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Kidney
In humans, the kidneys are a pair of bean-shaped organs about 

10 cm long and located on either side of the vertebral column. The 
kidneys constitute for less than 1% of the weight of the human body, 
but they receive about 20% of blood pumped with each heartbeat. The 
renal artery transports blood to be filtered to the kidneys, and the renal 
vein carries filtered blood away from the kidneys. Urine, the waste fluid 
formed within the kidney, exits the organ through a duct called the 
ureter. The kidney is an organ of excretion, transport and metabolism. 
It is a complicated organ, comprising various cell types and having a 
neatly designed three dimensional organization [1]. Due to structural 
complexity, the intact kidney is difficult to employ for adequate study 
of many biochemical, pharmacological and physiological processes. 
Primary cultures of proximal tubule cells have been considered as an 
appropriate model for the study of proximal tubule cell function or 
renal intact function [2].

Membrane Transport
Transporters are membrane proteins present in all living beings. 

These proteins regulate nutrients, ions, environmental toxins, and 
other xenobiotics. Transporters are located in intestinal, renal, and 
hepatic epithelia. Their function involves absorption and elimination of 
endogenous substances and xenobiotics [3, 4]. The epithelial layer of the 
renal tubules alters the volume and composition of filtrate by means of 
reabsorption and secretion. The surface of the epithelium is organized 
in such a way that the leakage of salt and water back into the tubule 
can be minimized. The prominent function of the epithelial layer is to 
handle ion, solute, and water homeostasis. Renal tubular reabsorption 
is due to the receptor-mediated endocytic pathway. Epithelial cells are 
polarized and possess membrane transport proteins [5]. Transporter 
expression can be regulated due to induction or downregulation of 
transporter mRNAs. In this editorial, recent research on the renal 
membrane transporters and their regulation has been discussed with 
reference to available Pubmed sources. 

Genes
TCN1 

This gene encodes vitamin B12-binding protein family. The 
transcobalamin-vitamin B (12) complex transport vitamin B12 from 
plasma and into the tissues. This complex may have high-affinity ligand 
for the endocytic receptor, megalin that is expressed in the proximal 
tubule [6]. 

KCND3
Voltage-gated potassium (Kv) channels are complicated channels 

with reference to their structural and functional point of view. 
Angiotensin receptor forms a complex with potassium channel alpha-
subunit Kv 4.3 and regulates its intracellular distribution and gating 
properties [7]. Dihydropyridine Ca2+ channel antagonists / agonists 
may block Kv4.2, Kv4.3 and Kv1.4 K+ channels expressed in HEK293 
cells [8].

AQP2
 This gene regulates a water channel protein and it belongs to 

aquaporin family. Studies show that high sodium diet can increase 
angiotensin-II and thereby downregulates AQP2 expression. In 

this way, high sodium diet favors urinary sodium concentration [9]. 
AQP2 has a role in hereditary and acquired diseases affecting urine-
concentrating mechanisms [10]. AQP2 regulates antidiuretic action 
of arginine vasopressin (AVP). The urinary excretion of this protein is 
considered to be an index of AVP signaling activity in the renal system. 
Aquaporins are also considered as markers for chronic renal allograft 
dysfunction [11]. 

AQP4
 This gene encodes a member of the aquaporin family of intrinsic 

membrane proteins. These proteins function as water-selective channels 
in the plasma membrane. Aquaporin-4 (AQP4) is homologous proteins 
noticed in the basolateral plasma membrane of the kidney collecting 
duct, and they mediate the exit pathway for apically reabsorbed water 
[12]. Renal aquaporins (AQP1-4) concentration is downregulated and 
is in proportion to the degree of hydronephrosis graded by ultrasound 
in pediatric congenital hydronephrosis (CH) [13]. The upregulation of 
AQP4 is directly proportional to the onset and maintenance of salt-
sensitive hypertension [14]. Vasopressin is involved in the regulation 
of AQP4 [15]. 

SLC1A6
It encodes high affinity glutamate and neutral amino acid 

transporters. These glutamate receptors are sensitive to dietary 
regulation [16]. They also function as anion channels [17]. Glutamate 
upregulates the open probability of the anion pore associated with 
glutamate transporters [18].

SLC12A5
 K-Cl cotransporters are proteins and are involved in the maintenance 

of intracellular chloride concentrations. The electroneutral cation-
chloride-coupled cotransporter gene family (SLC12) was identified 
initially in fish and then in mammals. This nine-member gene family 
involves two major branches, one including two bumetanide-sensitive 
Na (+)-K (+)-2Cl (-) cotransporters and the thiazide-sensitive Na 
(+): Cl (-) cotransporter. Two of the genes in this branch (SLC12A1 
and SLC12A3), exhibit kidney-specific expression and function in 
renal salt reabsorption. The third gene (SLC12A2) of this family is 
expressed ubiquitously and plays a key role in epithelial salt secretion 
and cell volume regulation. The second branch constitutes four genes 
(SLC12A4- 7) regulate electroneutral K (+)-Cl (-) cotransporters [19]. 
K (+)-Cl (-) cotransporters (KCCs) play a fundamental role in epithelial 
cell function [20]. The Na (+)-K (+)-Cl (-) cotransporters (NKCCs), 
which belong to the cation-Cl (-) cotransporter (CCC) family, are able 
to translocate NH4 (+) across cell membranes [21]. 
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TRPC1
 The protein encoded by this gene, Transient Receptor Potential 

Canonical 1 (TRPC1) is a membrane protein that is permeable to 
calcium and other cations. Higher concentration of glucose increased 
the expression of TRPC6 and TRPC6-dependent Ca (2+) influx [22]. 
TRPC1 gene polymorphisms are associated with type 2 diabetes and 
diabetic nephropathy in Han Chinese population [23]. TRPC1 channels 
are associated to mechanosignaling during cell migration [24]. TRPC1 
is regulated during the cell cycle progression and is involved in store-
depletion-operated Ca (2+) entry (SOCE), regulatory volume decrease 
(RVD), and cell proliferation [25]. 

CLC3
This gene regulates a member of the voltage-gated chloride channel 

(ClC) family. The encoded protein is noticed in all cell types and is 
present in plasma membranes and in intracellular vesicles. ClC-3 
channel/antiporter regulates nuclear factor (NF)-κB activation [26]. 
ClC-3 has nucleocytoplasmic shuttling dynamics and regulates the 
cell cycle in cancer cells [27]. CIC-3 plays a role in wound closure in 
Xenopus embryos [28]. ClC-3 Cl (-) channel involved in cell volume 
regulation and cell cycle [29]. Diabetes results in the alteration in the 
expression of ClC-3 channels. These changes result in the impaired 
kidney functions observed in diabetes [30].
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