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HR and NHEJ: Two Major Pathways for Repair of 
Chromosomal DNA Double-Strand Breaks

Efficient repair of chromosomal DNA damage is crucial for cells 
to maintain genome integrity. DNA double-strand breaks (DSBs) are 
the most severe type of DNA lesions that can be caused by various 
exogenous and endogenous mechanisms, such as ionizing radiation, 
reactive oxygen species, topoisomerase poisons, or replication errors 
[1]. DSBs, if left unrepaired or mis-repaired, lead to cell death or 
chromosomal aberrations [2,3]. Human cells have evolved two 
fundamentally different mechanisms for repairing chromosomal DSBs, 
homologous recombination (HR) and non-homologous end-joining 
(NHEJ) [4]. NHEJ not only repairs accidental (non-physiological) 
DSBs, but is also essential for rejoining physiological DSBs that arise in 
the process of V(D)J recombination in B and T lymphocytes and class 
switch recombination in mature B cells [3]. 

A wide variety of proteins have been identified thus far that 
contribute to the HR and NHEJ machineries [5]. HR is a highly 
complicated process of DNA transaction, in which Rad51 protein plays 
an essential role in DNA strand exchange with the aid of several other 
proteins such as Rad54, Brca2, Rad52, and Rad51 paralogs [6,7]. For 
HR to occur, DSBs should be processed (i.e., end-resected) to produce 
a long 3'-overhang single-stranded DNA [8,9], and recent studies 
have identified a number of proteins involved in end resection or its 
regulation; among these, Mre11 and CtIP play essential roles in the 
initial step of end resection [9-11]. In contrast to HR, NHEJ is thought 
to be a rather simpler process that requires, at least biochemically, only 
four proteins (two protein complexes); specifically, Ku, a heterodimer 
of Ku70 and Ku80, initiates an NHEJ reaction by binding to the ends 
of a DSB, and the DNA ligase complex composed of Xrcc4 and Ligase 
IV (Lig4) seals the ends to complete repair [3]. In most cases, however, 
many other proteins do participate in NHEJ-mediated repair to trim 
the DSB ends, which are typically non-ligatable or non-compatible. 
These additional NHEJ factors involve DNA-PKcs, Artemis, XLF, 
and DNA polymerase µ/λ; DNA-PKcs and Artemis have evolved in 
higher eukaryotes and do not exist in yeasts [3,12]. In addition to the 
classical pathway of NHEJ, recent evidence indicates the existence 
of a more error-prone mechanism of NHEJ called alternative end-
joining that plays a role in DSB repair [3,13]. Alternative end-joining 
is Ku/Lig4 independent and the precise mechanism remains largely 
unclear, although PARP1, Ligase III, and several factors involved in 
end resection (to initiate HR) have been implicated in DSB repair via 
alternative end-joining [14-16]. 

Which DSB repair pathway is beneficial for cells to preserve genome 
integrity? NHEJ (the classical NHEJ pathway) repairs broken DNA 
ends with little or no homology and is often associated with nucleotide 
loss, whereas HR allows for accurate repair of DSBs with the use of 
homologous DNA sequence, usually located on a sister chromatid 
[3,4,12]. Such difference in accuracy between the two pathways, 
however, does not mean that HR is superior to NHEJ in maintaining 
integrity of human genomes, which contain lots of repetitive DNA 
sequences [4]. For example, an HR reaction between Alu sequences 
in a cell would cause deleterious consequences and hence must be 
prohibited [17,18]. Thus, human somatic cells preferentially use NHEJ 

to repair accidental DSBs; in particular, in G0/G1 phase of the cell cycle, 
DSB repair is only performed by NHEJ, and HR is inert. Both NHEJ 
and HR can work, however, in S to G2 phases when DNA replication 
has been completed and the sister chromatid is available [19]. Thus, 
how and which pathway is chosen for repair of a DSB(s) has been a 
critical issue in the DNA repair field, and there has been a debate [4]. 
Recent evidence suggests that Ku-bound DSBs, where end resection 
does not occur, are directed to NHEJ, while end-resected DSBs, to 
which Ku cannot bind, are channeled to HR (or alternative end-joining) 
[20-24]. Thus, in addition to the end binding protein Ku, various factors 
that regulate end resection are involved in DSB repair pathway choice 
[16,25-30]. Apparently, the type of DSB is also a determinant of pathway 
choice [31,32]; for example, replication-associated one-ended DSBs are 
preferentially repaired by HR, while topoisomerase II-mediated DSBs 
are almost exclusively repaired by NHEJ [33,34]. Interestingly, however, 
it appears that cells do not always choose a proper pathway to deal with 
induced DSBs. In fact, absence of NHEJ gives a growth advantage to 
cells accumulating replication-associated DSBs [34,35], although this 
may simply reflect the fact that NHEJ is basically the first choice to 
repair any type of those DSBs that naturally allow Ku-binding [4]. 

Impact of DSB Repair Deficiency on Targeted and 
Random Integration

Gene targeting via HR provides the definitive tool in analyzing 
gene function. For gene targeting to be successfully achieved, the 
target genome sequence should be replaced with the vector DNA 
(i.e., targeting vector), not with the sister chromatid. The principal 
limitation of conventional gene-targeting technology is the extremely 
low efficiency of HR-mediated targeted integration, which occurs at 
least 2-3 orders of magnitude less frequently than random integration 
[36], as depicted in Figure 1A. 

Random integration is a phenomenon in which a transfected DNA 
molecule(s) are inserted into (random sites of) the host genome via 
non-homologous recombination. It has been generally assumed that 
random integration results from the repair of spontaneous chromosomal 
DSBs caused by endogenous factors. Indeed, we have recently shown 
that DNA topoisomerase IIα and reactive oxygen species (ROS) are 
such endogenous factors responsible for causing DNA damage that 
leads to random integration of transfected DNA in human cells [37]. 
Transient inhibition of topoisomerase IIα significantly increases 
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random integration [38]; conversely, siRNA-mediated knockdown of 
topoisomerase IIα reduces random integration [37]. Cells continuously 
cultured under 3% oxygen conditions after DNA transfection display 
reduced random-integration frequency compared to that under 21% 
oxygen conditions [37], although the gene-targeting efficiency was 
little affected by the low-oxygen culture condition (our unpublished 
observations). 

Loss of NHEJ in lower eukaryotes results in significantly reduced or 
no random integration events, and thus, as high as 100% gene-targeting 
efficiency can be achieved by inactivating NHEJ (for example, [39]). 
In human somatic cells, however, suppression of NHEJ does not result 
in decreased random-integration frequency, although the efficiency 
of gene targeting can be increased [40] (Figure 1B-D). These findings 
clearly indicate that NHEJ is not the sole mechanism of random 
integration in human somatic cells, and suggest the contribution of 
alternative end-joining to the residual random integration events by 
non-homologous recombination. Intriguingly, unlike vectors with no 
or shorter homology arms, integration frequency of targeting vectors 
with long homology arms was not affected by LIG4 deficiency [40] 
(Figure 1B, C; data not shown). It could be that in the absence of NHEJ, 

homology arms of the targeting vector served to prevent marker gene 
loss caused by large deletion (chew-back); however, as these homology 
arms contain a number of Alu elements, it is more likely that homology 
arms serve to trigger random integration in an NHEJ-independent 
fashion. Earlier studies using rodent cell lines, along with the fact that 
alternative end-joining favors micro-homologies, strongly support this 
idea [13,41,42]. 

Elimination of the HR protein Rad54 resulted in significantly 
reduced gene-targeting efficiency in human cells (Figure 1D), a finding 
consistent with previous reports using rodent and avian cell mutants 
[43,44]. Intriguingly, random-integration frequency was more than five-
fold higher in RAD54-null cells than in their wild-type counterparts, 
implying that the observed reduction of gene-targeting efficiency in the 
absence of Rad54 is due, at least in part, to an unexpectedly increased 
random-integration frequency. Similar observations were made with 
mutant cell lines deficient in MUS81 and/or FANCB, genes implicated 
in HR [45,46] (Figure 1B-D). It is also important to note that the 
increased random-integration frequency associated with HR deficiency 
was suppressed by an additional loss of NHEJ, and this suppression was 
less pronounced when targeting vectors were used (Figure 1B,C). These 

Figure 1: Impact of DSB repair deficiency on random and targeted integration.  
(A) Gene targeting is quite inefficient in human somatic cells.  When targeting vector is transfected into cells, random integration occurs at least 2 to 3 orders of 
magnitude more frequently than targeted integration.  (B) Integration frequency of pβactin-His in human Nalm-6 cell lines.  The DSB repair mutants (LIG4-/-, RAD54-/-, LIG4-/-

RAD54-/-, MUS81-/-, FANCB-, and MUS81-/-FANCB-) were created by gene targeting using Nalm-6 wild-type (WT) cells [34,45].  At least two independent experiments 
were performed for each cell line.  Note that pβactin-His harbors little or no homology to the human genome [40].  (C, D) Integration frequency (C) and gene-targeting 
efficiency (D) of pHPRT-Hyg in the Nalm-6 cell lines.  At least three independent experiments were performed for each cell line.  The lengths of 5' and 3' arms of this 
targeting vector are 3.8 and 5.1 kb, respectively [40].  
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data further support the aforementioned idea that random-integration 
frequency is substantially influenced by homologous sequences present 
in the vector, and that these DNA sequences may serve to trigger NHEJ-
independent, homology-based random integration. Thus, effective 
suppression of this mechanism will be a promising approach to reduce 
random integration events after targeting-vector transfection. 

Despite the rapid progress on artificial nucleases (i.e., ZFN, 
TALEN, or CRISPR-based system) and their effective applications to 
targeted gene inactivation in various species [47], HR-mediated gene 
targeting (knock-in as well as knockout) without the use of artificial 
nucleases still provides an indispensable technique that must be further 
developed in the context of human-derived cells, as artificial nucleases 
are capable of causing DNA lesions that lead to deleterious off-target 
mutations [48-50]. It is expected that deciphering the molecular 
mechanism of random integration in terms of vector DNA sequence 
and precise DSB repair mechanisms will help improve human somatic 
cell gene targeting, for example, by developing a targeting vector that is 
most suitable for reducing random integrants.
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