al., 2012; Tsoata and al., 2015). It could also intervene in the regulation 
of cytoplasm pH (Pesci and Beffagna, 1984). The low proline content observed in unmycorrhizal T. vogelii, 

shrubby leguminous plant under severe hydrous stress, does not corroborate that of Tsoata et al. (2015), on V. 

subterranea herbaceous leguminous plant. It suggests that T. vogelii would be less tolerant to water stress compared 

to V. subterranea (Ruiz-Lozano and Azcon, 1997); otherwise the two species would use different mechanisms to 

                                                                                              T. vogelii                                                                       

                                                                                                          
                             RC                    TSS                  Proline                  SAA Pases             TSP                 TAA 

 

RC                         1                     0.179                 - 0.561**              - 0.193                   0.516*              0.363   

TSS                                                  1                       0.241                    0.541**                0.173               0.340 

Proline                                                                         1                         0.351                    - 0.498*           - 0.483* 

SAA Pases                                                                                                 1                      - 0.351             - 0.010   

TSP                                                                                                                                         1                  0.563** 

TAA                                                                                                                                                                  1 
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tolerate water stress.  Proline would be prior osmoticum in osmotic adjustment for V. subterranea compared to T. 

vogelii. 

TSS content of mycorrhizal control plants is higher than that of unmycorrhizal control. Tsoata et al. (2015), 

under identical experimental conditions, obtained similar result on V. subterranea. This result suggests that 

mycorrhizal control plants manufacture more TSS than unmycorrhizal ones. This could be correlated to beneficial 

effects of mycorhization for host plant, in particular improvement of water and nutritional status, thus allowing 
mycorrhizal host to produce more photosynthetats than unmycorrhizal ones (Tian and al., 2010; Abdelmoneim and 

al., 2014). The TSS increase when water stress level increases but more for unmycorrhizal than mycorrhizal ones. 

This result corroborates that of Irogoyen et al. (1992) on alfalfa; Tsoata et al. (2015) on V. subterranea and would 

be correlated with the hydrolysis of polysaccharides in water deficit condition (Shao and al., 2009), in order to 

maintain cells turgidity. Unmycorrhizal plants would have needs of more TSS for osmotic adjustment, than 

mycorrhizal ones. Mycorrhizal plants accumulate less TSS than unmycorhizal control surely for osmotic adjustment 

(Fallon and Phillips, 1989), but also to satisfy requirements of organic carbon of mycorrhizal fungi (Bago et al.; 

2000) thus reducing the accumulated quantity. Our results are not in agreement with those of Patakas et al. (2002) 

on grapevines, where no difference in sugar content between stressed and not stressed plants is observed.   

Significant increase 35 % (p ˂ 0.05) is observed in TSP content of mycorrhizal control compared to 

unmycorrhizal ones. This result is in agreement with those of Tsoata et al. (2015) and would be correlated with 

mycorhization which improves the mineral-water nutrition and tolerance to water stress of host plant. Under water 
stress for all plants and for soft and average stress, there is increase in leaves TSP, which corroborates the results of 

Sohrabi et al. (2012) on Cicer arietinum and Tsoata et al. (2015) on Vigna subterranea; but drops for the severe 

stress; decline already observed by Tsoata and al. (2015) on voandzou. The increase in foliar TSP could be 

correlated with an effective osmotic adjustment, making it possible for plant to maintain normal metabolic activity 

for soft and average stress or with increase in the degree of tolerance to water stress of T. vogelii. Indeed Ashraf and 

Mehmood (1990) associate higher proteins contents to degree of tolerance to water stress. But soluble protein 

concentration under water stress is modulated by the nature of plant species (Terri and al., 1986) and type of tissue 

(Irogoyen and al., 1992). However, at the beginning of water stress, plants react in a dynamic way to restore their 

water status, so that their metabolism isn’t significantly touched (Tardieu, 2005). The severe water stress would be 

sufficient to cause metabolic changes lessened leaves soluble protein content (Keller and ludlow, 1993). This 

reduction was already observed for sunflower Rodriguez and al. (2002); Costa and al. (2011) on cowpea; it would 
be due to increase in proline content, hydrolysis of proteins or to inhibition of their synthesis by oxidative stress 

leading to accumulation of proline (Feng and al., 2003).  

A number of rhizosphere and/or mycorrhizosphere enzymes, as acid phosphatase, are produced by plant roots 

(Li and Fan, 1993) and control biogeochemical cycle of nutrients as: N, P, S (Philippot and al., 2009; Richardson 

and al., 2009; Carminati and al., 2010). The results of this work emphasize higher activity of acid phosphatases for 

mycorrhizal seedlings compared to unmycorrhizal ones even for control. This result is in agreement with those 

several former works: Dodd et al.(1987); Khalil and al. (1994); Tsoata et al.(2015). It could be correlated with 

higher intracellular production of this enzyme by mycorrhizal fungi hyphae (Saito, 1995). Other works showed that, 

one of the initial answers of water stressed plants due to phosphorus deficiency, caused by restriction of water 

availability, is increase activity of acid phosphatases (Duff and al., 1994). But intense activity of these acid 

phosphatases could also be due to weak variation of content of roots cytokinin during water stress in mycorrhizal 

seedlings. Indeed, cytokinins stimulate synthesis of proteins and inhibit their degradation, thus leading to high 
proteic content and strong activity of roots ATPase (Kuiper and al., 1991). Activity of acid phosphatases under 

water stress increases when stress level rises. This result is in agreement with those of several former works: Vieira 

Da Silva (1969) on cotton; Barrett-Lennard et al. (1982) on corn; Tsoata et al. (2015) on Vigna subterranea. The 

intense activity of acid phosphatases in water stressed plants would allow hydrolysis of organic phosphorus of 

plant, thus facilitating its mobilization and translocation from senescence tissue to those which needs them (Duff 

and al., 1994). Moreover high activity of acid phosphatases in mycorrhizosphere which is correlated positively with 

soil water contents (Chethan Kumar and al., 2008; Sardans and al., 2008), could thus partially mitigate effects of 

water stress on plants, and thus improves its tolerance against  this constraint (Wu and al., 2011; Sharma and al., 

2005; Tsoata and al., 2015). 

Pearson correlation results, suggested that root colonization is inversely proportional to both proline content 

and acid phosphatase activity and may not affect directly TAA and TSS. But root colonization by AMF could be 
directly implicated in the amelioration of proteins biosynthesis (Tsoata et al., 2015). 

 

5. Conclusion  
Results of this work show that, for mycorrhizal T. vogelii, at an early stage of growth and in condition of water 

restriction, all the studied biochemical parameters are significantly improved. The TAA, proline, TSS, and TSP, 

play an essential role in the osmotic adjustment of plant in water stress condition, enabling him to maintain its water 

status, physiological and metabolic processes. The intense activity of acid phosphatases in host plants enables them 
to solubilize and mobilize some nutrients, phosphorus in particular and to improve its resistance to this stress. The 

improvement of water absorption, nutritional status and tolerance to water stress by mycorhization, allow plant to 
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perform normal functioning and good yield where water is scare. On the basis of these results, one can advise 

mycorrhizal biofertilizer like sure means to fight against dryness and to increase agricultural yield on soils victim of 

dryness. 
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