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Introduction
Regulatory T cells, or Tregs, have been shown to play a major 

role in reducing Th2 cell proliferation, potentially reducing (often 
significantly) airway-associated inflammation seen in airway diseases, 
such as asthma. These cells are characterized as a sub-population of T 
cells that maintain peripheral tolerance through a variety of biological 
mechanisms. Although Tregs make up only 5-10% of peripheral CD4+ 

T cells, these cells are nonetheless very potent suppressors of the 
inflammation, airway hyperresponsiveness, and airway remodeling. 
This review will discuss the history of Tregs, the role of Tregs play in the 
reduction of asthma and lung inflammation, and age- and gender-
associated differences in Tregs.

Regulatory T cells
In the late 1960s it was noted that certain CD4+ T cells in normal 

mice exhibited suppression against autoimmunity [1]. In 1971 Gershon 
and Kondo [2] noted that the transfer of splenocytes from tolerized 
but otherwise normal mice induced tolerance in athymic mice. The 
following year, these cells were termed “suppressor T cells” by Gershon 
et al. [3]. As the technology of that era did not allow for phenotypic 
analysis due to a lack of an identifiable marker for these then-termed 
suppressor cells, these findings were not explored. Nearly a quarter of 
a century later Sakaguchi’s group noted that a distinct population of 
CD4+ T cells that expressed the alpha chain of the IL-2 receptor (CD25) 
also prevented autoimmunity [4]. Not long after, Sakaguchi’s lab and 
Shevach’s group independently demonstrated that CD4+CD25+ T cells, 
anergic upon stimulation, were able to suppress IL-2 production as 
well as cellular proliferation of activated CD4+ T cells in vitro [5-6] in 
a cell-to-cell contact-dependent manner. As a result, CD25 became a 
reliable and widely-used surface marker of these suppressor cells. In the 
ensuing decades these cells became known as regulatory T cells, or Tregs.

The high-affinity IL-2 receptor, CD25, has been widely used as 
a surface marker for the identification of Tregs. However, while Tregs 
express this surface marker, so do recently-activated T cells. A more 
definitive marker for Tregs was needed to distinguish these cells from 
recently-activated T cells. As early as 1982 immune dysregulation 
polyendocrinopathy enteropathy x-linked syndrome, or IPEX, was 
described in humans [7]. This disease, which manifests itself as a severe, 
multisystem autoimmune and inflammatory disease, generally arises 
during prenatal stages. A similar disease in mice, Scurfy, was described 
in 1991 [8]. Both conditions are due to a deficiency in the gene expression 
of a transcription factor, known as forkhead box protein 3, or Foxp3 
[9-11]. In 2001 Schubert demonstrated that this transcription factor 
regulated T cell activation [12]. Two years later it was demonstrated 
that Foxp3 is required for the development and function of Tregs [13]. 
Indeed, forced expression of Foxp3 in conventional T cells imparts a 
Treg-phenotype [14,15]. The nuclear protein Foxp3 soon emerged as 
the most reliable marker for Tregs. Although Tregs exhibit anergy in vitro, 
these cells rapidly proliferate upon encountering a cognate ligand [16-
19] or upon adoptive transfer into lymphopenic mice in vivo [16,20];
antigen-specific Tregs will certainly proliferate in vivo [18,21].

Since the re-discovery of these cells, a number of subpopulations 
of Tregs have been identified. Natural Tregs (or nTregs) are CD4+Foxp3+ 
cells that originate in the thymus [22] during ontogeny and enter the 
periphery as fully-functional Tregs. In the thymus, the Treg repertoire is 
thought to be shaped largely in the medulla, where the bulk of Foxp3+ 
cells are found (few Foxp3+ cells are found in the cortex [23]). However, 
it has been shown that in mice that express MHCII in the cortex 
exclusively are still able to develop Tregs, indicating that Treg commitment 
can also take place in the cortex [24]. A second group of Tregs known as 
adaptive, or induced Tregs (iTreg) acquire Foxp3 in the periphery [25]. 
In this case a naïve (CD4+CD25-) T cell acquires the transcription 
factor Foxp3 and differentiates into an iTreg. Initially it was thought 
that iTregs were functionally and phenotypically identical to nTregs. 
However, it has recently been shown that while the transfer of nTregs 
into Foxp3-deficient mice increases survival, iTregs (generated in-vitro) 
fail to do so [26], indicating functional differences between natural and 
peripherally-induced Tregs. These cells differ in other ways. While nTregs 
are strongly biased towards autoreactive TCR-specifications, express 
Foxp3 constitutively [27,28], and require TNF-α signaling for in vivo 
function, inducible Tregs do not [29]. Other populations of Tregs have 
been identified in recent years, including CD8+ suppressor cells [30], 
IL-10-producing Tregs (known as ‘Tr1’ cells) [31], and transforming 
growth factor-β-producing (or ‘TGF-β-producing’) Tregs [32]. Although 
not classified as a “regulatory cell” there are other cell populations that 
can exhibit suppressive and/or regulatory functions, such as dendritic 
cells [33], gamma delta T cells [34], NK cells [35], and CD4-CD8- T 
cells [36-40]. 

Regulatory T Cells and Asthma
Asthma is a chronic respiratory disease characterized by recurrent 

attacks of impaired breathing of differing intensities and results from 
an inappropriate response to otherwise normally harmless stimuli. 
Characterized by wheezing, chest tightness, and dyspnea, one of the 
hallmarks of asthma is reversible airway narrowing and/or airway 
hyperresponsiveness (AHR) to bronchoconstrictor stimuli [41,42]. 
Asthma presents itself in two separate stages. The first (acute stage, 
or early-phase) response occurs within seconds to minutes following 
exposure to an allergen. Histamine is released which leads to the 
degranulation of mast cells followed by cytokine, leukotrienes, and 
prostaglandin production. The sequence of events leading to the 
development of immediate hypersensitivity involves the production 
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of immunoglobulin E (IgE) antibodies in response to the allergen, 
followed by the production and binding of specific IgE antibodies 
[43] and high-affinity FceRI receptors on pulmonary sub-mucosal 
mast cells [44]. Mast cell activation leads to a multitude of signaling 
pathways which in turn cause immediate hypersensitivity reactions. 
When degranulated, mast cells stimulate the release of inflammatory 
mediators (e.g. histamine) that increase mucus secretion and tissue 
permeability and an increased contraction of airway smooth muscle 
tissue [45]. Although antigen-specific IgE plays a major role in the 
early phase, particularly in bronchoconstriction, the main role of IgE 
is immediate hypersensitivity through IgE binding to high-affinity 
IgE (FcεR1) or low-affinity (FcεRII) receptors on a number of cells, 
including mast cells [46]. 

The second stage is termed the late-phase response and involves 
an inflammatory cascade of macrophages and leukocytes (T cells, 
lymphocytes, eosinophils, and neutrophils) following the release 
of the above inflammatory cascade (leukotrienes, prostaglandins, 
and cytokines as well as chemokines, eosinophil chemoattractant 
factors, adhesion molecules, and matrix metalloproteinases). The 
cells produced typically contain a high proportion of lymphocytes, in 
particular eosinophils. While Th1 cells may be involved in the effector 
phase in allergic disease, they may also dampen allergic inflammation; 
in contrast Th2 cells, via the cytokines IL-4, -5, 9, and -13, recruit 
eosinophils and cause smooth muscle contraction and IgE synthesis 
via B cells [47]. Tregs are able to regulate B-cell antibody production 
[48] and have been shown to inhibit these Th2 responses [49]. It is 
thought that an increase in IgG4 isotype antibodies can block IgE-
facilitated allergy[50] and that the generation of allergy-specific Tregs, 
along with IL-10 and TGF-β [ 51], are very important early events 
during the allergic response. Due to the levels of IgE production and 
the accompanying eosinophilia evident following an attack, asthma is 
considered to be a Th2-mediated disease [52]. Several hours following 
the acute (early phase) response, leukocytes migrating to the bronchi 
lead to chronic allergic inflammation due to increased Th2 cells and 
cytokines (IL-4, IL-5). The end result is airway hyperresponsiveness 
(AHR) [53] which over time can lead to airway remodeling and negative 
and irreversible changes in lung function. During airway remodeling 
in asthma, the airway wall is characterized by increased thickness, and 
thus a reduction in the airway diameter and difficulty breathing [47].   

Dendritic cells (DCs) play a major role in the development and 
persistence of allergic asthma. In addition to the cytokine environment 
and the type and concentration of allergen, DCs can direct host 
responses to an allergen. Lying below the surface of the epithelial layer, 
DCs extend their processes through epithelial cells where they survey 
the airway lumen. Dendritic cells identify and process antigens then 
migrate to the draining lymph node, where they act as potent antigen 
presenting cells. Here they present antigen to naïve T cells on major 
histocompatibility complex class II (MHCII) molecules. As is the case 
with airway epithelial cells, DCs are capable of recognizing pathogens 
and initiating innate responses. In individuals that have been previously 
sensitized to an allergen, FcεR1 (the high-affinity IgE receptor) on DCs 
aid in processing the allergen bound by IgE. While DCs can drive Th1, 
Th2, Th17, and Treg responses, in the case of allergy DCs preferentially 
mobilize a Th2-type response [54]. It is the interaction between naïve 
T cells and DCs that drive the allergic response. Mature DCs and DCs 
from myeloid precursors preferentially drive Th2-type responses, and 
the presence of pro-Th2 cytokines also drives the Th2 response [55]. 
Airway mucosal DCs derived from myeloid precursors [56] capture 

and traffic antigen to the draining lymph nodes, where they stimulate 
naïve T cells [57], although plasmacytoid DCs are also more likely to 
promote tolerance than are myeloid DCs [58].   

In addition to activation of Th2 cells during the allergic response, 
DCs can also activate Tregs, inducing a tolerogenic response rather 
than an inflammatory one [ 59], with low antigen doses more likely 
initiating a tolerogenic response than high-level doses [58]. Low DC 
activation levels and low levels of MHCII and co-stimulatory molecules 
on DC surfaces can also shift the response to a Treg–mediated response 
rather than Th2 response[45,58]. The presence of IL-10, which has 
been shown to be transiently produced by pulmonary DCs, can also 
stimulate regulatory cells [60]. Tregs in turn have been shown to mitigate 
the allergic response by interfering with the function of DCs and 
preventing their activation of Th2 cells [59], thus potentially reducing 
inflammation.

Tregs can effectively suppress inflammatory IgE as well as effector 
cells and the development of allergic Th2 responses [61] during allergic 
inflammation. Indeed, Tregs are able to suppress airway inflammation in 
sensitized mice prior to an inhaled-antigen challenge [62]. An imbalance 
between Th2 and Treg cell responses may underlie the development 
and progression of asthma [61,63-65], as the CD4+CD25+Foxp3+ Treg 
population has been implicated in allergen-induced airway responses 
[8] and has been shown to suppress Th2 responses in vivo [66]. Indeed, 
Foxp3+ T cells accumulate in nasal mucosa of allergic patients after 
a challenge [67], and the transfer of Tregs prior to an inhaled-allergen 
challenge reduces inflammation and hyperresponsiveness in the lungs 
and airways of mice [68,69]. This supports the hypothesis that Tregs can 
reduce or prevent Th2-associated inflammation in the lung following 
allergen challenge. However, the mechanism(s) underlying Foxp3+ Treg 
suppression is not conclusive. 

Tregs are known to exert suppressive function in a number of ways, 
including direct contact with effector cells [70], release of perforin 
[71] and granzyme B [72,73], and possibly through the release of 
cytoplasmic cAMP [74]. Cell cycle arrest may occur when Tregs, which 
exhibit a high level of CD25 (the IL-2α receptor), compete with effector 
T cells for IL-2 [73] and essentially “starve” effector cells metabolically. 
Galectin-1 may also play a role, as blocking this molecule which is 
preferentially expressed on Tregs significantly reduces both mouse and 
human Treg suppressive function [73]. Tregs may also kill responder cells 
in a granzyme- and/or perforin- dependent manner via upregulation 
of intracellular cAMP (which leads to inhibition of T cell and/or IL-2 
proliferation); by generation of pericellular adenosine (catalyzed by 
CD39 and CD73); or through interactions with B7 (CD80/86) expressed 
on responder T cells [75]. Activated Tregs may inhibit the upregulation, 
or perhaps the down-modulation, of CD80/86 expression on antigen 
presenting cells (APCs), which may stimulate DCs to express the enzyme 
indoleamine 2,3-dioxygenase (IDO), which catabolizes the conversion 
of tryptophan to kynurenime; kynurenime is toxic to DCs through a 
mechanism dependent upon the expression of CTLA-4 (CD152) [ 75] 
which is abundant on Tregs. Toll-like receptor 2 (TLR2) also plays a role 
in Treg and/or Foxp3 function and expression, in that TLR2 signaling 
can temporarily abrogate Treg-mediated suppression and downregulate 
Foxp3 expression. Indeed, TLR2-/- mice have decreased Treg numbers, 
as mice treated with TLR2 agonists induce Treg proliferation [76]. The 
co-stimulatory receptor ICOS has also been shown to play a role in 
Treg- mediated immunosuppression. While both ICOS+ and ICOS- Tregs 
were both found to be anergic, ICOS+Foxp3+  cells were shown to use 
IL-10 to suppress dendritic cell function and TGF-β to suppress T cell 
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function, while ICOS-Foxp3+ cells were found to use only TGF-β [77]. 
It has been shown that IL-10 secretion by Tregs plays a major role in 
Treg-mediated suppression [78,79]. IL-10, secreted in large amounts by 
Tregs, counter-regulates antigen-specific IgE production as well as IgG4 
antibody synthesis [51,80], while TGF-β plays a number of roles in Treg-
mediated suppression and regulation.   

TGF-β, first described in the mid-1980s [81,82], plays a number 
of major roles in Treg development and function, although how TGF-β 
promotes Foxp3 expression is not yet fully clear and the detailed 
pathway(s) in TGF-β/Treg signaling has yet to be determined [83]. TGF-
β-induced Tregs, which have been reported to lose Foxp3 expression 
upon in vitro stimulation [84] and following adoptive transfer into 
mice [85], appear to be similar both phenotypically and functionally as 
nTregs [86]. Mediation of TGF-β is greatly controlled by Smad proteins 
[87,88], as TGF-β fails to suppress IL-2 production in mice lacking 
the R-Smad3 gene [89]. TGF-β also inhibits CD122 upregulation [89], 
which in turn limits Th1 effector cell numbers. TGF-β not only regulates 
Treg differentiation, but also that of Th-17 [90]. In addition, TGF-β 
can inhibit differentiation of both Th1 and Th2 cells by inhibiting the 
transcription factors GATA-3 [91] and T-BET [92]; this inhibition of 
Th1 and Th2 polarization can then lead to the generation of Tregs [93]. 

While TGF-β induces the expression of Foxp3+ in vivo, it is also 
required to induce ROR-γt, the essential transcription factor for Th17 
cells [94]. Th-17, as well as IL-6, has further been shown to compete 
with regulatory T cells [95]. This could occur in a number of ways, 
including IL-6 inhibiting TGF-β from driving expressions of Foxp3 
[96] or, in the absence of IL-6, TGF-β joining with IL-21 to induce Th17 
cells [97]. TGF-β also induces expression of CD103; CD103+ DCs have 
been shown to induce adaptive Treg cells due to their ability to produce 
retinoic acid, which has been shown to be required to induce naïve T 
cells to differentiate into Foxp3+ Tregs [98]. Aside from its role(s) in Treg 
expression, maintenance, development, and function, TGF-β alone can 
modulate IgE and FcεRI expression and acts as a class switch factor 
[99], which by itself can induce peripheral tolerance. In vitro studies 
indicate direct cell-to-cell contact via membrane-bound TGF-β rather 
than cytokine production is essential for Treg activity [100] .

In vivo, McGee and Agrawal have demonstrated that adoptive 
transfer of either nTregs or iTregs reversed airway inflammation and airway 
hyperresponsiveness (AHR) in an in vivo asthma model (methacholine 
challenge) [101] and that this effect lasted for at least four weeks. 
Ostroukhova demonstrated that adoptive transfer of Foxp3-expressing 
cells (cells which also expressed membrane-bound TGF-β) from mice 
that were repeatedly exposed to low-dose allergen prevented allergic 
sensitization [102]. Interestingly, a similar study that used a higher 
dose of inhaled allergen stimulated an IL-10-dominant Treg population 
[103], demonstrating that strength of stimulation affects the “type” of 
Treg response. Lowder et al. [104] showed that exercise-training during 
an ovalbumin-induced asthma challenge significantly increases both 
in vivo Foxp3+ Treg expression and in vitro Treg-mediated suppressive 
function in a TGF-β-independent manner. Interestingly, this study also 
showed that when Tregs were co-cultured with CD4- effector T cells, in 
vitro production of both IL-17 and IL-6 (cytokines that compete with 
Tregs) was significantly decreased. 

In humans, it has been shown that generation of allergen-specific Tregs 
are essential events that occur early on in asthma [75,49,51]. Adoptive 
transfer of antigen-specific Tregs suppresses airway hyperreactivity 
and allergic inflammation in an IL-10-dependent manner [105] and 
prevents airway remodeling [106]. Depleting Tregs prior to sensitization 
has the opposite effect, with enhanced inflammation and airway 

hyperresponsiveness seen in the lung of subsequently sensitized mice 
[107]. Both nTregs and iTregs induced in an antigen-specific manner can 
reduce asthma severity in an IL-10-dependent [108] or IL-10 and TGF-
β-dependent [52] manner. To this list of cytokines that act either as 
suppressive on their own, or with Tregs, we must include IL-35, as ectopic 
expression of this cytokine instilled a regulatory activity on naïve T cells 
via suppression of in vitro T cell proliferation [109].

Aging, Asthma, and Tregs

Although asthma is often considered to be a disease more prevalent 
in younger individuals, asthma is not only prevalent in the elderly, 
but is thought to be under-diagnosed and under-treated. In spite of 
maintaining Treg numbers during the aging process, these cells seem 
to be lower in number in asthmatics compared to healthy elderly 
individuals [110]. While serum IgE decreases with age, individuals with 
high IgE levels relative to their age-matched counterparts are still at 
greater asthma risk [111,112]. Elderly individuals may in fact be more 
prone to asthma upon exposure to indoor allergens [112]. In one group 
of elderly individuals it was found that three-quarters of asthmatics 
tested positive on a skin-prick test for at least one common indoor 
allergen [113]. This sensitization to environmental allergens has been 
found to be much greater in elderly asthmatics than in healthy elderly 
individuals [114]. This could be due in part to the normal course of aging 
as the regulation of inflammation appears to be compromised in elderly 
individuals [115]. While increases in tumor rates and infections (both 
of which are prevalent in the elderly) are an indication of decreased 
immunocompetence and a reduced acute inflammatory response [115, 
116], diseases associated with inflammation gain in prevalence in the 
aged population such as osteoarthritis, atherosclerosis, type II diabetes. 
An increased level C-reactive protein, as well as in increase in the 
inflammatory cytokines IL-6 and TNF-a, are often the result of chronic 
inflammation concomitant with aging [115,117]. 

Thymic involution occurs during the aging process, which is 
accompanied by a decrease in the number of naïve T cells [114]. As a 
result the immune profile changes during aging, with significantly more 
memory cells and fewer naïve cells. In humans, CD4+CD25high Tregs have 
a long survival in vivo in the elderly, are more resistant to apoptosis, and 
have suppressive activity on par with younger counterparts [118]. In 
spite of the lack of thymic development of nTregs in the elderly, both aged 
animal and human studies have been shown to have either equal or 
higher numbers of Tregs when compared to their younger counterparts 
[112,119-122]. Why we see these differences in Treg expression is 
not known; it is possible that as the thymus involutes and fewer T 
cells enter the periphery, Tregs accumulate and become long-lasting 
memory Tregs as an increase in the number of CD4+CD25high T cells has 
been shown to accompany advanced aging, with an accumulation of 
CD45RO (memory) Tregs accounting for much of this increase [123]. 
iTreg production (naïve CD4+ T cells that become Foxp3+ Tregs in the 
periphery) accounts for a large portion of Tregs in the elderly, as thymic 
involution restricts the number of naïve T cells, including nTregs, from 
entering the periphery from the thymus  [115]. Mota-Pinto et al. 
determined that T cells with regulatory function(s) played a limited 
role in controlling chronic asthma in elderly patients aged > 65 [110]. 
Tregs from this study group were found to be within normal ranges or 
reduced in asthmatic patients compared to normal (non-asthmatic) 
patients and 80% of asthmatics were classified as mild-moderate asthma 
as determined by forced expiratory volume while a significant increase 
in CD4+ T cells were seen in mild-moderate asthmatics. 

While the majority of T cells in the elderly are of memory phenotype, 
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elderly asthmatics have been shown to have even lower numbers 
of naïve cells than do healthy elderly individuals [114], along with 
decreases in CD95 (an apoptosis marker, indicating a decreased ability 
to clear senescent or effete cells). Whether or not we see a decrease in 
Tregs in elderly asthmatics versus elderly non-asthmatics requires further 
investigation. While the number of nTregs decreases, an increase in iTregs 
generated in the periphery may be the reason for the overall increase 
in Treg numbers in the elderly [121]. Nishioka et al. [120] identified a 
significant increase in the proportion of Foxp3+ cells in aged mice as 
compared to young mice. While the number of CD4+CD25high Foxp3+ 
cells remained constant across age groups, aged mice had a significantly 

Although the number of Tregs tends to increase concomitantly 
with age, there appears to be little or no difference in Treg function 
between old and younger counterparts [112,122]. It has been proposed 
that Treg function decreases with age [121], while others have shown 
no impairment due to aging [112,120,122]. Using a mouse model, 
Nishioka et al. demonstrated that the number of CD4+CD25high Foxp3+ 
T cells was similar and that these cells maintained the same level of 
suppressive function as the cells from younger mice [120]. Interestingly, 
another study demonstrated that Tregs from aged humans suppressed 
the production of IL-10 by CD4+CD25- effector cells better than did 
Tregs from younger counterparts [115]. This is of particular interest in 
asthma as IL-10-secreting Type 1 Tregs, which are allergen-specific, are 
found in lower numbers in individuals with allergic rhinitis [124]. The 
levels of some Th2-type cytokines, such as IL-10 and IL-4, have been 
shown to be elevated in the elderly compared to younger counterparts 
[125]. 

Gender Differences 
Asthma, as with other inflammatory diseases, is more prevalent in 

females than in males [126-132]. Because of their role in maintaining 
immune homeostasis and regulating the immune system, gender 
differences in Tregs may contribute to this discrepancy between males and 
females due to the interplay between the sex hormones (e.g., estrogen, 
progesterone, and testosterone) and Tregs. The incidence of asthma is 
higher during the female’s reproductive years, when these hormones 
are at their highest levels of production, and then declines during 
menopause [126]. Indeed, the number of Tregs changes throughout 
the menstrual cycle as well as throughout pregnancy [127,133,134]. 
Multiple investigators have determined that estrogen helps to drive 
Treg expansion and a reduction in or amelioration of various diseases 
[131,133,135,136]. Arruvito found Treg numbers to be highest during 
the late follicular phase (when estrogen levels are at their peak) and 
lowest during the luteal phase, while Wegienka’s group found a steady 
increase in Tregs during pregnancy [133]. Both Tai and Polanczyk found 
that estrogen treatment increased Foxp3 expression and the number 
of CD25+ cells; however, this effect was absent in mice deficient of the 
estrogen receptor, indicating the significant role that sex hormones 
play in maintaining immune homeostasis [131,134]. Female mice 
sensitized with ovalbumin (OVA) had lower initial numbers of Tregs in 
the lung [130] despite no differences in Treg number or function after 
OVA challenge [129,130]. While sex hormones and their effect(s) on 
Tregs may be involved in the gender differences in asthma prevalence, 
they do not account for all of the differences in the differences seen 
between males and females [128]. Women tend to have higher B cell-
mediated immunity and higher CD4:CD8 ratios than do males and 
these differences may also extend to Treg numbers.

Exercise and Asthma 
Therapeutic treatment of asthma is two-fold: that of reducing the 

risk for a severe attack and minimizing symptoms during an attack [137]. 
Asthma treatment has traditionally included inhaled corticosteroids, 
β2 adrenergic receptor agonists, and cholinergic antagonists. However, 
none of these prevent asthma, and not all asthmatics benefit from their 
use. As such, alternative means treating asthma are worth investigating. 
One approach to enhancing immune function in asthmatics is exercise. 
Exercise training has been shown to ameliorate many negative effects 
of asthma in both human [138-141] and murine [104,142-144] models. 
Pastva et al. investigated the effects of exercise in Balb/cJ mice, a strain 
susceptible to OVA-induced IgE responses [145,146] and demonstrated 
that aerobic exercise training reduces lung inflammatory responses 
(leukocyte infiltration, cytokine/chemokine production, adhesion 
molecule expression, structural airway remodeling) in OVA-sensitized 
mice [147,148], later demonstrating that these responses are at least 
in part due to an enhanced Treg response [104]. Few studies have 
examined how exercise training affects Tregs in humans. Yeh et al. found 
increased TGF-β and IL-10 production following antigenic stimulation 
in healthy adults that performed 12wks of Tai Chi [149], significant as 
IL-10 can suppress airway inflammation [150-151]. Ramel et al. found 
that resistance training reduced peripheral T suppressor cell numbers 
[152]. However, these values were recorded in healthy (non-asthmatic) 
individuals. 

Summary and Future Directions
Since the discovery of suppressor T cells in the early 1970s, their 

re-emergence as CD4+CD25+ regulatory T cells, and finally the finding 
that the nuclear protein and transcription factor forkhead box P3 
(Foxp3), research in the field of Tregs has exploded. Defects or absence 
of this highly-specialized sub-population of T cells has been implicated 
in numerous diseases in both humans and mice. It has been shown that 
TGF-β, IL-10, and IL-2 can be essential, required, non-essential, or not 
required for proper maintenance and function of Tregs, depending on 
the system (in vivo versus in vitro), model (mouse, human, cell line), or 
even severity of disease (moderate versus severe asthma). Though we 
now know that an enhanced Treg response may reduce asthma severity 
and airway hyperresponsiveness in both human and animal models, 
we do not have a means in which to directly enhance this response in 
individuals suffering from asthma. 

Few studies have examined the relationship between asthma and 
Tregs in the elderly. The number of Tregs tends to increase with age, and 
these cells maintain their suppressive function; however, the regulation 
of the immune system seems to be compromised with age, and there 
is an indication for a reduced number of Tregs in asthmatic elderly 
individuals. Elderly asthmatics, in particular, have been shown to 
have even fewer naïve than healthy age-matched individuals. With a 
large population rapidly approaching senior status, and an increase in 
respiratory and lung diseases on the rise, it is critical to know what roles 
regulatory T cells play in the aging lung.   
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