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Introduction
Chronic infections with viruses and intracellular bacteria remain 

a leading cause of morbidity and mortality worldwide. The Human 
Immunodeficiency Viruses (HIV) account for over 4% of the 
Years of Life Lost globally [1], continue to be largely incurable, and 
have increasing rates of therapeutic resistance [2]. Mycobacterium 
tuberculosis is estimated to latently infect between two and three billion 
people worldwide [3], with mortality in active, extensively drug resistant 
(XDR-TB) cases approaching 50% in spite of rigorous treatment [4]. 
Similarly, cytomegalovirus (CMV) and Epstein-Barr virus (EBV) cause 
significant morbidity and morality in immunosuppressed patients, 
and are regularly refractory to current therapies [5]. The treatment of 
each of these conditions is associated with, at times, severe toxicities 
that limit management and prevent curative treatment [6-8]. These 
inadequacies have led to the investigation of novel immunotherapies, 
including vaccination and adoptive cell therapy (ACT).

The control and clearance of intracellular pathogens usually 
requires robust cytolytic immunity, pivotally mediated by antigen-
specific CD8+ T cells [9]. Highly diverse repertoires of CD8+ T cells 
in the pool of lymphocytes, with each cell expressing a unique T cell 
receptor (TCR) on its surface, are provided by thymic development and 
selection. These TCRs bind, together with the CD8 co-receptor, to major 
histocompatibility complex I molecules loaded with cognate peptides 
(pMHC), which are expressed on the surface of target cells. Infected 
cells presenting peptides from the intracellular pathogen can thereby 
be specifically recognised by T cells, and are killed or modulated due 
to the consequent effector functions of the T cell. In this context, the 
term 'T cell avidity' describes the efficiency of these effector functions 
after antigen encounter and is principally affected by the binding 
strength between the TCR, its cognate pMHC ligand, and associated 
co-receptors, the so called 'structural avidity'. The structural avidity 
of TCR-pMHC binding can be expressed by the equilibrium constant 
KD, a ratio between the association (kon) rate and the dissociation (koff) 
rate [10,11] with low equilibrium constants indicative of high avidity 
TCR-pMHC complexes. Interactions characterised by high structural 
avidities are correlated with increased T cell functional avidities 
[10,12], with a major determinant of the structural TCR avidity being 
the koff –rate [10,13]. There is growing interest in identifying T cells 
with high avidity TCRs, as they have been shown to possess superior 
efficacy towards target cells in vivo and in vitro [14-16]. Given that high 

Abstract
Cytotoxic lymphocytes are critical for fighting viral and certain bacterial infections. Therefore, assessing the 

quality of cytotoxic T cell responses might have important clinical implications. TCR-pMHC binding (avidity) is a key 
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avidity T cells recognize targets earlier and mediate superior effector 
functions [14], their generation and precise detection becomes an 
important aspect for the development of more effective anti-infective 
immunotherapies.

Measuring TCR-pMHC Interaction
Functional assays, such as interferon-γ synthesis, interleukin-2 

release or in vitro cell-mediated lysis, can be strongly affected by the 
expression level of TCRs and co-receptors, and alterations in the 
signaling cascade [17], and are cumbersome to undertake. Several 
different methods have been developed, which aim to assess the 
structural avidity of TCR-pMHC binding in order to overcome the 
limitations of functional assays, as proxies for functionality. Surface 
Plasmon Resonance (SPR) (Figure 1a), initially developed by Liedberg 
et al. [18], has been adapted to assess the binding of TCRs or MHCs 
devoid of co-receptors, with one member of the pair being soluble and 
one substrate-bound, by detecting changes in the mass of the bound 
complexes. Typically, this technique is complicated by the technically 
challenging and labour intensive production of high-purity soluble 
TCRs and MHC molecules. Furthermore, the contribution of the 
CD8 co-receptor and other potentially involved surface molecules to 
binding is unable to be interrogated, thus preventing assessment of the 
physiological conditions present at the T cell surface. 

Conversely, assays based on multimer binding (Figure 1b) and 
dissociation (Figure 1c) attempt to measure the structural avidity of 
TCR-pMHC binding on the surface of living T cells [13,19]. These 
assays monitor the dissociation of multimeric complexes, can thus 
have half-lives of dissociation in the range of hours to days, are 
strongly influenced by the quality of multimer reagents, as well as 
the concentration and affinity of MHC-blocking antibodies used, a 
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pre-requisite for the assay as it permits dissociation of the multimeric 
complex [20]. These factors result in significant inter-assay and inter-
investigator variability, negatively effecting the reliability of this assay. 

In an effort to overcome these inadequacies, Huang et al. [21] 
and Huppa et al. [22] have developed two-dimensional TCR-pMHC 
binding assays to better approximate the physiological situation, where 
both binding partners are embedded in ‘two-dimensional’ membranes. 
These assays provide valuable insights into TCR-pMHC physiology, 
but have thus far been unable to lend themselves to high-throughput 
translational applications. 

Determining T cell Avidity: The TCR-Ligand koff –Rate 
Assay

To enable the rapid and accurate measurement of truly monomeric 
TCR-pMHC interactions on living T cells, we developed the TCR-
Ligand koff –rate assay (Figure 2) based on reversible MHC multimers, 
so-called MHC StrepTamers [23]. Fluorescently-labelled MHC-I 
molecules, which associate with their cognate TCRs are multimerized 
onto StrepTactin molecules via C-terminal StrepTag sequences, 
permitting the stable identification of living CD8+ T cells via cooperative 
binding (Figure 2a). In the presence of D-biotin, the StrepTag is very 
rapidly displaced from the StrepTactin molecule, causing disintegration 
of the multimer complex, whilst leaving monomeric MHC-I molecules 
bound to their cognate TCRs (Figure 2b). Dissociation of these 
MHC molecules from the surface of the T cell is visible as a decay in 
fluorescent intensity over time, readily permitting the assessment of the 
koff –rate (Figure 2c) [24]. 

We analysed human T cells specific for CMV from healthy 
donors’ PBMCs via the fluorescence microscopy koff –rate assay, and 
demonstrated high reproducibility between experiments, dissociations, 
and even unknown identical clones [24]. Correlation of the koff –
rate and ex vivo cytokine and cytolytic assays demonstrated a clear 
association between the koff –rate and functionality. Specifically, we 
have not yet found any endogenous epitope-specific T cell which 
exhibits fast koff –rates and still high functionality [17], a constellation 

that could be achieved by a predominantly fast kon–rate. For CMV-
specific CD8+ T cells, differences in koff –rate again correlated with the 
functional competence of the respective populations. Furthermore, we 
have demonstrated a clear correlation between protectivity and the koff 
–rate of T cells used in adoptive T cell transfer, in preclinical murine 
models of Listeria moncytogenes and murine CMV infection. In the 
meantime, others have also developed TCR-pMHC koff –rate assays 
based on the same principles as our Streptamer based assay [25]. Their 
methodologies have found a clear correlation between the TCR-pMHC 
koff –rate and the functionality of the analysed cells [26], supporting our 
previous findings.

Altogether, our data and the published work of other groups 
indicates that the koff –rate is an important parameter for the 
identification and selection of highly functional T cells for different 
therapeutic and diagnostic applications [17,27].

Applications of the TCR-Ligand koff –Rate Assay 
Adoptive T cell transfer experiments in preclinical mouse models 

have clearly demonstrated the superior protective capacity of T cells 
with long TCR-pMHC dissociation half-lives and thus low koff –rates 
[24]. In addition, Stemberger et al. [28] found that the transfer of very 
high-quality antigen-specific T cells, which is additionally determined 
by the subset differentiation, can provide exceptionally robust 
protection against pathogens even at very low cell numbers. Together, 
these data suggest that the application of the TCR-pMHC koff –rate assay 
for the identification of highly functional T cell populations could lead 
to a reduction of the number of T cells needed for the adoptive transfer, 
reducing costs and possible side effects. 

Clinical relevance

The selection of T cell receptors most suitable for genetic engineering 
of autologous T cell populations could be guided by the koff –rate assay, 
a technology which has the capacity to broaden the applicability of 
adoptive T cell therapy. Putatively, individual high-avidity T cells 
could be identified in a high-throughput manner via the koff –rate assay, 

Figure 1: Methodologies for the quantification of TCR Avidity
a. Surface Plasmon Resonance: This strategy detects changes in the optical qualities of a gold-coated biosensor, which reacts when minute forces are applied to 
it. Underlying this surface is an organic matrix which binds macromolecules such as TCRs, immobilising them on the lumenal surface of a flow cell. Passing pMHC 
molecules over the lumenal surface facilitates the interaction and binding of TCR-pMHC complexes, resulting in an increase in mass bound to the organic matrix, an 
increase in force applied to the sensor chip, and thus alteration of the surface plasmon resonance of the gold surface. Subsequent dissociation of the TCR-pMHC 
complexes results in the system returning to baseline, permitting assessment the kon and koff –rates. 
b. MHC multimer binding: Recombinant pMHC molecules are multimerised to a fluorescently labelled streptavidin molecule via C-terminal biotin conjugates 
generating a stable multimer, binding stably to surface expressed TCRs. Dissociation events are individually unable to abrogate binding of the multimer as they are 
compensated for by the repetitive re-binding of neighbouring MHCs, resulting in stable fluorescent identification of cells. 
c. Multimer dissociation assay: Addition of reagents, such as anti-MHC-I antibodies prevents stochastic re-association events and the maintenance of equilibrium, 
eventually resulting in dissociation of the multimeric complex. Analysis of fluorescent intensity at pre-determined time points each typically some hours apart, 
enables the approximation of a fluorescent decay curve, a derivative of the koff –rate of an interaction.



Citation: Nauerth M, Wing K, Korner H, Busch D (2016) Relevance of the T cell Receptor-Ligand Avidity for Immunity to Infection. J Microb Biochem 
Technol 8: 131-135. doi: 10.4172/1948-5948.1000275

Volume 8(2): 131-135 (2016) - 133
J Microb Biochem Technol 
ISSN: 1948-5948 JMBT, an open access journal

with TCR extraction and subsequent recombinant TCR expression 
[24,29,30]. This process has the capacity to permit the identification 
of ideal, high-avidity, pathogen-specific TCRs, with opportunities for 
the characterisation of TCRs bearing the greatest clinical relevance, and 
the development of novel cellular therapeutics. In patients who have 
successfully cleared or controlled infections, the koff–rate assay has the 
potential to identify highly protective populations that have undergone 
clonal selection and evolution, enabling the directed extraction of TCRs 
for investigation and clinical application. Several investigators have 
demonstrated that the transfer of TCRs, in addition to the transfer of 
antigen specificity [31,32], endows the recipient cells with functional 
avidities comparable to that of the original population [30,33]. Thus, 
the development of novel, koff –rate-identified cellular therapeutics for 
infectious diseases is a tangible application of this technology to the 
clinical setting.

For example, Appay et al. [9] identify that CD8+-specific responses 
are crucial in the immune control of HIV, and that high avidity T cells 
result in superior control of viral replication by exerting a greater 
selective pressure on variable viruses, which as a result exhibit reduced 
replicative fitness, elegantly demonstrated in the work of Varela-
Rohena et al. [34] Similarly, Sud et al. [35] identify the importance 
of cytotoxic T cells in controlling infections of M. tuberculosis, in 
cooperation with other members of the adaptive immune system. Aside 
from the application of the koff –rate assay to adoptive cell therapies, the 
assay has the potential to be of great advantage in diagnostic settings. 
Conceivably, the koff –rate of antigen-specific T cell populations could 
demonstrate the quality of existing immunity and permit a degree of 
prognostication about response to illness to occur. Indeed, the work of 
Hadrup et al. [36] and Wikby et al. [37] have identified several features 
of an individual’s immune system that are predictive of premature 
mortality in the aged. Given the short timeframe in which a koff –rate 
assay can be performed, and the lack of unique equipment required 
to perform the assay, it would be easily integrated into the clinical 
environment. Furthermore, the quality of induced CD8+ T cell immune 
responses after vaccination are of critical importance and are able to 
be analysed with this assay. Identifying so-called non-responders early 
in vaccine development and monitoring cohort responses throughout 

the developmental course of new vaccines are two key applications of 
this assay. In the context of HIV, it has been shown that the variability 
of existing assays and the resultant inability to confidently correlate 
structural TCR-pMHC data with functional data has hampered the 
development of effective vaccines [9]. Additionally, Parida et al. [4] 
exemplify the importance of the development of both prophylactic 
and therapeutic vaccines for M. tuberculosis, as they lament that even 
with the availability and use of new anti-tuberculous medications, M. 
tuberculosis will continue to develop therapeutic resistance. Foreseeably, 
the koff –rate assay could overcome practical difficulties by permitting 
the inference of functionality from structural avidity with regard to 
vaccine-induced T cell responses in both the pre-clinical and clinical 
phases of vaccine design and testing.

Relevance to research

The applications of the koff –rate assay in basic research and clinics 
are manifold. Comparing koff –rates of T cell populations after primary 
and secondary infection with Listeria monocytogenes, we found an 
unexpectedly large variance in the koff–rates of T cells induced after 
primary infection, with a clear focussing to higher koff –rates for some 
epitope specificies after secondary infection (unpublished data). This 
observation is in line with previous findings that narrowing of the 
repertoire towards higher avidity T cells [38] is largely due to failed 
recruitment of T cells with low structural avidity into secondary 
response [39]. 

The koff –rate assay has also permitted the detailed investigation of 
chronic immune responses, further demonstrating its application to 
basic infection research. Infections in which sterilising immunity isn’t 
achieved, including the pathogens HIV, CMV, EBV, and M. tuberculosis, 
are characterised by several mechanisms to control pathogen 
replication, including memory inflation [40]. A well studied example is 
the course of CMV infection during ageing [36,37], the studies of which 
have lead to the theory of ‘The Clonal Changing of the Guard’ [41]. 
According to this theory, high avidity T cells become exhausted and 
eventually deleted during ongoing infection. Due to reduced thymic 
output of novel, potentially high-avidity T cells, they are gradually 
replaced by sub-dominant clones [42], each of which has a lower affinity 

Figure 2: koff-rate assay
a. Stable, antigen-specific identification of cells by the koff –rate assay also relies on the cooperative binding of several pMHCs to TCRs of interest. MHCs are non-
covalently multimerised to fluorescent StrepTactin via C-terminal StrepTag sequences, which terminate in a cysteine residue for fluorophore conjugation. 
b. Addition of dissolved D-biotin causes displacement of the StrepTag sequences, separation, and diffusion of the  Tactin multimer, detectable by a rapid loss of 
fluorescent intensity. Consequently, truly monomeric pMHC bound remains bound to the T cell surface and TCRs of interest.
c. Decay in fluorescent intensity over the ensuing seconds to minutes corresponds to the stochastic, monomeric dissociation and diffusion of pMHC molecules from 
their cognate TCRs, demonstrating in real-time the koff –rate of the TCR-pMHC interaction in question. 
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for MHC-presented viral antigens. This requires larger populations to 
prevent fulminant viral infection, such that global functional avidity 
is maintained, and so gradually occupy a larger proportion of the 
peripheral T cell pool. Pertinently, in a mouse model of chronic murine 
CMV infection and in accordance with this theory, we found a clear 
tendency towards inflating populations with decreasing koff –rate during 
chronic infection (unpublished data). Further investigation of immune 
phenomena using the koff –rate assay will indubitably yield new insights 
into the physiology of the adaptive immune system. 

In summary, the TCR-pMHC koff –rate assay allows for the accurate 
determination of the TCR-ligand avidity of cytotoxic T cells. This can 
be used for the identification and isolation of highly functional T cells 
to improve adoptive T cell therapy of severe infections, to monitor the 
quality of existing and induced immunity, and to gain insights into the 
course of infections in basic research.
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