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ABSTRACT

Excessive consumption of red and processed meat has been associated with a higher risk of developing colorectal 
cancer. There are many attempts to explain the risk of colorectal cancer associated with the consumption of red and 
processed meat:

• The temperature cooking of meat such as grilling and smoking contribute to the formation of mutagenic 
compounds including heterocyclic amines and polycyclic aromatic hydrocarbons.  

• Heme iron in red meat is involved in the formation of N-nitroso compounds and lipid peroxidation products in 
the digestive tract.

• Fatty red meat is involved in the production of secondary bile acids by the bacteria of the gut microbiota.

Many of the products formed are genotoxic and can cause DNA damage and initiate carcinogenesis of colorectal 
cancer. Various mechanisms contributing to their genotoxic role have been established in human and animal 
studies. In addition, there is increasing evidence that compounds formed from red and processed meat interact 
with the gut microbiota in colorectal cancer pathways. Although several early studies in animals and humans suggest 
a direct causal role of the gut microbiota in the development of colorectal cancer, the links between diet, gut 
microbiota, and colonic carcinogenesis are largely associations rather than proven causal relationships. Various 
biological mechanisms, including inflammation and oxidative stress can lead to DNA damage, gut dysbiosis, and 
therefore increase the risk of colorectal cancer. Dysbiosis of the gut microbiota may increase the risk of colorectal 
cancer through dietary component promotion of colonic carcinogenesis. In this paper, we review and update current 
knowledge about the relationships between red meat consumption, gut microbiota, and colorectal cancer.
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ABBREVIATIONS

AFA: Afimbriale Dhesin; APC: Adenomatous Polyposis Coli; AKT: 
Protein Kinase B; BA: Bile Acid; B(α)P: Benzo(Α)Pyrene; BAX: BCL2 
Associated X; BCL-2: B-Cell Lymphoma 2; Bcl-xl: B-Cell Lymphoma-
Extra-Large; CA: Cholic Acid; CagA: Cytotoxin-Associated Gene A; 
CDCA: Chenodeoxycholic Acid; CDT: Cytolethal Distention Toxin; 
CIF: Cycle-Inhibiting Factor; CNF: Cytotoxic Necrotizing Factor; 

CXCL1: Chemokine (C-X-C Motif) Ligand 1; CXCL2: Chemokine 
(C-X-C Motif) Ligand 2; CCL20: C-C Motif Chemokine Ligand 20; 
COX-2: Cyclo-Oxygenase-2;   CRC: Colorectal Cancer; DiMeIQx: 
2-Amino-3,4,8-Dimethylimidazo (4,5-F) Quinoxaline; DNA: 
Deoxyribonucleic Acid; The European Prospective Investigation into 
Cancer and Nutrition; ETBF: Enterotoxigenic Bacteroides Fragilis; 
FADA: Fusobacterium Adhesin A; FMO3: Flavin Monooxygenase 
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3; GAL-GALNAC: D-Galactose-Β (1-3)-N-Acetyl-D-Galactosamine; 
HCA: Heterocyclic Amines; IARC: International Agency for Research 
on Cancer; IFN-γ: Interferon Gamma; IL-1β: Interleukin 1 Beta; IL-6: 
Interleukin 6; IL-8: Interleukin 8; IL 17: Interleukin-17; KRAS: Kirsten 
Rat Sarcoma Virus; M3R: Muscarinic Receptor; MAPK: Mitogen‐
Activated Protein Kinase; MIR21: MicroRNA21; MUC2: Mucin 2; 
MUC5AC: Mucin 5AC; NF-κB: Nuclear Factor Kappa; NLPP3: NOD-
Like Receptor Family Pyrin Domain Containing 3; NOC: N-Nitroso 
Compounds; PAH: Polycyclic Aromatic Hydrocarbons; PI3K: 
Phosphoinositide 3-Kinases; PGE2: Prostaglandin E2; PKS: Polyketide 
Synthase; ROS: Reactive Oxygen Species; RNS: Reactive Nitrogen 
Species; TH17: T Helper 17 Cells; TMAO: Trimethylamine-N-oxide; 
TGF-β: Transforming Growth Factor Beta; TLR2: Toll‐Like Receptor 

2; TNF-α: Tumor Necrosis Factorα; TP53: Tumor Suppressor Gene.

INTRODUCTION

Colorectal cancer (CRC) is the third most common cancer, diagnosed 
in both men and women, with an estimated 1.9 million new cases 
and 935 000 deaths reported in 2020, worldwide [1-3]. However, 

substantial disparities in both CRC incidence and mortality exist by 
geographical region, as shown in Tables 1 and 2.

Rectal and colon cancers related deaths are estimated to be in 60% and 
71.5% respectively in 2035), making CRC a worldwide public health 
concern [3-5]. Of major concern, as well, is the increasing incidence 
of cases and deaths in youth  CRC pathophysiology is associated with 
multiple risk factors including diet,  diabetes, obesity, lifestyle, genes, 
and specific diseases, such as Crohn’s disease, ulcerative colitis, and 
dysbiosis [6-8]. Epidemiological studies have highlighted specific diets 
that are likely to be associated with CRC risk. On particular, a red meat 
enriched diet, low fiber intake, and heavy alcohol intake have been 
shown to adversely affect the risk of CRC [9,10]. Because of the way 
they are preserved (combination of salt, nitrate or nitrite), processed 
meats are exposed to the formation of carcinogens during the high 
temperature cooking process [11,12]. Such a long-term regimen may 
promote an increased risk of CRC. Other modifiable risk factors, such 
as low levels of physical activity, being overweight and smoking may 
increase CRC risk [13,14]. This evidence suggests that the risk of CRC 
may be reduced by diet, in addition to health behaviors.

Table 1: Region-specific incidence rates by sex for cancers of the colon and rectum in 2020.

Region

Males/ Incidence rate per 
100,000 residents

Females/ Incidence rate per 
100,000 residents

Males/Incidence rate per 
100,000 residents

Females/Incidence rate per 
100,000 residents

Colon cancer Colon cancer Rectum cancer Rectum cancer

Southern Europe 25.3 16.4 14.1 7.3

Northern Europe 23.2 18.8 15.1 8.4

Australia/New Zealand 22.8 20.0 13.6 7.7

Eastern Europe 21.1 14.0 16.9 8.9

Western Europe 20.0 15.1 13.3 6.8

Northern America 17.4 15.0 11.0 6.6

Eastern Asia 16.4 13.0 14.6 7.7

Caribbean 14.1 13.8 3.9 3.4

South America 12.8 10.8 7.2 5.0

Micronesia/Polynesia 12.3 7.9 7.0 5.0

Western Asia 11.7 8.7 7.9 5.2

South-Eastern Asia 9.5 6.3 8.5 5.3

Central America 8.7 7.0 3.0 1.9

Southern Africa 8.7 5.9 7.2 5.0

Melanesia 6.7 3.4 5.8 3.9

Northern Africa 5.9 5.4 4.1 3.4

Eastern Africa 4.2 3.5 3.5 3.1

Western Africa 4.0 2.9 3.0 2.2

South-Central Asia 3.4 2.2 2.8 1.9

Middle Africa 2.9 2.3 3.6 2.8
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Table 2: Colorectal cancer new cases and deaths by geographic region (2020).

Region New cases Deaths

Asia 957,896 (51.8%) 461,422 (52.4%)

Europe 499,667 (27.0%) 242,483 (27.5%)

North America 179,715 (9.7%)  64,105 (7.3%)

Latin America, Caribbean 128,006 (6.9%) 64,666 (7.3%)

Africa  61,846 (3.3%) 40,034 (4.5%)

Oceania  22,332 (1.2%)  8,066 (0.9%)

Of 478,040 participants enrolled in the European Prospective 
Investigation into Cancer and Nutrition (EPIC) trial who were 
prospectively followed between 1992-1998, 1,329 CRC cases were 
detected and an association with red and processed meat consumption 
was observed [15]. Recently, the International Agency for Research on 
Cancer (IARC) and World Cancer Research Fund-American Institute 
for Cancer Research (WCRF-AICR) concluded that there is sufficient 
evidence to support that high consumption of processed meat may 
increase CRC risk and that evidence of increased risk from red meat 
consumption is thought to be either putative or probable [16]. Indeed, 
excessive consumption of red meat has a significant impact on the 
composition and function of the gut microbiota [17-19]. The human 
digestive tract is home to no less than 1012 to 1014 microorganisms, 
including bacteria (the most abundant), viruses, parasites, and non-
pathogenic fungi [20,21]. The gut microbiota contains10-fold more 
cells than the human body and about 150-fold more genes than the 
human genome [22]. The gut microbiota composition changes with 
diet, sex, age, race, and lifestyle [21].  After colonization at birth to 
about 2 years of age, the gut microbiota is unique to each individual 
before becoming stable, over time [20].  In addition, environmental 
pollutants such as heterocyclic amines (HCA), polycyclic aromatic 
hydrocarbons (PAH) that contaminate red meat during cooking 
process at high temperature and the metabolic by-products (N-nitroso 
compounds, secondary bile acids, heme, trimethylamine-N-oxide 
(TMAO))  may interact with the gut microbiota and promote CRC 
carcinogenesis [17,19,23-25].  Moreover, the microbiome community 
pattern of the gut is disrupted in patients with CRC compared to 
healthy individuals [26,27].

In this paper, we review and update current knowledge regarding the 
interaction between the gut microbiota and CRC, the impact of red 
meat consumption on the gut microbiota, and the contribution of red 
meat consumption to the pathogenesis of CRC.

LITERATURE REVIEW

Red meat consumption and colorectal cancer

Numerous epidemiological and scientific studies suggest that the risk of 
CRC is increased by red and processed meat consumption [21,28,29]. 
According to WCRF/AICR reports published in 2007 and 2018, 
excessive consumption of red and processed meat convincingly increases 
the risk of CRC [30,31]. Red and processed meat was classified as a 
carcinogen at the same risk level as cigarettes and alcohol by the World 
Health Organizations International Agency for Research on Cancer in 
2015 [32]. Because of its probable carcinogenicity, red and processed 
meat has been classified as a carcinogen 2A Group [33]. The risk of 
CRC was found to be increased by 16% for an additional 50 g/day 
of red and processed meat consumption and by 22% if consumption 

increased to 100 g/day [34]. Because of its nitrite conservation 
method, processed meat may present a higher risk per gram of intake 
than red meat [35,36]. Once produced, processed meat is preserved 
by methods other than freezing, including curing (the combination 
of salt, sugar and nitrate or nitrite), drying, smoking, cooking and 
packaging. According to traditional recipes specific to regions, this 
list of processed meat and conservation methods is not exhaustive, 
as there are many other manufacturing and conservation methods 
worldwide. However, these different conservation methods expose 
the meat to carcinogenic products (N-nitroso, HCA, HAP) formed 
during the cooking process at high temperature, especially brining and 
smoking [11,12]. To date, there are no clearly established biological 
mechanisms that could explain the role of red and processed meat in 
the process of CRC carcinogenesis. However, several hypotheses have 
been formulated and tested by experimental studies to try to explain 
how red and processed meat could increase the risk of CRC as shown 
in Figure 1. Experimentally the hypotheses that were tested are: (a) 
that high-fat meat might promote CRC carcinogenesis by induction 
of cytotoxic secondary bile acid production; (b) that high temperature 
meat cooking processes form mutagenic heterocyclic HCA and PAH; 
(c) that potentially carcinogenic N-nitroso compounds (NOC) are 
formed exogenously in meat and/or endogenously by nitrosation of 
amines and amides; (d) that heme iron from red meat may promote 
carcinogenesis through the formation of NOC and lipid peroxidation 
products.

Figure 1: Read meat and processed increases CRC risk. Red and processed 
meat could promote colon carcinogenesis via different mechanisms such 
as toxic metabolites production, Lipoperoxidation and n-nitrosation, 
DNA adduct formation, and colonic inflammation. Red and processed 
meat can be contaminated by environmental pollutants, including HCA 
and PAH, during cooking. The International Agency for Research on 
Cancer (IARC) has classified the HCA and PAH as potential human 
carcinogens. The intestinal microbiota digests the proteins contained in 
ingested red meat to generate carcinogenic metabolites such as NOC, 
TMAO, and heme iron.
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Ingestion of red meat rich in fat and excessive secretion bile acid (BA) 
have been cited in several animal and human experimental studies 
as one of the factors promoting the increased risk of CRC. Primary 
BAs, including cholic acid (CA) and chenodeoxycholic acid (CDCA), 
are synthesized by the liver following the digestion of dietary lipids 
in the stomach to emulsify fats. After lipid digestion, most primary 
BAs are deconjugated and reabsorbed (enterohepatic recycling). Still, 
a small amount may pass into the colon where they are transformed 
into secondary BAs (deoxycholic acid and lithocholic acid) by colonic 
bacteria by enzyme 7α-dehydroxylation as shown in Figure 2. The 
genus Clostridium is the main 7α-dehydroxylation-producing colonic 
bacterium [22,26,37]. Mice fed with deoxycholic acid developed 
significant intestinal inflammation 24 weeks after accumulation 
of deoxycholic acid in their feces [38]. A 3 to 4-fold higher level of 
secondary BA has been reported in a study of African-Americans who 
consumed a high-fat diet compared to native Africans who consumed 
a low-fat diet, suggesting an elevated risk of CRC in African Americans 
[39]. A similar study, in 2015, based on a change in the diet of African-

Americans, from a high-fat to a low-fat diet, showed a significant 
decrease in secondary BA secretion and a decrease  inflammation of 
the colonic mucosa [40]. BA with detergent properties can damage 
the colonic epithelium when presented in high concentrations in 
the colon. This destruction of colonic cells can lead to inflammation 
and increased proliferation of stem cells in the colon, leading to a pre-
cancerous state [41]. Secondary BA may also promote the growth and 
multiplication of transformed stem cells in the colon by modulating 
the Wnt/β-catenin and M3R signaling pathways in cancer cells [42]. 
Short-term exposure to secondary BAs induce reactive oxygen species 
(ROS) production in the colon responsible for DNA damage. In 
contrast, long-term exposure causes inhibition of the tumor suppressor 
gene (TP53) or activation of the PI3K/Akt signaling pathway in 
colonic cells contributing to CRC carcinogenesis [43-46]. Through 
the farnesoid X receptor located on the nuclear membrane of colon 
cells, deoxycholic acid can mediate CRC carcinogenesis by inhibiting 
mucosal scarring in an in vivo mouse model [47].

Figure 2: CRC risk related to the consumption of high-fat red meat. A high-fat diet upregulates the production of 
primary bile acid in the stomach. Some of this primary bile acid transits into the colon, transforming it into secondary 
BA by the gut microbiota. Secondary BAs are involved in several mechanisms leading to CRC carcinogenesis, 
including producing genotoxic substances (aromatic amino acids, hydrogen sulfide) and dysfunctional gut 
microbiota metabolism.
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HCA are formed from products in processed meat (creatinine, amino 
acids, sugars) when cooked at high temperature [48]. The formation 
of HCA depends on the type of meat, temperature, time and cooking 
method. In addition to red and processed meat, poultry and fish also 
have HCA. The greatest amounts of HCA are produced during high 
temperature cooking processes such as grilling, frying and barbecuing 
[49].  The main HCA formed are 2-amino-3,4,8-dimethylimidazo (4,5-f) 
quinoxaline (DiMeIQx), amino-3-methylimidazo (4,5-f) quinolone (IQ); 
2-amino-1-methyl-6-phenylimidazo(4,5-b) pyridine (PhIP); 2-amino-
3,8-dimethylimidazo(4,5-f) quinoxaline (MeIQx); and 2-amino-3,4-
dimethylimidazo (4,5-f) quinoline (MeIQ). The International Agency 
for Research on Cancer (IARC) has classified the HCA PhIP, MeIQ, 
and MeIQx as potential human carcinogens, while IQ is considered 
a probable human carcinogen [33,50]. In 2015, a Japanese study, of 
colonoscopies of Japanese women, showed that a high concentration 
of MeIQ with exposure to PhIP was correlated with a high risk of 
CRC [51]. A European prospective cohort study of 25,540 participants 
similarly reported that PhIP was associated with a high risk of colorectal 
adenoma [52]. Conversely, several other studies have shown that an 
increase in the co-occurring concentration of the HCA DiMeIQx, 
MeIQx, and PhIP are positively associated with a significant risk of 
colorectal adenoma [49,53]. HCA are genotoxic and carcinogenic in 
animal models. They are involved in the formation of DNA adducts 
following an N-oxidation reaction catalyzed by the cytochrome P450 
enzyme and an O-esterification by N-acetyltransferases [54,55]. PAH 
are formed from high-temperature domestic cooking and industrial 
activities as a result of the incompetent combustion of organic materials 
(coal, crude oil, and gasoline).  During cooking, especially red and 
processed meat, food may be contaminated with PAH over an open 
flame.  With the same action characteristics as HCA, PAH may also 
increase the risk of CRC in humans.(49) PAH, mainly benzopyrenes or 
called benzo(α)pyrene (B(α)P), have been suspected to increase the risk 
of CRC in humans [49]. In experimental studies, particularly in mice, 
B(α)P were implicated in different mechanisms of CRC carcinogenesis, 
including DNA adduct formation, induction of oxidative stress, and 
increased expression of proinflammatory cytokines with dysregulation 
of the wnt/β-catenin signaling pathway [56,57]. 

Hughes et al. reported, for the first time in 2001, a significant excretion 
of NOC in the feces of volunteers who consumed large amounts of 
red meat [58]. NOC are formed exogenously from nitrogen oxides and 
amines or amides present in processed meat on the one hand and on 
the other hand endogenously by decarboxylation of the gut microbiota, 
followed by n-nitrosation in presence of nitrite [15,49]. These are most 
often found in certain processed foods such as smoked cheese, smoked 
fish, cold cuts, ham, sausages. It has been shown that heme iron lead to 
increased endogenous formation of NOC including N-nitrosothiols, 
and nitrosylated heme in the gastrointestinal tract during digestion 
of red meat [59]. These NOC formed can alkylate guanine at the 
O6 position on DNA resulting in the formation of promutagenic O 
6-methylguanine and O 6-carboxymethylguanine lesions, which if not 
repaired quickly by the DNA repair enzyme O 6-methylguanine-DNA 
methyltransferase, could lead to genetic mutations and subsequently 
to the development of CRC [60-62]. Furthermore, in another study, 
a group of DNA adducts related to NOC and lipid peroxidation were 
identified as potential markers of red meat digestion. These DNA 
adducts include methylguanine; 3,N4-etheno-C; guanidinohydantoin; 
carboxyethyl-T; dimethyl-T; hydroxymethyl-T; tetramethyl-T; 
6-carboxymethylguanine; and hydroxyethyl-T [63]. In addition, DNA 
adducts related to nitroso compounds and lipid peroxidation have 
been implicated in multiple genetic alterations by causing mutations 
in key colon cancer genes such as Adenomatous Polyposis Coli (APC), 

tumor suppressor gene  (TP53)  and Kirsten rat sarcoma virus (KRAS) 
[64]. 

This evidence suggests that NOC, formed from red and processed 
meat, can promote the development of CRC by inducing mutations in 
key tumor suppressor genes, including APC and TP53, and oncogenes 
such as KRAS.

The carcinogenic role of heme iron in red and processed meats is 
supported by numerous epidemiological and experimental studies 
[64,65]. Three main mechanisms of heme-induced colorectal 
carcinogenesis have been described: cytotoxicity of heme by 
accelerating programmed cell death and epithelial hyperplasia; 
heme-induced lipid peroxidation and DNA adduct formation and 
mutation of the APC gene; and  heme catalysis of NOC resulting 
in genetic mutation as explained above [66-69]. Heme is catalyzed by 
transforming hydroperoxides into ROS [64]. The ROS formed have 
been suspected of being responsible for the cytotoxic effect of heme, 
according to a study by Pierre et al. in 2007 [70]. An in vitro study, 
performed on colonic cells, showed that a heme concentration higher 
than 100 µM resulted in colonocyte toxicity [71]. Heme increases 
the membrane permeability of the colonocytes, which subsequently 
leads to cell lysis.(64) Similarly, in 2012, Ijessennagger et al. showed 
that mice fed a high heme concentration during the first two days old 
exhibited acute oxidative stress of their colonocytes, as revealed by the 
release of Vnn1, a marker of oxidative stress. Cross et al., in 2003, in 
an evaluation of the effect of heme iron supplementation of a red meat 
diet, showed a significant increase in the fecal concentration of NOC 
[72]. Similarly, in 2010, they found a strong correlation between CRC 
risk and consumption of heme iron, nitrates, and processed meat [73]. 

The mechanism of trimethylamine–N-oxide (TMAO)-mediated CRC 
carcinogenesis in humans and animals has been examined in several 
studies [74]. TMAO is a metabolite of the gut microbiota produced 
from precursor molecules (choline, L-carnitine, phosphatidylcholine, 
betaine), which are abundantly present in red meat, egg yolk, dairy 
products, fish, vegetables, and fruits. The precursors of TMAO are 
converted to trimethylamine by the gut microbiota, then absorbed 
in the small intestine, and transported by the portal vein to the 
liver where they interact with flavin monooxygenase 3 ( FMO3) and 
produce TMAO [26,75]. 

 The inescapable role of the gut microbiota in the generation of TMAO 
was demonstrated by a study of antibiotics given to human subjects for 
one week to eliminate the gut microbiota [76]. The elimination of the 
gut microbiota by antibiotics was positively associated with decreased 
plasma and urinary TMAO levels compared to untreated controls. 
The same phenomenon has been reported in animal experiments 
[77]. In 2014, a study showed a correlation between plasma TMAO 
levels and CRC in women with low plasma vitamin B12 levels [78]. 
A similar study, in 2017, revealed that the precursor choline was 
associated with a 3-fold increased risk of CRC in men with elevated 
blood levels [79]. Evidence has suggested that TMAO may promote 
inflammation via various mechanisms, including increased expression 
of pro-inflammatory genes (cytokine genes, IL6, TNF-α, and chemokine 
ligands CXCL1, CXCL2) and increased pro-inflammatory effects 
mediated by H. pylori infection in the stomach [80-84]. The generation 
of N-nitroso compounds, known as genotoxic agents, is another 
mechanism of TMAO involved in the carcinogenesis of CRC [85]. It 
may also be involved in NLRP3 inflammasome activation and ROS 
production in human colonic cells, preventing their down-regulation 
[86]. In view of this evidence, CRC carcinogenesis may be activated by 
TMAO pro-inflammatory roles.
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Red meat consumption and gut microbiota

The interaction between compounds formed from red meat directly or 
indirectly after its ingestion, including N-nitroso compounds (NOC), 
heterocyclic amines (HCA), polycyclic aromatic hydrocarbons (PAH), 
heme iron, bile acids (BA), Trimethylamine-N-oxide (TMAO) and the 
gut microbiota has been reported in numerous animal and human 
studies as shown in Table 3. Naturally, the number of NOC-producing 
bacteria (Escherichia, Pseudomonas, Proteus, Klebsiella, and Neisseria) is 
low in humans, but may increase with a diet rich in nitrates or nitrites 
[32,87-89]. Nitrates are found in high concentrations in processed 
meats and in certain foods, such as vegetables (beets, celery, lettuce, 
radishes, spinach) [90]. Nitrate ingested through these foods is reduced 
to nitrite by oral and digestive tract bacteria. The nitrites once formed 
react with amines, amides and other precursors by nitrosation in the 
gastrointestinal tract to form NOC compounds. Animal studies have 
shown that NOC compounds are potent carcinogens in animals [91-
93]. In mice, for example, the colon in mice with colitis is enriched 
with E. coli during an intestinal inflammatory response mediated by 
nitrate compounds [17]. Previous studies have not been able to provide 
consistent evidence of an association between exposure to NOC and 
an increased risk of CRC in humans [94,95]. A study of European 

populations showed an association between N-nitrosodimethylamine 
from food sources and increased risk of CRC [94]. Although there have 
been few studies of NOC compounds and increased risk of CRC, there 
is strong evidence of an association between red and processed meat 
consumption and increased risk of CRC [28-32]. Therefore, excessive 
consumption of processed meat can lead to intestinal dysbiosis and a 
high risk of CRC carcinogenesis by promoting the multiplication of 
NOC-producing bacteria [26,96,97]. 

It is not known, however, whether or not the combined action of 
nitrate-induced E. coli multiplication and the formation of NOCs 
are responsible for promoting inflammation or the development 
of CRC. Exposure of mouse models to PAHs also causes change in 
the composition of the gut microbiota after colonic inflammation. 
In humans, PAHs and HCAs altered the volatile profile of the fecal 
microbiota and their metabolite activities after high exposure of the 
gut microbiota over 24 hours to these substances [23,98,99]. 

Certain bacteria may reduce the risk of CRC associated with HCA 
consumption in the gut microbiota (e.g., Eulonchus halli) through 
their beta-glucuronidase and glycerol/diol dehydratase activities that 
convert HCA to HCA-M1 [99,100]. 

Food ingredients Derived compounds
Action of derived compounds on 

gut microbiota
Action of gut microbiota on 

derived compounds
References 

Read and processed meat

 
NOC

Promotes selective growth of NOC-
producing bacteria, creating a state 

of dysbiosis that is the origin of 
CRC.

-
(89)

HCA and PAH

Promote colonic inflammation 
by altering the abundance, 
composition and metabolic 

activities of the gut microbiota.

Transform HCA and PAH 
into less toxic substances.

(23,99,100,193–195)

TMAO -

Involved in the synthesis 
of TMAO from precursors 

such as choline, L-carnitine, 
phosphatidylcholine, and 

betaine.

(76,196-198)

Heme

Increases proteobacteria and 
Bacteroides abundance; reduces 
Firmicutes and Deferribacteres; 
promotes adenoma formation; 
decreases stool butyrate levels.

Increased heme-induced 
lipoperoxidation, 

hyperproliferation of colonic 
tissue.

(18,19,102,199)

Fats
Secondary BA

Increases the ratio of Firmicutes/
Bacteroidetes, which is associated 
with obesity; also promotes the 

increase of mucin-degrading 
Actinobacteria; reduces the 

abundance of Bifidobacterium, 
Lactobacillus and Akkermansia 

considered as the good bacteria of 
the gut microbiota.

Transforms primary bile 
acids into secondary bile 

acids which are involved in 
inflammatory bowel diseases.

(26,27,44,200,201)

Note: HCA: heterocyclic amines, PAH: polycyclic aromatic hydrocarbons NOC: N-nitroso compounds, Secondary BA: secondary bile acids, TMAO: 
trimethylamine-N-oxide

Table 3: Interactions between red meat-associated agents and gut microbiota that may increase CRC risk.
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The production of TMAO from precursors such as choline, L-carnitine, 
phosphatidylcholine, and betaine is influenced by the gut microbiota 
in humans [24]. TMAO precursors are biodegraded by gut microbiota 
to generate pro-inflammatory molecules. The Eubacterium limosum 
has proved to be very effective in converting TMAO precursors by 
demethylation of L-carnitine and reducing the amount of TMAO 
produced in the gut [101]. Mice receiving a diet rich in heme increased 
the number of bacteria such as Proteobacteria or Bacteroidetes 
accompanied by a reduction of Firmicutes bacteria and Deferribacteres 
in their intestine [18,19,102]. 

Other infectious agents, including viruses bovine origin, 
thermoresistant, and potentially oncogenic, have also been reported 
as agents that may be involved in the process of CRC carcinogenesis 
[103]. Nowadays, only the transmission of heat-resistant bovine viruses 
during the meat consumption is suspected as an infectious factor 
involved in the mechanisms of CRC carcinogenesis [104]. These are 
mainly polyomaviruses, papillomaviruses, and probably the Torque 
Teno virus (TTV). Once consumed through beef contaminated by 
environmental substances or by substances generated during the 
cooking of the meat (HCA, PAH) these viruses could initiate CRC 
by synergistic interaction with these substances [103]. However, no 
experimental evidence has shown a direct correlation of these infectious 
agents with CRC development. This new hypothesis deserves further 
attention and exploration.

 Based on this evidence, the gut microbiota and compounds derived 
from red meat appear to have close interactions that may influence the 
composition of the gut microbiota leading to protection against CRC 
or exposure to CRC risk.

Interaction between gut microbiota and colorectal cancer

In 1975, for the first time, the link between gut microbiota and CRC 
was established in germ-free compared to conventional rats, with the 
development of a colorectal tumor after chemical induction [105]. 
They found that 93% of the conventional rats developed multiple 
colon tumors and only 20% of the germ-free rats developed colon 
tumors. After subcutaneous injection of azoxymethane in both 
groups of rats, the incidence and multiplicity of colonic tumors were 
increased in germ-free rats compared to conventional rats [106]. Gut 
microbial dysbiosis in mice was observed during both spontaneous 
and chemically induced colon tumorigenesis. The diversity of the gut 
microbiota was reduced in C57BL/6J Apc Min/+ mice compared 
with wild-type C57BL/6J mice [107]. Since then, several studies found 
disruption of some microorganisms in the gut microbiota of patients 
with CRC compared to healthy controls [108]. CRC patients showed 
a reduction in bacterial diversity and richness compared to healthy 
individuals [109].

Whole genome sequencing of gut microbial species has allowed 
researchers to study the microbial communities that colonize 
colonic tumors as well as non-tumor colonic sites and to characterize 
individual oncogenic microbiomes [110]. The proliferation of certain 
bacterial populations including Helicobacter pylori (H. pylori), Escherichia 
coli (E.coli), Streptococcus bovis (S. bovis), Enterococcus faecalis (E. faecalis), 
Clostridium septicum (C. septicum), Fusobacterium nucleatum (F. nucleatum), 
Enterotoxigenic Bacteroides fragilis (ETBF) and Streptococcus gallolyticus 
(S. gallolyticus ) were suspected as factors promoting CRC [108,111]. To 
better understand the role of the gut microbiota in the carcinogenesis 
and progression of CRC, hypotheses have been proposed. For 
example, the driver–passenger model has been proposed to classify 
commensal bacteria into two different groups, the driver bacteria 
and the passenger bacteria [112]. Driver bacteria cause DNA damage 

in colonic cells, that can initiate or cause CRC progression in the 
first spatial location, then the tumor microenvironment changes to 
promote infiltration and proliferation of passenger bacteria that may 
be dominant later in the colonic tumor site. This model attempts to 
explain that the driver bacteria in initiating CRC, will not always exist 
as an oncogenic marker in the tumor environment, but will disappear 
and will be replaced by passenger bacteria in the cancerous tissue. This 
model can help to clearly understand the discrepancy between results 
in different studies, clarifying the ambiguous relationship between gut 
microbiota and CRC.

The other model proposed is the keystone model, which supports the 
role of a key pathogen in the process of dysbiosis associated with a 
given disease [113]. This hypothesis is not based on the abundance 
or level of strength of the microbiota related to the disease, but on 
its functions that contribute to dysbiosis and its maintenance. For 
example, Klebsiella pneumonia and Proteus mirabilis could be treated as 
key pathogens of inflammatory bowel disease, and the role of ETBF in 
CRC. This model may provide new insights to review the potential role 
of gut pathogens in the initiation and progression of related disorders.

The potential role of F nucleatum in CRC carcinogenesis has been 
reported through studies [114]. Analysis of rectal mucosa, feces, and 
tumor samples from CRC patients showed a high prevalence of bacteria 
belonging to the genus Fusobacterium compared to healthy subjects or 
remotely adjacent healthy mucosa in these same CRC patients [115]. 
F. nucleatum infiltrates the colonic tumor through its adhesin (FadA), 
selectively binding to E-cadherin and activates the β-catenin signaling 
pathway, inducing inflammatory responses allowing CRC progression 
[116]. F. nucleatum also inhibits T cell and natural killer cell activity 
through another adhesin, fibroblast activation protein 2 (Fap2), 
which binds to T cell immunoglobulin and the ITIM domain [117]. 
Fap2 adhesin is used by F. nucleatum to infiltrate the colonic tumor 
by binding to the carbohydrate moiety D-galactose-β (1-3)-N-acetyl-
D-galactosamine (Gal-GalNAc), which is overexpressed in CRC cells 
[118]. Interleukin IL-17A is highly expressed in CRC patients with F. 
nucleatum-enriched colonic tumors [119]. A recent study showed that 
CRC cell metastasis was dependent on the F. nucleatum adhesin Fap2, 
which induced the secretion of the pro-inflammatory cytokines, IL-8 
and CXCL1 [120]. The carcinogenic property of F. nucleatum in Apc 
Min/+ mice and in human CRC cell lines was indicated by Nuclear 
factor-kappa B (NF-κB) activation which in turn induced miR21 gene 
expression promoting inflammatory responses [121]. Another recent 
study showed that F. nucleatum was significantly increased in patients 
with early stage CRC and that the presence of F. nucleatum in CRC 
tissues is associated with a poor prognosis of the disease [122,123,124].

Several studies have reported the link between ETBF and CRC and 
its use as a potential biomarker in the diagnosis of CRC [125-127]. 
ETBF secretes a 21 kDa B. fragilis toxin (BFT) that cleaves E-cadherin 
on colonic epithelial cells resulting in disruption of the colonic 
barrier [128]. The disrupted colonic barrier causes diarrhea and 
inflammatory bowel disease [129,130].  A recent study reported that 
E. faecalis and ETBF copy number were significantly higher in CRC 
tissue samples compared to the no CRC group [130]. Infection of 
Apc Min/+ mice with ETBF induced selective activation of Signal 
transducer and activator of transcription 3 ( STAT3) with CRC 
characterized by Th17 responses. ETBF promotes CRC progression 
by secreting particles that stimulate colonic epithelial cells to produce 
exosome-like nanoparticles containing high levels of sphingosine-1-
phosphate, CCL20, and prostaglandin E2 (PGE2) that are required 
for recruitment of Th17 cells into CRC tissues to support their growth 
and survival [131]. ETBF also plays an important role in mediating 
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inflammatory responses during CRC carcinogenesis and chronic 
inflammatory bowel disease by activating the NF-κB signaling pathway 
to recruit immature polymorphonuclear myeloid cells [132,133]. 
ETBF promoted inflammation and CRC cells multiplication by 
downregulating exosomal miR-149-3p both in vitro and in vivo [134].

The pilus 3 (pil3) of S. gallolyticus is essential for its attachment to human 
mucus-producing epithelial cells (135). Interestingly, pil3 binds both to 
the human mucin 2 (MUC2), which predominates in healthy colonic 
tissue, and to mucin 5AC (MUC5AC), which is overexpressed in 
cancerous colonic tissue [135]. It has been postulated that commensal 
colonization of S. gallolyticus is facilitated by its binding to the mucin 
MUC2, while it’s binding to MUC5AC gives a growth advantage to 
bacterial species of the gut microbiota in the tumor microenvironment 
[136]. This helps explain the higher carriage rate of S. gallolyticus in 
the presence of colonic tumors. Colonic epithelial cells from CRC 
patients showed high NF-κB gene expression in the S. gallolyticus-
positive group compared with the S. gallolyticus-negative group [137]. 
NF-κB plays an important role in mediating inflammatory responses 
during chronic inflammatory bowel disease and CRC carcinogenesis. 
In another study the same authors showed strong expression of IL-1 
and Cyclo-oxygenase-2 (COX-2) genes by colonic cells of S. gallolyticus 
seropositive CRC patients, both of which are products of NF-κB 
activity [138].

E. coli, is an anaerobic gram-negative commensal bacterium, commonly 
found in the intestinal microenvironment. Some groups of E. coli 
called pathotypes belonging mainly to the B2 and D phylogroups have 
been identified as potentially oncogenic and pro-inflammatory [139]. 
Several studies have linked these pathogenic E. coli groups to CRC 
risk. Enrichment in B2 and D phylogroups was reported in CRC 
patients compared to control subjects (without CRC) [140]. Indeed, 
these phylogroups were identified in 90% and 93% of adenoma and 
carcinoma patients, respectively, while only 3% of colon biopsies from 
asymptomatic controls were positive for these phylogroups. A similar 
study showed that among 21 CRC patients 70% had E. coli enriched 
colorectal tissue, compared with 42% of 24 control biopsies without 
CRC [141]. In addition, many other studies have confirmed the 
enrichment of tumor tissues with E. coli in CRC patients compared to 
healthy subjects [142-144]. Therefore, a link between these pathogenic 
E. coli groups and CRC risk has been proposed through several studies. 
Nevertheless, the mechanism involved is very poorly understood to 
date. But according to studies, pathogenic E. coli strains producing 
cyclomodulins, and toxins are responsible for induction of DNA 
damage and cell cycle disruption in eukaryotes [131,139,145]. A high 
prevalence of cyclomodulin and toxin-producing E. coli was observed in 
CRC patients compared to healthy subjects [139,143]. These genotoxic 
toxins include the polyketide synthase (pks) pathogenicity responsible 
for colibactin expression, cytolethal distention toxin (CDT), cytotoxic 
necrotizing factor (CNF), cycle-inhibiting factor (CIF), and afimbriale 
adhesin (afa) [144,146,147]. The pks genomic island codes for the 
polyketide-peptide genotoxin, colibactin [148-150]. Culture of 
mammalian epithelial cells exposed to pks+ E. coli to show transient 
DNA damage [149]. According to experimental studies, colibactin 
could promote tumor growth by forming cross-links with DNA in 
cellulo as an alkylating agent, and DNA double-strand breaks or by 
promoting the emergence of senescent cells with an irreversible cell 
cycle arrest [151,152]. In AOM/IL10-/- or ApcMin/+ mouse models 
with chemo-induced tumor, infection with colibactin-producing E. 
coli strains induced an acceleration of tumor development compared 
to uninfected control mice or mice infected with a non-colibactin-
producing mutant of these strains, or animals infected and treated with 
molecules inhibiting colibactin synthesis [139,142,144,153]. CNF toxin 

binds to the tight junctions of colonic epithelial cells which internalize 
it by endocytosis and promotes cell proliferation by encouraging entry 
into the cell cycle and the G1/S transition for cell survival by inducing, 
in particular, the expression of the anti-apoptotic proteins Bcl-2 
(B-cell lymphoma 2) and Bcl-xl (B-cell lymphoma-extra-large) [154]. 
CIF promotes actin cytoskeleton rearrangement and induces G2/M 
cell cycle arrest characterized by inactive phosphorylation of cyclin-
1-dependent kinase, an essential player in cell cycle regulation [155]. 
CNF-1 also induces transient activation of COX-2 and Rho GTPases 
characterized by alterations in the cytoskeleton and thus affects the cell 
cycle [156,157]. The CDT toxin secreted by pathogenic E. coli strains 
is known to have DNAase activity resulting in DNA double strand 
breaks, cell division arrest and inhibition of cell apoptosis [157].

Like E. coli, E. faecalis is part of the facultative anaerobic Gram-positive 
commensal flora and does not appear to be offensive to humans. 
However, studies have shown enrichment of CRC patients’ fecal 
samples and tumor tissues by E. faecalis compared to those healthy 
individuals [158,159]. A recent study found that E. faecalis species was 
significantly lower in obese patients than in non-obese patients with 
CRC [160]. Similarly, the abundance of E. faecalis was relatively higher 
in obese subjects than in non-obese subjects. This study demonstrated 
that a reduced presence of E. faecalis may be associated with obesity-
related CRC carcinogenesis. Another recent study conducted on 
256 fresh frozen CRC tissues detected E. faecalis in 193 of the 256 
CRC tissues [161]. E. faecalis bacteremia was observed in an 86-year-
old white male during a secondary gastrointestinal hemorrhage with 
confirmation of colorectal adenocarcinoma by colonoscopy [162]. E. 
faecalis was able to promote and maintain colitis in Il10-/- or Il10 gene 
deficient mice with induction of rectal dysplasia and carcinoma [163]. 
Intestinal epithelial cells from wild-type mice expressed the cytokine 
TGF-β upon infection with colitogenic E. faecalis, thereby activating 
Smad signaling. Interestingly, these mice lost toll‐like receptor (TLR2) 
expression with NF-κB-dependent pro-inflammatory gene inhibition, 
in contrast to Il10-/- mice that failed to inhibit TLR2 receptor-mediated 
pro-inflammatory gene expression in intestinal epithelial cells upon 
colonization by E. faecalis. (163) Blood isolates of E. faecalis have also 
been associated with the production of extracellular superoxide (O2-
)  and hydrogen peroxide (H2O2) in the intestine [164,165]. These 
extracellular free radicals induced DNA damage in the studies [165]. 
Similarly, E. faecalis is able to induce DNA damage in vivo in colonic 
cells in rats. Extracellular infection of mammalian cells by E. faecalis can 
result in the production of superoxide (O2-) leading to overexpression 
of COX-2 in macrophages and promotes chromosomal instability in 
primary colonic epithelial cells [166]. Similarly E. faecalis is able to 
polarize colonic macrophages into an M1 phenotype, which in turn 
induces aneuploidy and chromosomal instability in colonic epithelial 
cells commonly found in cancers [167]. These data may explain the 
mechanisms by which E. faecalis exerts its impact on CRC.

McCOY WC et al. first established the link between S. bovis and 
CRC in 1951 [168]. Subsequently, around 1977, the S. bovis strain was 
isolated from stool samples of 35 out of 63 CRC patients compared 
to 11 out of 105 control individuals without CRC [169]. Subsequent 
studies have confirmed the link between S. bovis and CRC [170,171]. 
According to an in vitro study carried out in 2004, infection of 
colonic cells by S. bovis induced an overexpression of pro-inflammatory 
mediators, notably IL-8, COX-2 and PGE2 [172]. Other animal studies 
have confirmed the carcinogenic properties of S. bovis. Azoxymethane-
treated rats confirmed the release of pro-inflammatory mediators after 
infection with S. bovis, which explains the increase in the number of 
aberrant crypts. Interestingly of the azoxymethane-treated rats, three of 
the six treated rats developed polyps during S. bovis infection, whereas 
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no polyps were detected in the uninfected azoxymethane treated rats. 
Hyperproliferative crypts were also detected in azoxymethane-treated 
rats with S. bovis infection, demonstrating the involvement of this 
bacterium in CRC carcinogenesis [173]. Through samples of human 
origin including stool, tumor and non-tumor CRC tissues, studies 
have shown an enrichment of this bacterium in these samples in CRC 
patients compared to control subjects without CRC [138]. Studies 
have also reported significant overexpression of mRNAs that encode 
the proinflammatory mediators IL-1β, COX-2, and IL-8 in S. bovis-
infiltrated tissues compared with non-infiltrated tissues. Similarly the 
expression of these mRNAs was elevated in tumor tissues compared 
to non-tumor tissues. The pro-inflammatory profile of S. bovis may 
increase the risk of CRC development and progression.

 H. pylori is a gram-negative bacterium that preferentially infects and 
colonizes gastric tissue in humans. Although most infected individuals 
remain asymptomatic, H. pylori can induce chronic inflammatory 
responses increasing the risk of gastric ulcer, and adenocarcinoma 
of the stomach [174]. Despite gastric colonization by H. pylori, it has 
been shown that its toxicity can extend outside the stomach. The 
link between H. pylori infection and CRC remains controversial with 
studies showing a strong association with a high prevalence of H. 
pylori infection in patients with colonic adenomas and carcinomas 
[175,176]. While other studies have shown no association [177,178]. 
Many recent studies have reported a significant association between 
H. pylori infection and an increased occurrence of CRC [179–181]. 
Similarly Yan et al. showed a positive association between H. pylori 
infection and CRC. Despite the ambiguity between some studies on 
the link between H. pylori infection and CRC, others have attempted to 
explain the molecular mechanism underlying the potential association 
between H. pylori infection and CRC with some supporting hypotheses 
such as toxin release, dysbiosis and chronic inflammation. For 
example, significant gastrin secretion mediated by H. pylori infection 
was associated with increased expression of COX-2 and anti-apoptotic 
B-cell lymphoma 2 (BCL2) protein compared to pro-apoptotic BCL2 
Associated X(BAX) protein resulting in decreased apoptosis in CRC 
[182]. High gastrin production disrupts gastric acid production 
and the gastric barrier, leading to an imbalance in the intestinal 
microbiota [183]. This dysbiosis could facilitate the colonization and 
multiplication of oncogenic bacteria associated with CRC such as 
B. fragilis and E. faecalis. Other mechanisms of CRC carcinogenesis 
mediated by H. pylori infection have been proposed. These include the 
production of ROS and reactive nitrogen species (RNS) that can lead 
to DNA damage, which could promote CRC carcinogenesis [184]. In 
addition, H. pylori strains toxicities’ vary from patients. For example, 
strains that carry the virulence factor cytotoxin-associated gene A 
(CagA) are more toxic than those without, and patients with these 
strains have an increased risk of developing gastric cancer and CRC 
compared to those without [185]. The VacA protein secreted by these 
H. pylori strains can induce production of pro-inflammatory mediators 
such as TNF-α, IFN-γ, IL-1β, IL-6 and IL-8 by infected cells [186,187]. 
The toxins secreted by H. pylori give it a pro-inflammatory property that 
can promote gastric and CRC carcinogenesis.

C. septicum is a Gram-positive, anaerobic, spore-forming bacillus, which 
is not normally present in the intestinal flora, but can cause direct and 
spontaneous infections in the gut.

This bacterium produces alpha-toxin, a virulence factor which is both 
lethal and hemolytic in mice [188]. Several studies have reported a 
probable association between C. septicum infection and CRC [189-

191]. This association may be due to the hypoxic and acidic tumor 
environment that favors germination of C. septicum spores [190]. 
Eighty percent (80%) of patients infected with C. septicum were 
associated with malignancy. The alpha-toxin-producing C. septicum 
group is associated with the release of TNF-α after activation of the 
mitogen‐activated protein kinase (MAPK) pathway, which has been 
shown to be dysregulated in cancers [192-201]. This pro-inflammatory 
property of C. septicum may promote carcinogenesis. However, despite 
available data, no direct link between C. septicum and CRC has been 
defined to date.

DISCUSSION AND CONCLUSION 

This review examined current knowledge about risk factors of 
CRC carcinogenesis.  Red and processed meat consumption and 
its interaction with the gut microbiota are found to be major 
associated factors. The CRC-associated gut microbiota is made of 
pro-inflammatory or pro-carcinogenic bacteria and opportunistic 
pathogenic bacteria that enrich the tumor microenvironment by 
promoting disease progression. Bacteria such as E. coli, S. gallolyticus, 
and F. nucleatum are frequently initiators of colonic carcinogenesis 
through virulence factors and responsible for CRC progression after 
their infiltration into the tumor microenvironment. Animal and 
human experimental studies also strongly support the evidence of 
diet being a major risk factor for CRC. More longitudinal clinical 
studies are needed to confirm and better understand the mechanisms 
underlying the diet-mediated disruption of gut microbiota in humans 
and establish the direct cause and impact that dysbiosis has on the 
initiation and progression of CRC.
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