
Open Access

Sadaka, J Blood Disord Transfus 2012, S4 
DOI: 10.4172/2155-9864.S4-001

Open Access

Keywords: Sepsis; Red blood cells; RBC; Transfusion

Introduction
In the United States, approximately 750,000 cases of sepsis occur 

each year, of which at least 225,000 are fatal. One study evaluating the 
epidemiology of sepsis between 1979 and 2000 demonstrated an 8.7% 
increase in the annual incidence of sepsis. The cost of management of 
one septic patient has been estimated at $50,000, amounting to annual 
costs of approximately $17 billion. Sepsis is the leading cause of death in 
non-coronary Intensive Care Units (ICUs), and the tenth leading cause 
of death overall. Organ failure occurs in about one third of patients 
with sepsis and severe sepsis is associated with an estimated mortality 
rate of 30-50%. Seventy percent of patients with three or more organ 
failures (classified as severe sepsis or septic shock) die [1-8].

Red blood cell transfusion is one of the most commonly used 
interventions in the ICU to treat severe anemia, which often occurs 
in sepsis. In the United States, more than14 million units of Packed 
Red Blood Cells (RBCs) are administered annually, many of which 
are administered in the ICU [9]. Approximately 40 to 80% of RBC 
transfusions in the ICU are not given for bleeding, but rather for 
low hemoglobin levels, for a decrease in physiological reserve, or for 
alterations in tissue perfusion [10,11]. In addition, RBC transfusion 
is recommended as part of early goal-directed therapy for patients 
with severe sepsis [12]. This review will focus on RBC properties, 
complications of RBC transfusions in the critically ill patient with 
emphasis on the septic patient, mechanisms of transfusion-associated 
complications, clinical evidence about transfusion in sepsis, and 
finishing with current guidelines and recommendations. 

RBC Transfusion
For decades, it was considered that a hemoglobin concentration of 

10 g/dl, or a hematocrit of 30%, represented the lowest level acceptable, 
thereby providing a standard and convenient “transfusion trigger” [13]. 
An understanding of the physiology of anemia and oxygen delivery is 
required to understand such considerations. Tissue oxygen delivery 
(DO2) is the product of tissue blood flow and arterial oxygen content. 
In turn, tissue blood flow is determined by cardiac output and regional 
vasoregulation, and arterial oxygen content depends on hemoglobin 
concentration and its percentage saturation. Oxygen flow increases 
as the hemoglobin falls to a level termed the “optimal hematocrit”, at 
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Abstract
Sepsis is very common and lethal. Sepsis is the leading cause of death in non-coronary Intensive Care 

Units, and the tenth leading cause of death overall. Red blood cell transfusion is one of the most commonly used 
interventions in the ICU to treat severe anemia, which often occurs in sepsis. Several problems were documented 
with RBC transfusions and will be reviewed, such as infection, pulmonary complications such as TRALI and 
Transfusion-Associated Circulatory Overload (TACO), Transfusion-Related Immunomodulation (TRIM) and 
multiorgan failure, and increased mortality. Most of these complications are partially explained by volume of 
the unit of blood as well as pathogenic factors of stored RBCs related to 2,3 BPG concentration, inflammatory 
mediators, nitric oxide, ATP concentration and RBC rheology, and RBC adhesion characteristics. These same 
factors are present in RBCs of septic patients as well. Until better evidence is available, a “restrictive” strategy of 
RBC transfusion (transfuse when Hb < 7 g/dL) is recommended except in acute hemorrhage, or in patients with 
acute myocardial ischemia when a hemoglobin trigger of 8 g/dl is reasonable.

Complications of RBC transfusion (Table 1)
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Transfusion-related acute lung injury (TRALI): TRALI is defined 
as Acute Lung Injury (ALI) that occurs within 6 h of transfusion (may 
happen up to 72 hours) and is not related to other risk factors for ALI or 
Acute Respiratory Distress Syndrome (ARDS) [17,18]. ALI and ARDS 
were defined by the North American-European Consensus Conference 
in 1994 as acute hypoxemia (PaO2/FIO2 ≤ 300 mm Hg for ALI or < 
200 for ARDS), bilateral pulmonary infiltrates on chest radiograph, 
and no evidence of left atrial hypertension [19]. TRALI is the most 
common cause of major morbidity and mortality after transfusion 
[18,20]. The risk of TRALI is estimated at 1 case per 5,000 units PRBCs. 
The estimated mortality rate for TRALI is 5-8% [21]. The leading 
hypothesis of pathogenesis is a “two hit” hypothesis, with the first 

which point DO2 is highest at the lowest energy cost to the individual. 
This occurs around a hematocrit of 30% [14]. Decreases in hematocrit 
from this “optimal” level must be compensated by active increases in 
cardiac output to maintain DO2. For instance, Cardiac output peaks at 
180% of control at a hematocrit of around 20%. Below this “optimal” 
level, the maintenance of tissue oxygen consumption (VO2) and 
aerobic metabolism at decreasing levels of DO2 is principally provided 
by increased oxygen extraction. In the critical care environment, there 
have been several studies examining the interrelationship between 
hematocrit, DO2 and VO2. Shoemaker et al. [15] and Boyd et al. [16] 
initially defined the optimal hematocrit at around 30% since, below this 
level, oxygen delivery and consumption were decreased in critically ill 
patients and mortality was increased. Above this level, there was no 
change in these variables or outcome. This line of reasoning led to the 
common practice of maintaining this “10/30 rule” as the transfusion 
triggers.
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flushing, urticaria, shortness of breath, hypotension, hemoglobinuria 
and disseminated intravascular coagulation. The transfusion should 
be stopped immediately,and patient should be treated emergently 
and mainly with supportive therapy. The most common causes of this 
complication are clerical and labeling errors [36,37].

Delayed reactions: In delayed hemolytic transfusion reactions, 
the donor RBC antigen–plasma antibody interactions are usually the 
result of incompatibility with minor blood groups such as Rhesus and 
Kidd. This results in extravascular hemolysis that typically happens 3 
days to 3 weeks later. The patient presents with reduction in hematocrit 
despite transfusion, jaundice (unconjugated hyperbilirubinaemia) and 
a positive direct antiglobulin (Coomb’s) test. In general, no treatment 
is required except monitoring the anemia and transfusion if needed 
[36,37].

Non hemolytic febrile reactions: Fever is the hallmark of this 
reaction, in addition to fatigue, malaise, myalgias, chills, and rarely 
hypotension, vomiting and shortness of breath. This is a relatively 
benign reaction that results from donor leukocyte antigens reacting 
to antibodies present in the recipient’s plasma forming a leukocyte 
antigen–antibody complex that binds complement and results in 
the release of IL-1, IL-6 and TNFa. Management involves slowing 
the transfusion and in rare cases stopping it, as well as prescribing 
antipyretics [36,37].

Transfusion-related infections: Bacterial and viral contaminations 
are infrequent these days. RBCs are stored at 4°C. This makes 
contamination with Gram-negative bacteria such as Pseudomonas 
species more likely as they proliferate rapidly at this temperature. Pre-
transfusion testing of donated blood (for hepatitis B, hepatitis C, HIV 1 
and 2, human T cell lymphotrophic virus, syphilis and cytomegalovirus) 
has significantly reduced transfusion-related viral infections [37,38].

Transfusion-related allergic reactions: Transfusion-related 
allergic reactions may result in pruritis, urticaria, and fever. These 
reactions are usually mediated by Ig-E in response to foreign proteins in 
donor plasma. The transfusion should be stopped and anti-histamines 
administered. Anaphylaxis is rare, and treatment is the same as for any 
anaphylactic reaction.

Electrolyte abnormalities: Hyperkalemia and Hypocalcemia 
are the major potential electrolyte abnormalities, and the incidence 
of these electrolyte abnormalities increases with the number of units 
transfused. The potassium concentration of plasma increases in stored 
blood. This is in part due to red blood cell membrane Na+–K+ ATPase 
inactivation [39,40]. Hyperkalemia is more common in patients with 
acute kidney injury or in renal failure.

Stored blood is anticoagulated with citrate, which binds calcium. 
Each RBC unit contains approximately 3 g of citrate. This is usually 
prevented by hepatic metabolism unless the patient is hypothermic, or 
has liver disease [41]. Plasma potassium and calcium concentrations 
should be monitored in patients who require transfusions, particularly 
with multiple units transfused, renal insufficiency or liver disease.

Mechanisms for Transfusion-Associated Complications
RBCs are stored up to 42 days. Several changes occur to the RBCs 

during storage that could contribute to the complications and adverse 
events discussed above.

2,3 Bisphosphoglycerate (2,3 BPG) concentration

The concentration of 2,3 BPG affects the oxygen-hemoglobin 

hit being the clinical condition of the patient resulting in pulmonary 
endothelial activation and Polymorphonuclear (PMN) sequestration, 
and the second event is the transfusion of a biologic response modifier 
(including anti-granulocyte antibodies, lipids, and CD 40 ligand) 
that activates these adherent PMNs resulting in endothelial damage, 
capillary leak, and TRALI [22,23]. Sepsis has been shown to be a risk 
factor for the development of TRALI [24]. Management is supportive.

Transfusion-associated circulatory overload (TACO): TACO is 
the development of fluid overload and pulmonary edema secondary to 
transfusion. It also happens during or within few hours of transfusion. 
Patients develop hypoxemia, tachypnea, tachycardia, and develop 
bilateral infiltrates on CXR. TACO is the second most common cause 
of transfusion-related morbidity and mortality as reported in the 
United States [25]. TACO could be difficult to distinguish from TRALI. 
TACO is hydrostatic pulmonary edema-a pressure phenomenon, 
whereas TRALI is a phenomenon of increased permeability. A marker 
of heart distention can be helpful in differentiating, such as B-type 
natriuretic peptide [26]. An echocardiogram or more invasive means to 
measure heart pressures could aid in differentiation as well. Sepsis itself 
could lead to myocardial dysfunction, possibly secondary to the effect 
of inflammatory mediators on the myocardium [27]. However, it is 
unknown whether this higher prevalence of myocardial dysfunction in 
sepsis is associated with a higher incidence of TACO in sepsis as well.

Hemolytic transfusion reactions: Hemolytic Transfusion 
Reactions result from interactions between antibodies in the recipient’s 
plasma and surface antigens on donor RBCs. There are immediate or 
delayed reactions.

Immediate reactions: Immediate hemolytic transfusion reactions 
are typically the result of ABO incompatability. Incompatibility 
between donor RBC antigens and recipient plasma antibodies produces 
an antigen–antibody complex causing complement activation, 
intravascular hemolysis and thus destruction of the transfused blood. 
Symptoms start very soon after starting the transfusion. They include 
headache, chest and flank pain, nausea and vomiting, fever, chills, 

Transfusion-Related Acute Lung Injury (TRALI)
Transfusion-Associated Circulatory Overload (TACO)
Transfusion-Related Immuno Modulation (TRIM)
Hemolytic Transfusion Reactions
     Immediate reactions
     Delayed raections
Nonhemolytic Febrile Reactions
Infections
Allergic Reactions
Electrolyte abnormalities
     Hyperkalemia
     Hypocalcemia

Table 1: Complications of RBC Transfusion.
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Transfusion-related immunomodulation (TRIM): TRIM 
is defined as immunosuppression secondary to allogenic blood 
transfusion. The mechanism of immunosuppression seems to 
involve donor allogeneic leukocytes [28], leading to increased risk of 
nosocomial infections, morbidity, mortality and tumor recurrences 
in the recipient [29,30]. Leukoreduction in an attempt to decrease 
or abolish this immunomodulation secondary to allogenic blood 
transfusion has shown conflicting results [29,31-35]. It thus seems clear 
that allogenic blood transfusion induces immunosuppression in the 
host, however, the role of leukoreduction in preventing or alleviating 
this complication remains uncertain.
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blood transfusion during their ICU stay [61]. By day two in the ICU, 
nearly 95% of patients are anemic [62]. This section will focus on the 
pathogenesis of anemia in septic and ICU patients. 

Phlebotomy and bleeding

Phlebotomy can contribute to up to 2 units of blood loss per day 
in ICU patients, particularly the sicker and septic patients. Phlebotomy 
accounts for up to 20% of total blood loss [63,64]. Bleeding is a common 
cause of anemia in the ICU accounting for up to 20 % of blood loss, 
whether overt (like GI bleeding, surgery, trauma, procedures, etc) or 
occult bleeding [65].

RBC destruction

This is a less common cause of blood loss in the ICU, but 
worth mentioning. This could be from intravascular causes such 
as Disseminated Intravascular Coagulation (DIC), Thrombotic 
Thrombocytopenic Purpura (TTP), endovascular devices, and 
prostheses; immune mediated (e.g hemolytic transfusion reactions, 
drug-induced (e.g penicillin’s, cephalosporin’s, sulfas, and quinines).

Abnormal iron metabolism

Inflammatory cytokines, such as produced in sepsis, play a major 
role in alterations in iron metabolism, leading to decrease serum iron 
levels [66]. These inflammatory cytokines (TNF-a, IL-1β, and IL-6) 
also increase iron storage by the reticuloendothelial system, limiting 
the availability of iron for erythropoiesis [67]. Anti-inflammatory 
cytokines, like IL-10, also play a role in iron metabolism by increasing 
heme degradation and iron storage in monocytes and, thus, 
contributing to iron retention in the reticuloendothelial system [68].

Erythropoesis

Serum erythropoietin is the growth factor responsible for 
erythropoesis, and it is produced in the kidneys. Erythropoetin levels 
below those expected for the degree of anemia have been demonstrated 
in septic and critically ill patients [69,70]. There is evidence that 
inflammatory cytokines have play an inhibitory role on erythropoietin 
production as well as a direct inhibitory effect on erythroid progenitor 
cell production in the bone marrow [71-75].

Inflammation and sepsis

In addition to their significant contribution to all of the above 
pathogenic mechanisms in anemia, inflammatory mediators play other 
important roles in anemia of sepsis. The proinflammatory cytokines 
decrease erythrocyte survival time (79, 80). In sepsis, functional and 
structural changes are found in erythrocytes. These changes are very 
similar to the changes that are present in naturally aged populations 
of erythrocytes, including decreased red blood cell deformability and 
antioxidant activity, decreased hemoglobin content, and increase 
in oxidatively modified lipids and proteins [76-78]. Oxidative stress 
and free radicals that develop from inflammation in sepsis can also 
trigger RBC apoptosis by opening Ca2+- channels [79]. In addition, 
hypersplenism due to infection can increase the sequestration and 

dissociation and thus the ability of the RBC to deliver oxygen to the 
tissues. The longer the RBC unit is stored, the lower the levels of 2,3 
BPG are, leading to a left shift in the oxygen-hemoglobin dissociation 
curve and thus less oxygen delivered to the tissues. However, there 
is evidence that 2,3 BPG concentrations return back to normal levels 
within 6 to 24 hours of transfusion [42,43].

Inflammatory mediators

Storing RBC can lead to increase levels of cytokines, lipids and 
other inflammatory mediators, thus inducing a profound inflammatory 
reaction in the recipient. This has been shown to increase with duration 
of RBC unit storage time [44-47].

Adenosine Triphosphate (ATP) and RBC viability and 
deformability

The concentration of ATP in RBCs falls gradually during storage. 
As a result, the capacity of RBCs to phosphorylate glucose is impaired, 
and their viability is lost [43,48]. Stored RBCs also show a progressive 
increase in rigidity, leading to loss of rheologic capability and 
deformability of the RBC, which in turn leads to the RBCs unable to 
pass freely through capillaries (worsening microcirculatory dysfunction 
of sepsis). This loss of deformability correlates as well with the loss of 
ATP [49]. The RBC is shaped as a biconcave disc with an 8-micron 
diameter, so it needs to deform to be able to pass through the capillaries 
of the microcirculation (mean diameter, 3– 8 microns). With ATP 
deprivation during storage, a sequence of morphologic changes occurs 
in the RBC leading to spherocytosis and rigidity. Several experiments 
have shown that RBC deformability is decreased in sepsis [50-53]. The 
mechanisms resulting in the decreases of RBC deformability during 
storage are similar to those implicated in sepsis.

RBC adhesion

In vitro and in vivo animal and human studies have shown that 
exposure of RBCs to endotoxin and inflammatory cytokines increases 
RBC adhesion to microvascular endothelium, and that this RBC 
adhesion increases with storage time [54-56]. Transfusion of adhesive 
RBCs may thus compromise tissue blood flow, especially in states of 
compromised microcirculatory flow, like sepsis.

Nitric oxide

Nitric oxide functions as a potent vasodilator. When nitric oxide 
binds to hemoglobin, through a series of reactions, S-nitrosohemoglobin 
(SNO-Hb) is formed in RBCs. SNO-Hb is a vasodilator that is released 
by RBCs in order to match blood flow to metabolic demand [57-59]. 
SNO-Hb decreases significantly with RBC storage [59]. 

Potassium leakage

As discussed above, the potassium concentration of plasma 
increases in stored blood, due to RBC membrane Na+–K+ ATPase 
inactivation and passive leakage of potassium out of the RBC. Loss 
of one unit of blood through bleeding results in a loss of 1.5 meq of 
potassium, whereas transfusion of one RBC unit of RBC can provide 
approximately 10 meq of potassium, leading to a net gain of 8.5 meq 
[60]. However, the risk of hyperkalemia from RBC transfusion is more 
pronounced in patients with acute kidney injury or in renal failure.

Anemia and RBC Physiology in Sepsis and Critical 
Illness (Table 2)

Phlebotomy
Bleeding
RBC destruction
Abnormal Iron Metabolism
Abnormal Erythropoesis
Infections
Inflammation

Table 2: Causes of Anemia in Sepsis.
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Forty to 50% of septic and other critically ill patients require 
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phagocytosis of erythrocytes. RBCs’ decreased deformability can result 
from sepsis and this can lead to microcirculatory dysfunction leading 
to organ failure in sepsis [80]. Inflammation and lipopolysaccharides 
can also increase RBC adhesion to the vessel endothelium which could 
also lead to microcirculatory dysfunction during sepsis [55,81].

Clinical Evidence for Transfusion in Sepsis
The mean number of RBC transfusions per ICU patient is about 5 

units with the average pre-transfusion hemoglobin being 8.5 g/dl [82]. 
It has also been shown most transfusions are given for low hemoglobin 
level with less than one in five patients being transfused for active 
bleeding [83]. Approximately 40-50% of patients admitted to the ICU 
are transfused at least 1 RBC unit. Several studies have shown that 
RBC transfusion in sepsis did not improve oxygen delivery, oxygen 
consumption, mixed venous oxygen saturation or lactate levels [84-86].

This suggests that RBC transfusions in sepsis are not associated 
with an improvement in tissue oxygenation in spite of a significant 
increase in Hemoglobin levels. The clinical evidence will be reviewed 
for different time periods: after the first 6 hours of developing sepsis; 
and within 6 hours of severe sepsis.

Sepsis beyond the initial 6 hours

The best evidence available regarding the efficacy of RBC transfusion 
among critically ill patients is from a randomized controlled trial, the 
Transfusion Requirements in Critical Care (TRICC) trial, conducted 
by the Canadian Critical Care Trials Group [87]. It is not stated 
in this trial whether RBC transfusion is given in the first 6 hours or 
afterwards in septic subpopulation, nonetheless, this trial is the basis 
for further transfusion trials and recommendations in septic as well as 
other critically ill patients. In this study, a liberal transfusion strategy 
(hemoglobin 10 to 12 g/dL, with a transfusion trigger of 10 g/dL) was 
compared to a restrictive transfusion strategy (hemoglobin 7 to 9 g/dL, 
with a transfusion trigger of 7 g/dL) in a general medical and surgical 
critical care population. Patients who were euvolemic after initial 
treatment who had a hemoglobin concentration < 9 g/dL within 72 h 
were enrolled. The TRICC trial documented an overall nonsignificant 
trend toward decreased 30-day mortality in the restrictive group; 
however, there was a significant decrease in mortality in the restrictive 
group among patients who were less acutely ill (APACHE II scores 
< 20) and among younger patients (< 55 years of age). Patients in 
the restrictive group received 54% less RBC units than those in the 
liberal group [87]. The diversity of patients enrolled in the trial and 
the consistency of the results suggest that the conclusions may be 
generalized to most critical care patients including septic patients, 
with the possible exception of patients with acute coronary syndromes. 
Nonetheless, recent evidence supports RBC transfusion at a slightly 
higher hemoglobin concentration (< 8 g/dl) in patients with acute 
coronary syndromes [88]. In a recent analysis by the Cochrane database 
of 19 trials involving a total of 6264 patients, restrictive transfusion 
strategies were associated with a statistically significant reduction in 
hospital mortality (RR 0.77, 95% CI 0.62-0.95) but not 30 day mortality 
(RR 0.85, 95% CI 0.70 to 1.03) [89]. The authors concluded that the 
existing evidence supports the use of restrictive transfusion triggers in 
most patients including those with pre-existing cardiovascular disease. 
In addition, the effects of restrictive transfusion triggers in high risk 
groups such as acute coronary syndrome need to be tested in further 
large clinical trials [89].

Within 6 hours of severe sepsis

Guidelines published as part of the Surviving Sepsis Campaign [12] 

have endorsed use of RBCs in the treatment of patients with severe 
sepsis who show evidence of hypoperfusion. This recommendation is 
primarily based on data published by Rivers et al. [90] who evaluated a 
bundle approach to patients in severe sepsis. Red blood cell transfusion 
to obtain a hematocrit of 30% is included in this bundle for patients 
with a central venous oxygen saturation < 70%. Patients achieving this 
goal had better outcomes than patients who did not reach the goal. The 
specific effect of transfusion was not evaluated in this study, however, 
as the investigation was designed to assess the overall bundle rather 
than its component parts. Using Near Infrared Spectroscopy (NIRS) or 
Sidestream Dark Field (SDF), several investigators have reported that 
microcirculation is markedly altered in sepsis, that these alterations 
are more severe in nonsurvivors than in survivors, that persistent 
microvascular alterations are associated with development of multiple 
organ failure and death, and that microvascular alterations are the most 
sensitive and specific predictor of outcome in septic patients [91-97]. 

The effects of RBC transfusion on the microcirculation in sepsis 
could be numerous. Several studies have demonstrated that RBC 
rheology is impaired (increased aggregation, decreased deformability, 
alterations of RBC shape) in recipient RBCs in septic patients [80,98-
100]. RBC can also act as oxygen sensor, which can modulate tissue 
oxygen flow variables – by the release of the vasodilators, nitric oxide 
[101,102] or ATP [103]. This release of vasodilators from RBCs during 
hypoxia could be impaired during storage and/or sepsis. Storage 
of RBCs decreases levels of 2,3-diphosphoglycerate and Adenosine 
Triphosphate (ATP) levels with a resultant increase in oxygen 
affinity and a decrease in the ability of hemoglobin to offload oxygen. 
Morphological changes in erythrocytes occur during storage which 
may result in increased fragility, decreased viability, and decreased 
deformability of red blood cells. A release of a number of substances 
occurs during storage resulting in such adverse systemic responses as 
fever, cellular injury, alterations in regional and global blood flow, and 
organ dysfunction. 

Recommendations and Guidelines 
The most recent guidelines were put together by American College 

of Critical Care Medicine of the Society of Critical Care Medicine and the 
Eastern Association for the Surgery of Trauma Practice Management 
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In a general critically ill population, using NIRS, muscle tissue 
oxygenation, oxygen consumption and microvascular reactivity 
were globally unaltered by leukoreduced RBC transfusion in a study 
by Creteur et al. [104]. However, muscle oxygen consumption and 
microvascular reactivity improved following transfusion in patients 
with alterations of these variables at baseline [104]. In severe septic 
patient requiring leukoreduced RBC transfusion, using SDF, Sakr et 
al. showed that the sublingual microcirculation was globally unaltered, 
however, it improved in patients with altered capillary perfusion at 
baseline [105]. Using SDF and NIRS, Sadaka et al. [106] looked at 
patients that got non-leukoreduced RBCs for a hemoglobin <7.0, or for 
a hemoglobin between 7.0 and 9.0 with either lactic acidosis or central 
venous oxygen saturation < 70%. Sadaka et al. [106] showed that muscle 
tissue oxygen consumption, microvascular reactivity, and sublingual 
microcirculation were globally unaltered by RBC transfusion in severe 
septic patients. However, muscle oxygen consumption improved in 
patients with low baseline and deteriorated in patients with preserved 
baseline. Future research with larger samples is needed to further 
examine the association between RBC transfusion and outcomes 
of patients resuscitated early in severe sepsis, with an emphasis on 
elucidating the potential contribution of microvascular factors.
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Workgroup in 2009 [82] and still stand today. For the septic patient, 
the guidelines state that there are insufficient data to support Level 1 
recommendations on this topic and that the transfusion needs for each 
septic patient must be assessed individually since optimal transfusion 
triggers in sepsis patients are not known and there is no clear evidence 
that blood transfusion increases tissue oxygenation. However, the 
recommendations for the generally critical ill patient apply to the 
septic patient beyond the first 6 hours as well based on the existing 
evidence. Please refer to Table 3 for details. In summary, A “restrictive” 
strategy of RBC transfusion (transfuse when Hb < 7 g/dL) is as effective 
as a “liberal” transfusion strategy (transfusion when Hb < 10 g/dL) 
in critically ill patients with hemodynamically stable anemia, except 
possibly in patients with acute myocardial ischemia. Evidence supports 
RBC transfusion at a slightly higher hemoglobin concentration (< 8 g/
dl) in patients with acute myocardial ischemia, until further evidence 
is available. For severely septic patients within the first 6 hours, the 
recommendation is to transfuse when Hb < 10 g/dL to get ScvO2 >70%, 
until evidence becomes available that is examining the association 
between RBC transfusion and outcomes of patients resuscitated early 
in severe sepsis.

Conclusion
Red blood cell transfusion is one of the most commonly used 

interventions in the ICU to treat severe anemia, which often occurs in 
sepsis. Several problems were documented with RBC transfusions, such 
as infection, pulmonary complications such as TRALI and transfusion-
associated circulatory overload (TACO), transfusion-related 
immunomodulation (TRIM) and multiorgan failure, and increased 
mortality. Until better evidence is available, a “restrictive” strategy of 
RBC transfusion (transfuse when Hb < 7 g/dL) is recommended except 
in acute hemorrhage, or in patients with acute myocardial ischemia 
when a hemoglobin trigger of 8 g/dl is reasonable. 
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