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Many high-risk or advanced cancers of the blood, such as 
acute leukemia and myelodysplastic syndrome, cannot be cured by 
chemotherapy alone. Allogeneic hematopoietic cell transplantation 
(HCT) is a procedure that has the potential to cure such cancers not 
only by replacing a patient’s diseased hematopoietic stem cells with 
healthy donor cells, but also by harnessing the benefit of a new donor 
immune system to eradicate any residual malignant cells. Although 
initial donor stem cell engraftment occurs relatively quickly and 
reliably [1], the early months after an allogeneic HCT are associated 
with profound deficits in immune function. Furthermore, many 
patients will experience a decline in function of their transplanted 
cells, manifested by secondary cytopenias and life-threatening 
immunodeficiencies, occurring when post-transplant complications 
are encountered, principally graft-versus-host disease (GVHD) [2,3]. 
A deeper understanding of the mechanisms behind secondary post-
transplant lymphohematopoietic failure, and new methods to intervene 
upon this complication, are needed to improve survival in allogeneic 
HCT recipients. While standard options include administration of 
growth factors (i.e., G-CSF) or donor lymphocyte infusions, novel 
cellular therapeutic options under current investigation include the 
infusion of mesenchymal stromal cells (MSC) as a means to restore 
allograft hematopoietic function and possibly improve immune 
homeostasis after complications of allogeneic HCT.

Despite several advances in the care of HCT recipients in recent 
years, approximately half of all patients undergoing allogeneic HCT 
do not survive longer than 2 years beyond the transplant procedure 
[4]. Clinical predictors associated with improved survival after 
allogeneic HCT include rapid and complete immune reconstitution 
and normalization of blood counts [2,5]. After HCT, lymphocyte 
recovery is widely regarded as a surrogate marker for immune recovery 
[6-16]. We and others have shown that the absolute lymphocyte 
count (ALC) at approximately three months post-HCT is predictive 
of survival, regardless of the underlying disease for which the 
transplant was performed, and regardless of the conditioning regimen 
(myeloablative versus reduced intensity) [2,9] (and manuscript under 
review). However, we have also shown that the absolute monocyte 
count (AMC) at the day +100 time point is an important surrogate 
of long-term survival, with both reduced transplant-related mortality 
(TRM) [2] as well as a decreased relapse risk in those achieving normal 
monocyte counts by day +100 (manuscript under review). Another 
study of 30 patients has shown an association of monocyte recovery 
at day +90 and decreased chronic graft-versus-host disease (GVHD) 
and relapse risk [17]. Others have shown an increased risk of invasive 
fungal infections in those with severe post-transplant monocytopenia 
[18]. Therefore, emerging data supports that recovery of monocytes 

may be as important as that of lymphocytes in post-transplant immune 
reconstitution.

Thrombocytopenia is also increasingly recognized as a poor 
prognostic finding in the early post-transplant period [3]. In patients 
with early recovery of platelet counts but subsequent development 
of severe thrombocytopenia, the phenomenon of secondary failure 
of platelet recovery (SFPR) has been described. In allogeneic HCT 
recipients, SFPR has been described at a median of 63 days (21-156) 
post-transplant, and associated with a hazard ratio for death of 2.6 
[19]. Recovery of which specific cell type– lymphocytes, monocytes, 
platelets, or other yet unspecified subset, or a pattern of multiple cell 
types – that can best predict post-transplant outcomes at the day +100 
time point is currently unknown. It is possible that critical early, post-
transplant events may be reflected in day +100 post-HCT cytopenias 
and serve as indicators for patients at risk for poor outcomes. A 
variety of factors, including infections, medication effects, GVHD, 
graft rejection, and impending relapse can result in cytopenias in 
patients following allogeneic HCT. We are currently working toward 
defining the severity of secondary cytopenias that place patients at risk 
for poor outcomes based upon complete blood count parameters at 
the day +100 evaluation through the Center for International Blood 
and Marrow Transplant Research. If we can successfully develop a 
risk-stratification tool based upon post-transplant cytopenias, the 
natural next step is to develop a clinical trial aimed at improvement 
of secondary hematopoietic failure in these patients at risk for 
poor survival. It is unlikely that manipulation of existing immune 
suppression (predominantly calcineurin inhibitors) would markedly 
impact hematopoiesis and subsequent outcomes, and we would 
therefore propose that any clinical trial be aimed at directly addressing 
the mechanisms behind the described phenomenon.

Mouse models have provided initial insights into the mechanisms 
behind the profound lymphopenia and hematopoietic failure that can 
be observed with severe GVHD reactions. Both reduced thymic output 
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and perturbation of the peripheral T cell compartment secondary 
to lymphoid organ microenvironmental damage lead to marked T 
lymphopenia in mice with GVHD [20]. Additionally, hematopoietic 
stem cells fail to proliferate due to downregulation of CCND1 and 
MYC, both negatively regulated by interferon-gamma [21]. Together, 
these early results suggested that both problems with lymphoid 
and hematopoietic microenvironment as well as inflammatory 
cytokines contribute to reduced lymphohematopoiesis. Given the 
complex interaction between hematopoietic stem cells and their 
microenvironment, as well as the contribution of cytokine signaling, it 
has subsequently been theorized that maintenance of stromal integrity 
and anti-inflammatory cytokine secretion provided by supplemental 
MSCs could abrogate this effect [22]. 

MSCs are pluripotent cells with the potential to differentiate 
into layers of mesoderm (bone, cartilage, fat). They have been 
theorized to be progenitor cells for the bone marrow stroma, and thus 
thought to potentially be able to affect hematopoiesis and marrow 
regeneration after the stroma-damaging chemotherapy and/or 
radiation conditioning given prior to HCT [23]. NOD/SCID xenograft 
models have demonstrated that MSCs can support the hematopoietic 
reconstitution of myeloid, lymphoid, and megakaryocytic lineages 
[24], as well as facilitate human cord blood stem cell engraftment into 
NOD/SCID mice, especially at low transplanted doses of cord blood 
stem cells [25]. Additionally, MSCs have a low immunogenic profile, 
and have been shown to modulate T cell function in in vitro assays 
[26,27].

The first clinical trial of HLA-matched sibling-derived MSCs given 
prior to HCT demonstrated safety and feasibility, although no clear 
beneficial signal in terms of improved engraftment or reduced GVHD 
rates compared with historically reported outcomes was identified in 
this heterogeneous group of patients [28]. However, subsequent clinical 
trials of alternate, non-HLA matched donor MSC co-transplantation 
have suggested benefit in the engraftment of hematopoietic stem 
cells [23,29,30]. For example, in a series of 14 children undergoing 
haploidentical HCT [29], co-infusion of haploidentical MSCs was 
associated with improved lymphocyte (especially natural killer cell) 
recovery and reduced graft failure rates (0% versus 15% in historical 
controls). No patient died of GVHD and only 2 died of relapse in the 
MSC-treated cohort, compared to death due to GVHD and relapse in 
2 and 7 patients in the historical control cohort, respectively. While 
early infusion of MSCs may improve engraftment and possibly 
immune reconstitution, whether their later use can improve secondary 
cytopenias has not yet been proven in controlled studies. Encouragingly, 
MSC infusions have been reported to durably rescue four allogeneic 
HCT recipients from severe cytopenias in a recent case series (3 with 
refractory thrombocytopenia, 1 with refractory neutropenia) [31]. 
Additionally, a report of recovery from pure red cell aplasia in ABO-
mismatched HCT has recently been published [32].

Given the association of acute GVHD and secondary cytopenias 
[33-36], it is possible that the marrow is a GVHD target organ 
amenable to MSC homing and repair. Some studies have shown 
low level persistence of infused MSCs in damaged organs, including 
marrow [29]. For example, haploidentical MSCs could be identified 
in the bone marrow biopsy of a patient with severe aplastic anemia 
[37]. Additionally, after infusion for steroid-resistant GVHD, third-
party donor HLA-mismatched MSC DNA could be identified in 
organs affected by GVHD but not in healthy tissue [38]. With trials 

incorporating MSCs for the treatment of steroid-refractory GVHD 
showing promise [38-40], it seems plausible to focus additional efforts 
on whether and how MSC infusions could be used to treat established 
lymphohematopoetic graft-versus-host reactions.

Future studies of the optimal timing of MSC infusions (i.e., as 
prophylaxis or as treatment of post-transplant complications), coupled 
with correlative studies of hematopoietic and immune function, 
will be required to determine the most appropriate application for 
MSC infusions in allogeneic HCT. Several additional areas of debate 
surrounding the use of MSC regenerative therapy remain, including 
the best source of MSCs (i.e., matched sibling, haploidentical, or third-
party donor) and the optimum dose of MSC/kilogram patient body 
weight necessary to effect a response. Several complexities regarding 
how best to generate MSCs as a cellular therapy, including the creation 
of suitable fetal bovine serum-free culture conditions to reduce the 
risk of zoonoses and allergic reactions, are highlighted in the article 
presented by Khanna-Jain et al. [41], in this issue of Journal of Stem 
Cell Research and Therapy. Ongoing research into stromal cell source 
(marrow, adipose tissue, placenta/umbilical cord blood, dental pulp), 
the ideal culture conditions, cytokine cocktails, and possibility of 
priming of MSCs prior to infusion, all contribute to the complexity of 
MSC therapy. While the regenerative potential of stromal cell therapy 
in allogeneic HCT is very promising based upon extensive pre-clinical 
data and early clinical trial results, whether this could be a durable, 
cost-effective method to repair a damaged lymphohematopoietic 
system remains to be tested in a controlled fashion.
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