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Introduction
Plants are subjected to various biotic stresses throughout their 

sedentary life cycle. These continuous stressful conditions have 
prompted development of a range of defense responses including 
physical barriers [1-4], chemical weapons [5,6], and resistance (R)-
gene acquisition [7-10]. Tomato (Solanum lycopersicum) is the second 
most important vegetable crop next to potato. About 170 million tons 
of tomatoes were produced worldwide in 2014 [11]. Due to the high 
nutritional value of its fruit, high yield, short life cycle, and diverse 
varieties and cultivars, tomato is widely grown all year round under both 
outdoor and indoor conditions. However, this worldwide cultivation is 
challenged by an abundance of diseases caused by microbial pathogens 
composed of fungi, bacteria, and viruses, as well as insect and nematode 
pests.

Two principal immune mechanisms operate against biotic stresses 
in plants. The first line of defense is triggered by a class of immune 
receptors upon recognition of pathogen associated molecular patterns 
(PAMPs), chemical signatures that appear to be widely conserved 
among certain pathogen clades [12,13]. This interaction is referred to 
as PAMP-triggered immunity (PTI). As part of the continuous arms 
race between plants and pathogens, the later have evolved to acquire 
effector molecules to counteract the plant PTI mechanism and ensure 
pathogenicity. This weakened plant immune response is known as 
compatible interaction. This prompted plants in turn to develop specific 
R-proteins that recognize the pathogen/pest effector(s) and initiate
the second principle immune mechanism termed effector-triggered
immunity (ETI) [14]. This interaction is also referred to as incompatible 
interaction and is generally characterized by a vast transcriptional
reprogramming after recognition of the pathogen/pest effector
molecule(s) [15]. The recognized effector is termed as Avirulent (Avr)
and the recognition could be indirect or directly by an R-gene. R-Avr
interaction typically results in a hypersensitive cell death response (HR) 
at the site of infection.

Starting early nineties, extensive research led to the cloning of a 
number of tomato R-genes (Table 1). These R-genes together with 
those identified from additional plant species were assigned to different 
classes based on the presence of various structural motifs that can be 

extracellular, cytoplasmic or transmembrane [16,17]. Majority of 
the plant cloned R-genes encode for nucleotide-binding domain and 
leucine-rich repeats (NLR) proteins with variable amino- and carboxy-
terminal domains that may contain Toll/interleukin-1 receptor (TIR)- 
or coiled-coil (CC)-domain (Table 1). Many R-genes belong to gene 
families and are organized in tandem arrays, clusters, and super-clusters 
[18,19]. Interestingly, these R-genes with low structural diversity were 
shown to confer resistance to diverse pathogens and pests via recognition of 
arsenal of effectors [7]. This means that, besides the common mechanisms 
underlying disease resistance signal transduction throughout the plant 
kingdom, individual resistance gene products can act in unique signaling 
pathways [20]. In many plant species, it has been shown that during the 
course of evolution, R-genes have undergone gene duplication and selection 
pressures leading to divergent evolution. Genome-wide identification and 
classification of Solanaceae NLRs have identified 267, 443, and 755 NLR-
encoding genes in tomato, potato, and pepper genomes, respectively [21]. 
Heinz1706 tomato encodes 478 NLRs [22].

Most of our knowledge about plant defense originated from studies 
conducted in the model plant Arabidopsis thaliana [23]. Extensive 
genome-wide transcriptional profiling including cDNA-AFLP [24,25], 
suppression subtractive hybridization (SSH) [26,27], microarrays and 
RNA-sequencing technologies [28-30] provided valuable insights into 
plant-pathogen interactions at the cellular and molecular level. The 
identification of genes repressed or activated in plants assisted in making 
novel hypotheses concerning the biology of a given interaction (both 
compatible and incompatible). Further analysis of the differentially 
regulated genes, using gene inactivation, overexpression [31], and 
biochemical approaches, confirmed the crucial roles for some of these 
genes in the plant ETI responses. 
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Global transcriptome profiling is an important initial step for 
dissecting biological systems particularly with systems where not 
much is known about the molecular basis of the resistance response. 
The enrichment of the tomato EST databases initiated several genome-
wide profiling studies [32-35]. This facilitated significant progress in the 
characterization of tomato incompatible responses to Avr pathogens, 
contributing to future gene identification and to the understanding of 
the potential molecular processes that are associated with the different 
tomato R-gene-mediated resistances [33]. With the advent of next 
generation sequencing technologies, and the tomato genome sequence 
[36], additional genome wide studies have been conducted. With a 
genome sequence and a high-density linkage and molecular maps 
[37], combined with being a host for numerous pathogens and pests, 
tomato has emerged as a powerful model system for crop plant defense 
response studies. Moreover, the introgression of R-genes from wild 
species into cultivated tomato provides a unique opportunity to study 
different resistance mechanisms against very diverse biotic agents in a 
single plant. In this review, we summarize the current understanding 
of R-genes in tomato and the downstream signaling components that 
are critical for activating defense responses. In addition, we discuss 
the current and future technologies that will significantly enhance 
our knowledge about tomato-pathogen interactions and will provide 
alternative strategies to develop a sustainable resistance.

Tomato Resistance Genes and their Modes of Action
Host resistance is an important component of a sustainable disease 

management system [38]. It is an environmentally benign method 
that can be used as an alternative to chemicals, as their applicability 

Resistant 
gene

Resistance 
against Resistance Source Reference

Asc-1 Alternaria alternata 
f. sp. lycopersici S. lycopersicum [77]

Am Alfalfa mosaic 
virus S. habrochaites [168]

Bs4 Xanthomonas 
campestris S. lycopersicum [169]

Cmr Cucumber mosaic 
virus S. chilense [170]

Cf-1

Cladosporium 
fulvum

S. lycopersicum var 
cerasiforme [166]

Cf-2 S. pimpinellifolium [46]
Cf-3 S. pimpinellifolium [204]
Cf-4 S. habrochaites [48]

Cf-4A   [171]
Cf-4E   [172]

Cf-5 S. lycopersicum var 
cerasiforme [45]

Cf-9 S. pimpinellifolium [47]
Cf-9B   [167]

Cf-ECP1 S. pimpinellifolium [173]
Cf-ECP2 S. pimpinellifolium [174]
Cf-ECP4 S. pimpinellifolium [173]
Cf-ECP5   [175]
Cf-ECP6   [176]
Cf-ECP7   [176]

Cf-19 S. lycopersicum [177]

Frl
Fusarium 

oxysporum f.sp. 
radicis-lycopersici

  [178]

Hero Globodera 
rostochiensis S. pimpinellifolium [80]

I Fusarium 
oxysporum 

formae speciales 
lycopersici 

S. pimpinellifolium [179]
I-1 S. pennellii [180]
I-2   [52]
I-3 S. pennellii [205]
Lv Leveillula taurica S. chilense [181]

Mi-1.2 Meloidogyne spp., 
Macrosiphum 
euphorbiae, 

Bemisia tabaci, 
Bactericerca 

cockerelli 

S. peruvianum [206]

Mi-9 S. peruvianum [182]

Ol-1

Oidium 
neolycopersici 

S. habrochaites [183]

ol-2 S. lycopersicum var 
cerasiforme [184]

Ol-3 S. habrochaites [183]
Ol-4 S. peruvianum
Ol-5 S. habrochaites
Ol-6 Unknown origin
Ph-1

Phytophthora 
infestans

S. pimpinellifolium [185]
Ph-2 S. pimpinellifolium [186]
Ph-3 S. pimpinellifolium [187]
ph-4   [188]

ph-5   M.R. Foolad et al., 
unpublished data

Prf Pseudomonas 
syringae pv tomato 

  [20]
Pto S. pimpinellifolium [189]

Py-1 Pyrenochaeta 
lycopersici S. peruvianum [190]

Pot-1 Potato virus Y, 
Tobacco etch virus S. habrochaites [191]

Sm Stemphyllium 
solani S. Pimpinelifolium [192]

Table 1: Comprehensive list of tomato resistant genes cloned or characterized by 
virus-induced gene silencing.

Sw-1a

Tomato spotted 
wilt virus

 
Sw-1b  
sw-2  
sw-3  
sw-4  

Sw-5*

Tomato spotted 
wilt virus, tomato 

chlorotic spot virus, 
groundnut ringspot 

virus

S. peruvianum [193]

Sw-6 Tomato spotted 
wilt virus

S. peruvianum [194]
Sw-7 S. chilense [195]
Ty-1 Tomato yellow leaf 

curl virus
S. chilense [196]

Ty-2 S. habrochaites [197]

Ty-3
Tomato yellow leaf 
curl virus, Tomato 

mosaic virus
S. chilense [198]

Ty-4 Tomato yellow leaf 
curl virus

S. chilense [197]
Ty-5 S. peruvianum [199]

tcm-1
Tomato 

chlorotic mottle 
begomovirus

S. lycopersicum [200]

tgr-1 Tomato leaf curl 
virus S. chilense [201]

Tm-1* Tomato mosaic 
virus S. habrochaites [202]

tm-1

Tobacco mild 
green mosaic 

virus, Pepper mild 
mottle virus 

S. habrochaites [98]

Tm-2* Tomato mosaic 
virus

S. peruvianum [202]
Tm-22* S. peruvianum [102]

Ve1 Verticillium  dahliae S. lycopersicum [204]
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against Verticillium. The Ve locus contains two closely linked and 
inversely oriented genes, Ve1 and Ve2, both encoding a RLP-type cell 
surface receptor. Ve1 R-gene provides resistance against race 1 isolates 
of Verticillium [60], by recognition of the Ave1 effector from race 1 
strains of V. dahliae [61]. The detailed mechanism of tomato resistance 
against Verticillium wilt mediated by Ve1 recognition of Ave1 is not 
well understood. However, domain-swapping analysis of Ve1 and Ve2 
identified the domains essential for Ve1 functionality in tomato [62]. It 
has been suggested that HR is not absolutely required for Verticillium 
wilt resistance, and may occur as a consequence of escalated signaling 
upon Ave1 recognition in both tomato and tobacco [63]. Transgenic 
tomato expressing Ave1 induced various defense genes including 
PR-1, PR-2 and peroxidases, independently of Ve1 [64]. Homologs of 
tomato Ve1 have also been reported from other plant species including 
tobacco, potato, wild eggplant, hop and cotton suggesting a conserved 
recognition mechanism [65,66]. Host-induced gene silencing (HIGS) 
has been successfully used in tomato, Arabidopsis and cotton plants 
to suppress Verticillium wilt disease by targeting various virulence 
effectors of V. dahliae [67,68].

Distinct resistant mechanisms associated with the Ol-genes 
against the powdery mildew species Oidium neolycopersici have 
been demonstrated using near-isogenic lines (NIL) [69]. The 
dominant resistance genes (Ol-1, Ol-3, Ol-4, Ol-5, and Ol-6) hamper 
the fungal growth via classical HR of the host epidermal cells, while 
the recessive gene ol-2 confers resistance via papilla formation 
[70,71]. By performing complementation experiments using 
transgenic tomato lines as well as virus-induced gene silencing 
(VIGS) assays it was demonstrated that the ol-2–mediated powdery 
mildew resistance is due to loss of SlMlo1 (mildew resistance locus 
O) function [72]. Ol-1-mediated resistance to powdery mildew 
in tomato requires enzymes glutathione S-Transferase [73] and 
acetolactate synthase [74]. More recently, 15 other SlMlo homologs 
were identified and characterized for their structural organization, 
phylogenetic analysis and expression profiles [75]. In the future, 
it would be interesting to investigate the possible roles of these 
homologs in tomato defense against other powdery mildew species 
including Erysiphe orontii and Leveillula taurica.

As opposed to the specific response to pathogen-encoded effectors in 
gene-for-gene host-pathogen interactions, the mode of action of Asc-1-
mediated resistance to the late blight disease causing fungus Alternaria 
alternaria formae speciales lycopersici is based on insensitivity to 
sphinganine-analog mycotoxins (SAMs) [76]. Consequently, Asc-1 
has no homology to any published plant disease resistance gene but 
is homologous to the Saccharomyces cerevisiae LAG1 that has been 
associated with life span in yeast. Thus, the mechanism of Asc-1-
mediated resistance is by preventing apoptosis in resistant plants by 
the restoration of EGGAP transport [77]. Overexpression of Asc-1 gene 
also confers resistance to Alternaria in Nicotiana umbratical [78].

Nematodes and Insects
In nematodes two R-genes have been cloned so far including 

Mi and Hero. Differences in resistance mechanisms or incompatible 
responses to nematodes are also evident in tomato. Hero-mediated 
resistance against potato cyst nematodes (PCNs) (Globodera spp.) is 
often described as a “hypersensitive-like” or “delayed hypersensitive” 
response that appears after syncytium (feeding structure) induction, 
leading to slow deterioration or abnormal development of the feeding 
site [79]. Although PCNs and similar cyst-forming nematodes are able 
to invade and develop on resistant plants, however, their reproduction 
is severely compromised [80]. Hero encodes a NLR protein and confers 

is becoming limited due to adverse environmental and human health 
effects [39,40] and the emergence of resistant pathogen/pest strains 
[41]. Cultivated tomato, S. lycopersicum, has a narrow genetic base 
and is consequently vulnerable to many diseases and pests. On the 
other hand, a repertoire of genetically diverse wild tomato species 
represents a rich source of R-genes. Over the past 50 years, several 
race-specific disease resistant genes have been identified in wild tomato 
species (Table 1), and extensive tomato breeding programs have been 
based on the transfer of R-genes from wild accessions into cultivated 
tomato. So far, majority of the identified tomato R-genes conferring 
resistance to diverse pathogens and pests belongs the NLR class. An 
array of mechanisms in tomato R-gene-mediated resistances has been 
documented depending on the particular R-gene and pathogen/pest 
combination [42,43].

Fungi

Cladosporium fulvum–tomato pathosystem is a well-established 
model system that complies with the gene-for-gene concept first 
described by [44]. Elegant experiments demonstrated the involvement 
of pathogen effectors or Avrs in the induction of ETI post recognition 
by the Cf genes, resulting in incompatible interaction [45-48]. The Cf 
genes belong to family of LRR-RLP (Receptor-Like Protein) encoding 
R-genes and mediate resistance against the apoplast-colonizing foliar 
fungal pathogen C. fulvum. The Cf-mediated resistance involves 
formation of cell wall appositions, callose deposition and phytoalexin 
accumulation. Moreover, the tomato resistance phenotype against C. 
fulvum is accompanied by HR, typically described as necrotic brown 
spots near the site of infection that limits further growth and spread 
of the pathogens [49]. About five Avr genes (Avr2, Avr4, Avr4E, 
Avr5, and Avr9) have been cloned and characterized from C. fulvum, 
and are recognized by the corresponding Cf-2, Cf-4, Cf-4E, Cf-5, 
and Cf-9 genes (Table 1). Thus, Cf-mediated resistance phenotype 
is the combined result of HR and other defense responses. Another 
well-known tomato fungal pathosystem is the xylem colonizing 
Fusarium oxysporum formae speciales lycopersici (Fol). Resistance to 
Fol is mediated by I (Immunity)-genes that mainly involves callose 
deposition, accumulation of phenolics and formation of tyloses 
(outgrowths of xylem contact cells) and gels in the infected vessels [50]. 
Of the three cloned I-genes, only I-2 encodes for CC-NLR (CNL) while 
the remaining two encode membrane associated receptor-like kinase 
(RLK), such as I-3 which encodes a S-RLK, or RLP, and I-7 encodes 
a LRR-RLP [51-53]. Three Fol effectors, Avr1 (Six4), Avr2 (Six3) and 
Avr3 (Six1) are recognized by I (and the non-allelic I-1), I-2 and I-3 
genes respectively [54-56]. I-7 confers resistance to Fol races 1, 2 and 
3 and I-7-mediated resistance is not suppressed by Avr1 [53]. The Avr 
effector that recognizes I-7 is yet to be identified. Unlike Cf-mediated 
resistance, I-gene-mediated resistance lacks the classical HR described 
above. In the vicinity of the I-2 locus another resistance locus Ty-1, 
against Tomato yellow leaf curl geminivirus (TYLCV), is also mapped 
[57]. The I-2 locus on chromosome 6 is one of the most divergent R-gene 
loci in tomato, partly due to gene duplications among the homologs. 
This diversity is also attributed to micro RNAs (miRNAs), specifically 
miR6024 that triggers phasiRNAs from I-2 homologs in tomato [58]. 
Ouyang et al., 2014 performed deep sequencing from resistant and 
susceptible tomato cultivar to identify miRNAs that correlate with Fol 
resistance. Interestingly, they found that two miRNAs (slmiR482f and 
slmiR5300) were repressed in the resistant plants and these miRNAs 
targeted four genes with full or partial NB domains, however, I-2 was 
not among these targets [59]. This suggests that there could be more 
R-genes involved in the immune signaling against Fol.

In tomato, Ve is a single dominant locus that confers resistance 
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resistance to all pathotypes of G. rostochiensis and partial resistance to 
G. pallida [81]. Hero gene is not only expressed in roots but also in 
aerial parts including, stems, leaves, and flower buds, its expression 
is upregulated in roots in response to PCN infection and correlates 
with the timing of syncytium death [80]. Interestingly, inoculation of 
tomato leaves with PCN also leads to HR indicating that Hero-mediated 
resistance response is not tissue-specific [82].

In contrast to Hero, Mi-1.2-mediated resistance against root-knot 
nematodes (RKN) (Meloidogyne spp.) is early and involves HR. As a 
result, the invading juvenile is not able to induce a feeding site and 
becomes surrounded and embedded among necrotized cells [83]. The 
Mi-1.2 gene also confers resistance to certain potato aphid isolates 
(Macrosiphum euphorbiae), whitefly (Bemisia tabaci) and to some 
extend to psyllids (Bactericerca cockerelli) [84-88] via yet unidentified 
mechanism(s) that does not involve HR. Although Mi-1 is an effective 
source of RKN resistance, Mi-1-mediated resistance is inactive above 
28°C soil temperature [89]. More recently, another nematode resistant 
gene Mi-9, from the wild species Solanum arcanum, was genetically 
characterized and identified as a homolog of Mi-1 that conferred heat-
stable resistance to RNK [90]. Interestingly, silencing Mi-1 homologs 
in tomato lines carrying Ol-4 and Ol-6 compromised the resistance to 
O. neolycopersici in those lines, suggesting that Ol-4 and Ol-6 are Mi-1 
homologs [91]. About 59 Mi-1 homologs have been identified in the 
genome of the cultivated potato species S. tuberosum and S. phureja 
[92]. The evolutionary history of Mi-1 and another R-gene family 
member Sw5 (CNL protein that provides resistance to tomato spotted 
wilt virus (TSWV) [93,94]) is analyzed in closely related Solanaceae 
family members S. tuberosum and S. lycopersicum [95]. In this study, 
the authors reported that the potato genome carries larger R-gene 
families than tomato and this could due to sequential duplications in 
the potato genome or recurrent gene losses in tomato. Further, they 
observed that Sw5 and Mi-1 gene families had dissimilar evolutionary 
histories. Overall, this work suggests that gene clusters are more prone 
to duplication and translocation, which may occur through unequal 
crossing overs or errors in the replication or recombination processes. 
Interestingly, a recent study reported that Mi-1.2 has direct negative 
effects on a zoophytophagous biocontrol agent Orius insidiosus [96]. 
Taken together, these findings suggests that a single dominant R-gene 
mediated resistance can impact organisms belonging to very diverse 
feeding guilds.

Besides conferring resistance against C. fulvum, the Cf-2 also 
mediates resistance to the root parasitic nematode G. rostochiensis and 
this resistance requires Rcr3pim protein of S. pimpinellifolium [97]. A 
tomato root cDNA library was screened in a yeast two-hybrid assay, 
by using G. rostochiensis effector Gr-VAP1 as bait. In this screen, it 
was found that Gr-VAP1interacts with apoplastic papain-like cysteine 
proteases Rcr3pim. Tomato plants that lack the Cf-2 gene but has the 
functional Rcr3pim allele have higher number of nematodes than the 
Cf-0/Rcr3lycand Cf-0/rcr3-3 plants suggesting that Rcr3pim is the 
virulence target of G. rostochiensis. Transient expression of Gr-
VAP1 in tomato plants harboring Cf-2 and Rcr3pim triggers an HR 
response [97].

Viruses

Plant viruses cause disease and severe losses in tomato. Similar 
to other classes of pathogens, tomato plants have acquired a series of 
R-genes against these viruses. Tomato virus can spread by different 
ways such as transmission via contaminated seeds or insect borne 
transmission. Tomato mosaic virus (ToMV) is a seed borne virus that 
can be spread by human activities for instance agricultural workers 

with contaminated hands, tools, and clothing, however transmission 
by insects is rare. Tomato Tm-1-mediated resistance against ToMV 
involves direct or indirect binding of the Tm-1 gene to replication 
proteins of ToMV, thus, inhibiting RNA replication even before 
formation of the active replication complexes on the membranes, 
however there is no HR [98]. The Tm-1 protein is predicted to have 
the TIM barrel structure but there are no clues about their cellular 
functions. Interestingly, the product of the Tm-1 (allelic to Tm-1) 
gene found in the ToMV susceptible tomatoes can neither bind to 
ToMV replication proteins nor inhibit ToMV multiplication but have 
been shown to bind to the replication proteins of non-host viruses 
tobacco mild green mosaic virus (TMGMV) and pepper mild mottle 
virus (PMMoV) and inhibit their RNA replication in vitro resulting 
in non-host resistance [98-100]. Another tomato R-gene, Tm-22, 
confers resistance to ToMV by the recognition of the carboxy terminus 
of the ToMV movement protein and interfering with viral cell-to-
cell movement in plants [101]. Tm-22 belongs to the CNL class of 
resistance proteins [102]. Transgenic tobacco plants expressing Tm-22 
gene become resistant against infection with ToMV [103]. Similarly, 
transgenic potato plants over expressing Tm-22 gene confers resistance 
to multiple viruses like tobacco mosaic virus, ToMV, potato virus X 
(PVX) and PVY [104].

An example of virus transmitted by insects mainly thrips is TSWV. 
Tomato Sw5 gene confers resistance against TSWV [93,94]. The Avr 
determinant of tomato Sw-5 protein is the NSm movement protein of 
TSWV [105]. Transient expression of the NSm protein in tomato and 
generation of transgenic N. benthamiana harboring the Sw5-b gene 
triggers an HR [106]. Eight TSWV R-genes (Sw1a, Sw1b, Sw2, Sw3, 
Sw4, Sw-5, Sw-6 and Sw-7) have been reported to date [107].

TYLCV belongs to the class of DNA viruses that are transmitted 
via whiteflies and affects tomato production worldwide. There are 
total six TYLCV resistance genes Ty-1 to Ty-6. Ty-1 and Ty-3, both 
derived from Solanum chilense and are allelic. The Ty-1/Ty-3-mediated 
defense against TYLCV is somehow different from tomato defense 
against other viruses as TYLCV shows low levels of viral replication 
and systemic spread but with moderate (as with Ty-3) or no (as with 
Ty-1) visual symptoms [108]. Ty-1 and Ty-3 are allelic and represents 
a unique category of R-genes that encode for RNA-dependent RNA 
polymerases (RdRp) unlike most of the R-genes discussed so far that 
belongs to NLR family. Ty-1 and Ty-3 are proposed to confer resistance 
to TYLCV by amplifying the RNAi signal [108]. The catalytic domain 
of the Ty-1/Ty-3 allele is characterized by a five-amino acid motif, 
DFDGD [108]. As compared to susceptible tomato plants, Ty-1/Ty-3 
plants have higher levels of siRNA amplifications and Ty-1 plants also 
show higher levels of TYLCV DNA methylation [109]. Interestingly, 
Ty-1-mediated resistance is also effective against the bipartite tomato 
severe rugose begomo virus, suggesting enhanced transcriptional gene 
silencing, however, a mixed infection of TYLCV with a RNA virus such 
as cucumber mosaic virus (CMV) compromised the resistance leading 
to a decrease in Ty-1–mounted anti-geminiviral RNAi response [109]. 
Under natural field conditions with the occurrences of mixed viral 
infection Ty-1-mediated resistance might not be very effective. Unlike 
Rx-mediated resistance that results in extreme resistance (ER) against 
potato virus X [110], TYLCV mediated resistance results in virus 
tolerance rather than immunity. Functional Ty-1/Ty-3-like alleles are 
also present in several other S. chilense wild type tomato accessions, 
shown by fine mapping and VIGS [111]. Additionally, the DFDGD 
catalytic domain of the Ty-1and Ty-3 genes is conserved among 
Solanum species [111]. In a recent study, Ty-2 and Ty-3 genes were 
used to develop a series of R-gene pyramided tomato lines and the 
linked markers were evaluated for their diagnostic value and utility in 
pyramiding Ty genes [112].
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Bacteria 

Pseudomonas syringae pv. tomato (Pst) causes bacterial speck 
of tomato and the major sources of Pst infection can be seed and 
infected crop debris. In tomato a serine-threonine protein kinase Pto 
gene confers resistance to Pst strains carry the avirulence gene AvrPto 
[113]. Prf that encodes an NLR resides in the middle of the Pto gene 
cluster [20]. In tomato, Prf-mediated resistance against Pst involves 
recognition of secreted effectors (AvrPto or AvrPtoB) by two highly 
homologous tomato protein kinases Pto and Fen [114-117]. Changes 
in these kinases upon binding to the effectors are detected by Prf, 
resulting in HR at the sites of attempted infection. 

Signaling Components Acting Downstream of Tomato 
Resistance Genes 

Early understanding of host-pathogen interaction came from 
studies conducted in Arabidopsis. Identification and characterization 
of host components underlying ETI revealed both common and specific 
signaling components in R-gene mediated resistances against different 
biotic stresses [118-120]. Some of the important components of R-gene 
mediated downstream signaling from Arabidopsis include Non-Race-
Specific Disease Resistance1 (NDR1), Enhanced Disease Susceptibility1 
(EDS1), Phytoalexin Deficient 4 (PAD4), Nonexpresser of PR genes 
1 (NPR1), Suppressor of the G2 allele of SKP1 (SGT1), Required for 
Mla 12 Resistance (RAR1), RAR2, AvrPphB susceptible 3 (PBS3), Heat 
Shock Protein (HSP90) [42,121]. Additional signaling components 
include, the mitogen-activated protein (MAP) kinases, one of the 
largest group of plant kinases that function in the regulation of complex 
plant defense reactions by altering the activity of the different signal 
transduction pathways through phosphorylation/dephosphorylation of 
proteins [122]. Defense associated phytohormones including jasmonic 
acid (JA), ethylene (ET) and salicylic acid (SA) regulate plant responses 
to a wide range of pests and pathogens. There are excellent reviews 
focusing on the complex network of defense signaling pathways that 
involve these three phytohormones [123].

Tomato became another ideal model for studying host-pathogen 
interaction as it is natural host of many pests and pathogens as well as 
possesses a repertoire of R-genes. The application of VIGS, transient 
reverse genetics approach, has been successfully used to study the 
function of certain tomato genes [124]. To analyze the function of some 
of tomato R-genes that produce HR and to identify their downstream 
signaling components and mechanisms many groups have performed 
experiments in tomato. However, given the moderate efficiency of 
VIGS in tomato, large-scale random screens have been conducted in 
the heterologous system N. benthamiana, where VIGS is more effective. 
Many of the functional studies in N. benthamiana have been performed 
by using an auto active tomato R-gene and by transient expression of 
corresponding Avr, to consistently and uniformly activate the host 
system and thus avoiding variations caused by the infecting organisms. 

Tomato and C. fulvum interaction is a model to study the receptor-
mediated resistance [125]. Using VIGS in tomato and/or N. bethamiana 
or N. tobaccum the different components of this interaction have been 
identified (Figure 1), including Cf-9-interacting thioredoxin (CITRX) 
[126], Avr9/Cf-9 induced kinase 1 (ACIK1) [127], the NLR protein 
required for HR-associated cell death 1 (NRC1) [128], the U-box protein 
CMPG1 [129], the LeMPK1, LeMPK2, and LeMPK3 [130], Avr9/Cf-9–
Induced F-Box1 (ACIF) [131], members of the phospholipase C family 
[49], Suppressor of BAK1-Interacting RLK1 1 (SOBIR1) [132], Somatic 
Embryogenesis Receptor Kinase1 (SERK3)/BAK1 [133], endoplasmic 
reticulum residing chaperones including HSP70 binding proteins 
(BiPs) and a lectin-type calreticulin (CRT) [134].

Likewise, using VIGS in tomato the signaling cascade downstream 
of Ve1 is shown to require several components including EDS1, NDR1, 
NRC1, ACIF, MEK2 and SERK3/BAK1 (Figure 1) [135]. To identify 
additional components involved in Ve1-mediated signaling, a GFP-
tagged version of Ve1 protein was overexpressed in N. benthamiana 
leaves, followed by mass spectrometry. This resulted in the identification 
of BiPs and CRT as Ve1 interacting proteins. VIGS mediated 
knockdown of BiPs and CRTs in tomato resulted in compromised 

Figure 1: Downstream signaling components of tomato R-genes.
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Ve1-mediated resistance to V. dahliae in most cases, showing that 
these chaperones play an important role in Ve1 functionality [136]. 
Furthermore, by using VIGS it has been demonstrated that SOBIR1 
and SERK3/BAK1 are also required for I/Avr1-dependent necrosis 
in N. benthamiana [137]. In a genetic based screening F2 tomato 
seedlings, those homozygous for the eds1 mutation (eds1/eds1) and 
those that were heterozygous (EDS1/eds1), were chosen for a disease 
assay and were inoculated with Fol race 3. Samples were screened for 
the disease resistance and it was found that EDS1 is required for I-7 
mediated resistance [53].

By applying VIGS in tomato plants it has been shown that Mi-1.2-
mediated resistance against nematodes and aphids requires Hsp90, 
Sgt1, members of the MAP kinase cascade and WRKY transcription 
factors (Figure 1) [138-141]. In addition, by utilizing transgenic tomato 
plants expressing NahG (encodes for an enzyme that metabolizes SA) a 
role for SA in Mi-1–mediated resistance to potato aphids was identified 
[141]. In a VIGS screen performed in N. benthamiana to identify 
the components of Mi-signaling that can suppress HR triggered by a 
constitutively active form of Mi-1, Mi-DS4, SERK1 was identified as an 
important player [142,143].

To identify the tomato proteins that interact with ToMV movement 
protein or Tm-22-LRR yeast two-hybrid screens were performed 
and tomato cDNA library was screened, by using ToMV movement 
protein and Tm-22-LRR as respective baits [144]. In these screens 
Rubisco small subunit (RbCS) was identified as interacting with ToMV 
movement protein and SGT1 as interacting with Tm-22, in addition 
MP-Interacting Protein 1 (MIP1), a group of type I J-domain proteins 
was found to interact with both ToMV movement protein and Tm-
22. By using VIGS and other in vitro and in vivo functional analysis 
in N. benthamiana, it was shown that MIP1s are required for both 
virus infection and plant immunity [144]. Furthermore, transgenic N. 
benthamiana plants expressing Tm-22, provides extreme resistance to 
ToMV, and VIGS mediated silencing of NbRbCS compromised Tm-22-
dependent resistance, suggesting that RbCS of N. benthamiana plays an 
important role in ToMV movement and plant antiviral defenses [145]. 
To identify the genes involved in TYLCV resistance a reverse genetic 
approach was used where the susceptible and resistance tomato inbred 
lines from the same breeding program were inoculated with TYLCV 
[146]. cDNA libraries from inoculated and non-inoculated plants 
were compared and a trans membranal transporter protein Permease 
I-like was found to be preferentially expressed in resistant plants and 
VIGS mediated silencing of Permease gene in tomato led to decrease 
in resistance [146]. Furthermore, VIGS mediated silencing of hexose 
transporter LeHT1, resulted in plant growth inhibition and enhanced 
virus accumulation and spread and also resulted in a necrotic response 
along the stem and petioles of infected LeHT1-silenced R plants [147].

Pto-mediated resistance involves several components including 
kinases MEK1 andMEK2, wound-induced protein kinase (WIPK), 
NTF6, two transcription factors TGA1a and TGA2.2 and NPR1 
(Figure 1) [118]. Furthermore, using stable RNAi/CaMV transient 
overexpression/VIGS about 25 genes were identified to play a role in 
Pto-mediated ETI as reviewed by [148].

Current and Future Perspective
Plants are continuously being challenged by new pathogen and pest 

races/strains, some of which being able to overcome the plant R-gene 
mediated defenses. One of the main goals of agricultural research is 
to develop technologies to overcome resistance breaking to prevent 
disease. In the past, few decades use of molecular markers has facilitated 

identification, mapping, characterization and transfer of many 
important traits in tomato including the traits for disease resistance 
[149,150]. With the recent advances in molecular biology and genetic 
approaches, several R-genes have been cloned (as discussed above). 
A broad-spectrum application for crop improvement and managing 
resistance that has gained great attention is non-host resistance [151]. 
Other alternatives include functional stacking of R-genes that has been 
successfully used in potato and tomato [152-154] and targeting the 
susceptible genes can result in a more broad-spectrum and durable type 
of resistance [155]. Furthermore, there has been increase resistance 
against some pathogens in tomato by transferring the R-genes from 
other plant species like pepper and potato [156,157].

Apart from the breeding technologies, a deeper understanding of 
plant innate immune perception and signaling is equally important. 
Here comes the role of model plants A. thaliana and easily amenable 
plant species such as Nicotiana species [158,159]. RNAi based 
approaches including siRNAs, miRNAs and Agrobacterium-mediated 
transient expression of dsRNA have been used against viruses, insects, 
and fungal pathogens [160]. Spray-induced gene silencing strategy 
utilizing dsRNAs and small RNAs targeting pathogen genes has also 
been successful against Botrytis cinerea [161]. More recently genome-
editing technologies such as TALENs and CRISPR/Cas9 have been 
used in plant crop improvement, plant-breeding and enhanced 
pathogen resistance [162-164]. CRISPR/Cas9 has been successfully 
used to target TYLCV genome. Guide RNAs specific for coding and 
non-coding sequences of TYLCV were delivered via tobacco rattle 
virus into N. benthamiana plants stably overexpressing the Cas9 
endonuclease. Subsequent challenge of these plants with TYLCV lead to 
a significant reduction in TYLCV accumulation and disease symptoms 
[165]. Recently, CRISPR-Cas9 system has been also used to inactivate 
tomato SlDMR6-1 (downy mildew resistance 6) resulting in disease 
resistance against different pathogens, including P. syringae, P. capsici 
and Xanthomonas spp. with no significant effect on plant growth and 
development [166]. Overall suggesting that these new technologies can 
be utilized for multiplex targeting of the pathogen virulence genes as 
well as plant susceptibility genes. Thus, there is a potential to enhance 
plant resistance by targeting newly evolved effectors and generating a 
platform for dissecting natural resistance and immune functions. At 
the same time, it will provide biotechnologists with a powerful tool for 
producing crop plants resistant to multiple viral infections.
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