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ABSTRACT

Immunity produced when variable, diverse, and joining exons recombine and form diverse B-cell receptors. Somatic 
rearrangement of immunoglobulin genes termed VDJ recombination. This activity is controlled by RAG1 and 
RAG2 proteins, binds to the signal sequences and start cleavage. Double stranded breaks are produced by ROS, 
Nuclear enzymes and ATM. RAG protein induces cleavage activity. Segments exchange by CSR. After cleavage 
activity shuffling of segments occurs. TDT cause gain or loss of nucleotide bases. AID and RAG begins the process of 
CSR that shuffle exons of constant region. The core of NHEJ have catalytic subunit (DNA-Pkcs). Ku-DNA complex 
is important for the attachment of nuclease, polymerase and ligase of NHEJ. RAG2 with histone H3K4Me3 start 
recombination activity. HMG1 and HMG2 promote synapsis and cleavage. RNA Helicase of the DExD\H induces 
conformational changes. ZnA have ligase activity. Ku involved in the attachment of NHEJ factor DExD/H box who 
induce conformational changes. NHEJ machinery has XRCC4, XLF, and PAXX who ligate DNA ends. Protein 
kinase B and phosphoinositide-3 kinase involved in RNA expression. TOR69-3A2 is antibodies that neutralized 
Western equine encephalitis virus. AMMO1 is the anti gH/gL monoclonal antibody prevent to the Epstein bar 
virus infection. Antibodies also used for Ebola virus and Hepatitis. WT and HVR1 gpE1/gpE2 produce antibodies 
which target any type of cross-genotype neutralizing epitopes for HCV. GPE118, GPE325, GPE534 are targeted to 
different epitopes for Ebola virus.
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INTRODUCTION

VDJ recombination 

Antibodies are basic part of humoral immunity. Recombinant 
antibodies are the important class of biotherapeutics and approved 
for many diseases. When humoral immunity is in the process, 
the variable, diversity and joining exon recombine and give rise 
to B-cell receptors, which generates antigen recognition structures 
these structures with the constant domain elements (IgM, IgD, 
IgG, and IgA) of immunoglobulin [1]. Antibodies identify antigens 
with high specificity. Fc region of antibodies bind to the antigen 
[2,3]. Light chain has two subfamilies lambda and kappa. Kappa 
family mostly related to the antibodies those are marketed [4]. FAB 
is the antigen binding fragment which consists of variable region of 
heavy chain and light chain (VH and VL) and constant region [5]. 
Complementary determining region of variable region have loops 
involve in the interaction to the antigen [6,7].

Double stranded breaks

In mature B-cells, SPIC maintain BCR signaling which is ordered 

by activation of NK-KB1. SPIC is bring out by DSBs. Whole 
abatement of pre-BCR tocsins by RAG DSBs depend on the 
deactivation of both SKY and BLNK [8]. 

VDJ REGION’S GENE SHUFFLING

Somatic rearrangement occurs in the immunoglobulin genes 
termed VDJ recombination. RSS bind to the RAG protein is traced 
when synapsis start [9]. Variable, diversity and joining region’s 
gene shuffle and this shuffling generates genes that encode for the 
adjustable regions of T-cell receptor proteins and immunoglobulin’s 
[10]. This activity is controlled by recombination - activating gene. 
Its form RAG1 and RAG2 proteins. RAG1 complete structure 
contain many regions perform different functions [11]. RAG1 is 
functional only in dimeric form and this form is important for 
complex formation with RAG2 [12].

Recombinant signal sequence

Synapses of Cis RSSs done more rapidly because it is kinetically 
favoured then trans RSSs [13]. RAG1 and RAG2 complex is lymphoid 
particular protein complex require for VDJ recombination. During 
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G1 phase of the cell cycle VDJ recombination begins when RAG 
recombinase generates double stranded fragments of VDJ coding 
segments and RSS [14]. RSSs are conserved heptamer and nanomer 
have consensus sequence of CACAGTG and ACAAAAA. When 
binds to the one RSS the cleavage start [11,15]. RAG first nick at 5' 
of the haptamer at the joining point present in between heptamer 
and VDJ coding segments. This shows that a 3'OH group at the end 
of the coding sides and a 5' phosphate group join with heptamer 
tip [16]. RAG1 have recombination signal sequence RSS-binding 
domain, this is the zone that reacts with RAG2 which also interact 
for DNA disunion with an active site [17]. Heptamer CACAGTG, 
a spacer region consist of 120-30 bp and a nanomer [18]. In VDJ 
recombination two gene segments influence with each other, 
one from these genes have signal sequence. This signal sequence 
have 12-bps spacer signal and other of which have 23-bps space 
signal [7,15,19]. When RAG1, HMGB1 and RSS complex creation 
is greater in the presence of Mn2+ instead of Mg2+. The 12/23 
synaptic complex formation in the presence of Mg2+ is linked to the 
configurational changes in the RAG complex [20]. Stoichiometry 
of RAG 2 is different between SC1 and SC2 met have one or two 
RAG units [21,22]. When RAG1 and RAG2 are mixed together 
produces RSS complex known as SC1 and SC2 [23]. According 
to 12/23 Rule Process RAG complex identification of 12RSS 
and 23RSS produce correct recombination of a V segment with 
J segment or V segment recombination to a D segment and D 
segment joining with J segment [24,25]. VDJ recombination 
exploits DNA damage response to promote immunity [9,25]. The 
variety of DSBs produced due to abundantly different chemistry of 
DNA ends [26]. Double stranded breaks produced by metaphase 
chromosome and chromatic breaks during replication of nick, 
reactive oxygen species (ROS) and mitochondrion (SOD2) and 
cytosol (SOD1) also produce DSBs. Nuclear enzyme produce DSBs 
when topoisomerase not function [27]. AgR gene is important for 
adaptive immunity. AgR which are self-reactive cause apoptosis in 
immature lymphocyte. Ataxia telangiectasia mutated (ATM) kinase 
is responsible for the eukaryotic DSB response [28]. RAG cleavage 
of AgR loci that stimulate many signalling pathways and these 
pathways change the level of transcript [29].

NON-HOMOLOGOUS END JOINING

After cleavage activity by RAG protein, then joining of 3'OH group 
to the complimentary DNA strand performed by the process of 
trans-esterification. Terminal Deoxynucleotidyltransferase TDT, 
causes gain or loss of nucleotide bases [25]. This phenomena 
enhances survival of cell while double stranded breaks occurs 
[30]. The RAG proteins attaches to the signal end, cell withstands 
by the phosphorylation of GSK3B on Ser389 with the help of 
MAPK (mitogen activated protein kinase) [31]. DNA dependent 
protein kinase indicates the binary stranded breaks in cell cycle. 
HMGB (High Mobility Gene Binding Protein) have many proteins. 
Classical non-homologous end joining (C-NHEJ) is a major binary 
strand break’s repair pathway by IgH class switched-NHEJ is made 
activated by class switch recombination in synaptic complex after 
cleavage CEs and SEs grasp by RAG complex [32]. Activation 
induced cytidine deaminase(AID) involved in somatic hyper 
mutation and begins the process of class switch recombination 
(CSR) [33]. (CSR shuffle the exons of constant region IgH and 
produces double stranded breaks but HR factor XRCC2 reduced 

the DSBs production by AIDs activity [33,34]. This is present in 
the upstream of each set of Exon’s constant region of Heavy chains 
[32]. RAG and AID working together and exchange the segments 
of IgH/IgI at high frequency in B cells [34]. The core of NHEJ 
have catalytic subunit (DNA-Pkcs) [35]. Ku is heterodox have 
two protein sub unit Ku70 and Ku80 [32,36]. Ku is the protein 
that binds to the double stranded breaks. Ku-DNA complex is 
important for the attachment of nuclease; polymerase and ligase 
of NHEJ [37-39]. Ku heterodimer play a crucial role in attachment 
of NHEJ factor to DSB ends. DSB are reformed by Homology 
direct repair (HDR) or by NHEJ. Ku acts stably and modification 
of DSB produces processed-ends and enhance mechanism of 
repair because it facilitates the NHEJ complex formation at the 
DSB [40]. TOPOVIB like (TOPOVIBL) is the plant and animal 
family of protein. TOPOVIB react and produce a complex with 
SP011 and involved in meiotic DSB formation [41]. RNA Helicase 
of the DExD/H box family cause conformational changes such 
as transition [42]. DNA ends come close to each other by DNA-
PKcs. Autophosphorylation is done by DNA-pKcs that causes 
conformational changes that release the DNA PKcs from DNA. 
NHEJ ligament complex has ligase IV (LIG4) and interact with 
X-ray repair cross complementing 4 (XRCC4) [43]. In Growth 1 
phase of cell cycle Terminal deoxynucleotidyltransferase TDT is an 
enzyme identify the VDJ recombinase compounds [44].

HAIR PIN FORMATION

HA1, HA2 and HA3 are highly active protein undergoes hairpin 
formation on the 12-RSS when second strand is not present [45]. 
RAG1 produce DNA bending at the 12RSS near 60C while RAG2 
not cause conformational changes [46]. pGG49 (bps 6197) is the 
point of breakage in DNA, their cleavage is done by RAG protein 
by a nick-hairpin mechanism [47]. The use of Ca2+ ion instead of 
Mg2+ cation changes protein stoichiometry [48]. XLF and PAXX 
bind to the Ku at the same time [32]. FHA Domain protein or 
fork head associated domain have proteins produced as a result 
of DNA damage. These proteins are related to the (PNK/PNKP) 
XRCC1 associated with single stranded breaks while XRCC4 
associated with DSBs. PNK/PNKP Asprataxin, Aprataxin and 
PNK-like factor (APLF) with XRCC1 and use for repairing DNA 
breaks. Polµ, polλ, and TDT react with Ku ligase complex [49]. 
Human an T-Lymphocyte leukemia produced by SCL gene present 
at chromosome 1p32 cRSS gene also supports VDJ recombination 
[7]. Two zinc finger regions (Zn) present in RAG1 are important for 
dimerization. ZnA reacts combine with RAG2 (ZnB) [9]. C

2
H

2
 ZnF 

(zinc finger) domain and C terminal domain binds to the binary 
stranded DNA regulate interaction of coding sequence [11]. This 
region increase RSS binding and interact with RSS an collaborate 
with RAG1. The N terminal regions of RAG 1 has elements that 
involve in regulation of cellular protein levels, interact with zinc 
ions and increase cellular VDJ recombination activity. This region 
is known as zinc dimerization domain [11]. RAG1 and RAG2 
proteins catalytic core have 384-100 and 1-383 residues particularly 
to combine. ZnA have ubiquit ligase activity and reacts with 
ubiquilates Histone H3 [50]. RAG2 non-core region bind to the 
histone H3K4Me3 and start the recombination reaction [51,52]. 
Acidic hinge regions that take part in post cleavage mechanism, 
stabilisation of DNA ends and choice of repair pathway of DNA. 
ZnA-zinc finger domain, NBD-nanomer binding domain. 
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HIGH MOBILITY GROUP

HMG1 high mobility group is the non-specific DNA binding 
proteins group that promotes synapsis and cleavage [9]. HMG1 and 
HMG2 are from the non-specific DNA binding proteins of HMG 
box family that control this activity [53,54]. HMG activity relies 
on metal ions. These proteins not take part in synaptic complex 
but start nicking and hairpin formation. Tetramer core of RSS 
involve in transposition [25]. Synapsis, cleavage and transposition 
of VDJ recombination signal’s done byRAG1/2 tetramer core 
[55,56]. RAG protein binds and cuts solitary DNA strand precisely 
between the RSS heptamer and the coding strand of DNA. 
Cleavage accomplished by RAG and RSS produces four broken 
ends. Two 5' phosphorylated signal end those terminate in the RSS 
and 2 hairpin structures which are covalently sealed [11]. 23RSS 
+12RSS come close to the RAG protein make a multi subunit 
synaptic complex. Signaling spread out from the interleukin-7 
receptor IL7R and pre B-cell receptor control the changing model 
of RAG expression involved in phosphoinositide-3 kinase (P13K) 
and protein kinase B (also known as AKT) effect on forehead box 
(FOXO) transcription factor required for RAG expression [57]. 
DNA dependent protein kinase (DNA-PKcs) determines the hair 
pin structure of DNA. In non-homologous ends join of RAG DNA 
breaks. DNA ends have recombinant structure that gives rise to a 
coding joint and signal joint. NHEJ machinery has components 
named as PAXX modified from XRCC4 and XLF. PAXX, XRCC4 
and XLF gather at the site of DNA damage to induce DSB repair 
and enhance DNA end ligation [43]. FOXO1 cannot bind to the 
enhancer region of RAG1/2 locus and give rise to the cleavage by 
FOXO1 [28].

RECOMBINANT ANTIBODIES

Western equine encephalitis virus

This is a solitary stranded RNA virus that is positive sense. WEE is 
the evolution of eastern equine encephalitis virus EEEV and Sind 
bis virus. This viral disease has symptoms ranging from sickness to 
severe encephalitis that may cause mortality. Four antibodies were 
originated from immune antibody gene library. The antibodies 
ToR68-2C3, ToR68-2E9, ToR68-3G2 and ToR69-3A2 were 
generated when mice were injected with a single inoculation of 
monoclonal antibodies. All mice were examined throughout 
the study, ToR68-2E9, ToR68-3G2 and ToR69-3A2 neutralized 
WEEV but ToR68-2C3 was not neutralized. ToR69-3A2 survival 
and protection was dose dependent. 200 micro gram doses gave 90% 
survival rate while ToR68-2C3 at high dose gave 60% survival rate [58].

Epstein bar virus

Monoclonal neutralizing antibodies found for Epstein-Barr 
virus envelope glycoprotein gp350/gp220 produce in human on 
infection. Gp359 ectodomain has eight particular B-cell binding 
epitopes with CD21 and CD35. 15 new monoclonal antibodies are 
produced. Epstein-Barr virus glycoproteins envelop is the primary 
target of neutralizing antibodies. Gp350/gp220, (gp350), gp42gH 
are those glycoproteins that allow entry of virus into the cell, thus 
initiating the infection. gH, gL band gD are the surface proteins 
encoded by virus. Gab is the type 3 transmembrane that enhances 
fusion of the viral and host membrane. It’s activity is regulated by 

heterodimeric gH/gL complex that play their role as an adapter that 
stimulate gab-mediated fusion on binding a cell surface receptor to 
target cells. B-cell infection is totally neutralized by AMMO1 that is 
the anti gH/gL monoclonal antibody [59].

Hepatitis

gpE1/gpE2 give rise to cross neutralizing antibodies. HCV works 
on the hyper variable region. WT and HVR1 gpE1/gpE2 produce 
antibodies which target any type of cross-genotype neutralizing 
epitopes. HCV protein is immunogenic and easily tolerated in 
humans and animals. Chimpanzees that are vaccinated show 
reduced rate of HCV [60].

Ebola virus

GPE118, GPE325, GPE534 are targeted to different epitopes. 
GP antibodies show epitopes with other glycoprotein’s epitopes. 
Resulted recombinant antibodies show high level of neutralizing 
activity [61].

CONCLUSION

In conclusion, DNA modifications including structural and 
chemical changes, some of the changes are contributing to most of 
the human immune system. DNA repair mechanisms are working 
to cause changes to allow survival, study of survival pathways are 
helpful to estimate the exposure and plan strategies to reduce the 
harmful effects of these changes on human health.
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