
Volume 8(5): 204-207 (2016) - 204
J Bioequiv Availab
ISSN: 0975-0851 JBB, an open access journal

Open Access

Dudhipala et al., J Bioequiv Availab 2016, 8:5 
DOI: 10.4172/jbb.1000295

Review Article Open Access

Journal of Bioequivalence & Bioavailability
Jo

ur
na

l o
f B

ioe
quivalence & Bioavailability

ISSN: 0975-0851

Keywords: Brain; Cerebrospinal fluid; Intranasal; Formulation;
Non-invasive

Introduction
Targeting drugs to the central nervous system via oral or IV route 

is a challenge because of the physiological barriers like Blood Brain 
and Blood cerebrospinal fluid (CSF) barrier. Intranasal (IN) route 
is devoid of the various barriers for delivery of drugs to CNS [1-16]. 
This route facilitates patent compliance, ease of administration, low 
dose requirement and minimal side effects [9,11-15,17-19]. The 
overall objective of the review is to provide the recent advances in the 
intranasal delivery of therapeutic agents to the brain and the CSF. 

Intranasal delivery of drugs to the CNS will be delivered to 
the olfactory bulb and the brain via the olfactory and trigeminal 
components respectively. The transport of drugs will be further carried 
out across epithelial membrane barriers or to brain entry sites from 
nasal mucosa or from brain entry sites to other sites following a 
transcellular, paracellular or neuronal transport pathways. 

Low membrane permeability across nasal mucosa is considered 
to be a major limiting factor for the absorption of polar drugs and 
peptides. The absorption of the drugs across the nasal epithelium is 
influenced by the physicochemical properties of the drug. Lipophilic 
drugs have a higher rate of absorption whereas various factors like 
molecular weight, membrane permeability, mucociliary clearance and 
enzymatic degradation influence the absorption of hydrophilic drugs. 

In addition rapid mucociliary clearance also serves as a road block 
and confines the residence time of the drugs which in turn reduces the 
half-life of the intranasal formulations (liquid and powder dosage forms) 
to an order of 15-20 min [19,20]. Site of deposition either anterior or 
posterior area of the nasal region also influences the clearance of drugs. 
Drugs targeted to the anterior part of the nasal cavity may be subjected 
to minimal nasal clearance and promote absorption compared to the 
deposition in further back region. Various enzymes present in the 
mucosal region may also limit the bioavailability of the drugs. In the 
current various formulation strategies to enhance the bioavailability of 
drugs administered via intranasal route is discussed.

Formulation Strategies to Enhance Intranasal Drug 
Delivery

To overcome the barriers that limit the bioavailability of drugs 
administered via intranasal route, various formulation approaches 
such as enhancing the drug permeability across the nasal epithelium, 

minimizing clearance from the nasal passage and protecting drugs 
from degradation may enhance the capabilities of intranasal drug 
delivery to CNS. 

Alteration of Membrane Permeability Using Permeation 
Enhancers

The poor permeability of the nasal mucosa limits the permeability 
of the drugs across nasal mucosa and it could be enhanced by 
improving permeability of drugs across the mucosal epithelium. This 
enhancement in permeation aids in the enhancement of extracellular 
transport to the CNS along olfactory and trigeminal nerve. Tight 
junctions present in the epithelia also limit the permeability to a certain 
extent and limits the bioavailability of the drug molecules. The use of 
permeation enhancers like surfactants, tight junction modifiers, bile 
salts, lipids and polymers may modify the permeability of the drugs 
across the nasal mucosa. 

Cationic polymers like chitosan when co-administered may 
enhance the absorption across the nasal mucosa. Vaka et al. 
investigated the efficacy of chitosan to facilitate brain bioavailability of 
intranasally administered nerve growth factor (NGF) and reported that 
use of chitosan enhanced the permeation of NGF across the olfactory 
epithelium by 5 fold compared to the control during the in vitro 
permeation studies [21,22]. A comparative evaluation of the intranasal 
administration of NGF with chitosan and without chitosan was also 
evaluated in Sprague Dawley rats and it is very clearly evident form the 
PK results that Cmax of NGF in brain was enhanced by ~14 fold upon 
use of chitosan compared to its control. 

Manda et al., investigated the ability of the chitosan to enhance the 
permeation of Cefotaxime and reported that 0.25% w/v chitosan across 
the olfactory epithelium was enhanced about ~2 fold in the 2 hours of 
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time compared to control [9,23]. In vivo studies were carried out in 
Sprague Dawley rats by intravenous and intranasal administration of 
cefotaxime. The MIC levels were attained within a short time span and 
were maintained for a considerable period of time. The time required 
to attain maximum concentration in case of intranasal (tmax=30 min) 
was rapid compared to intravenous (tmax=180 min) and the absolute 
bioavailability following intranasal administration was about 86%.

Vaka et al. investigated the ability of peppermint oil to enhance 
the permeation of NGF across the olfactory mucosa and reported that 
peppermint oil at concentrations of 0.05, 0.1 and 0.5% v/v enhanced the 
in vitro transport of NGF by 5, 7 and 8 fold, respectively. In vivo studies 
employing brain microdialysis in rats demonstrated that intranasal 
administration of NGF formulation with 0.5% peppermint oil 
enhanced the bioavailability by ∼8 fold compared to rats administered 
with NGF alone [24-26]. The bioavailability of NGF in the brain could 
be enhanced by intranasal administration of peppermint oil.

The change in osmolarity of the formulation may enhance the 
intercellular or extracellular transport mechanism to the CNS region. A 
change in the amount of vasoactive intestinal peptide with a change in 
osmolarity of the formulation was reported [27]. Ionization state of the 
drug and pH of the formulation may also affect the permeability of the 
drugs when administered intranasally. Sulphonamides with different 
fractions of ionization when administered intranasally were found to 
have differences in permeability to the CSF [28]. 

Nanoparticular Delivery System
Mucociliary clearance reduces the contact time of drugs with 

the nasal epithelia and rapidly removes drugs from the delivery site. 
Use of nanoparticles, mucoadhesive agents, absorption enhancers, 
surfactants, lipid emulsions, vasoconstrictors and efflux transporter 
inhibitors are some of the potential approaches to reduce the clearance 
and enhance the residence time [29-37]. 

Nanoparticulate drug delivery systems have the capability to 
enhance the bioavailability of drugs upon intranasal administration 
compared to drug solutions [38-43]. These formulations were reported 
to increase the residence time in the nasal cavity and prevent the effect of 
enzymatic degradation on these drugs [41]. Insulin nanoparticles were 
also reported to reduce the plasma glucose levels when compared to the 
insulin solution [38,44,45]. The better efficacy of the nanoparticulate 
formulation was due to the strengthened contact of the nanoparticles 
with the epithelium. 

Nanoparticle with modified surface properties may be used for 
mucosal binding, reduce clearance and enhance delivery to CNS. In a 
study by Kravtzoff et al. it was reported that the mean residence half-
life was extended to 2.3 h in the human nasal cavity when compared 
to that of the residence half-life (15-30 min) of solution upon the 
use of cationic BiovectorTM nanoparticle system [46,47]. The levels of 
fluorescent markers in various regions of brain was enhanced when 
Ulex europeus agglutinin I and wheat germ agglutinin conjugated 
horseradish peroxidase upon conjugation with PEG-PLA nanoparticles 
compared to unmodified nanoparticles. Use of vasoconstrictors to 
reduce the clearance in to the blood and treatment with inhibitors 
of the efflux transporters reduces the clearance in to the blood and 
enhances the drug to the CNS. Vaka et al. investigated the capabilities 
of carnosic acid nanaoparticular systems to enhance the in vivo efficacy 
of carnosic acid and enhance the neurotropin expression in the brain 
[48-50]. It was reported that intranasal administration of carnosic 
acid nanoparticles resulted in comparable levels of endogenous 

neurotrophins level in the brain that was equivalent to the four, once 
a day intranasal administration of solution in rats and demonstrated 
the fact that nanoparticulate drug delivery system for intranasal 
administration of carnosic acid reduces the number of administrations 
to elicit the required pharmacological activity. 

Polymeric Delivery Systems
Polymers with high molecular weight and flexible chains are used as 

bioadhesives, they have the capability to interact with mucin by forming 
hydrogen, electrostatic, hydrophobic or van der waals interactions. 
Thermoreversible polymers have the capability to exist in both sol and 
gel form at low and high temperatures respectively, and are referred as 
in situ gels. Because of its dual nature, it can be used as drug carrier for 
intranasal delivery where the therapeutics will be administered in the 
solution form at low temperatures and turns to semi-solid gels with 
change in physiological temperature. Polymeric vehicles like Kolliphor 
P 407 are reported to deliver the drugs at therapeutic concentrations, 
prolong the release of therapeutic agents and protect the therapeutic 
agents from enzymatic degradation. Perez et al. successfully delivered 
naked siRNA and poloxamer polymers, as in situ mucoadhesive gels 
to brain via olfactory epithelium [51]. Chen et al. could successfully 
enhance effect of radix bulperi and retain its effect for a longer time 
in CSF following administration of temperature sensitive in situ gels 
[52]. Manda et al. investigated the ability of delivering ziconotide via 
intranasal route. Ziconotide when delivered using poloxomer as a 
vehicle could not only attain therapeutic concentration rapidly but 
also prolong the release of ziconotide, maintain therapeutic levels in 
CSF for a longer period of time compared to solution and reduce the 
frequency of administration [53]. 

Conclusion
Intranasal delivery appears to be a promising route for targeting 

drugs either to brain and CSF. This route will be very effective in 
treating various CNS disorders and various formulation strategies 
have already demonstrated the potential to enhance and prolong the 
release of therapeutic agents. It will be of great interest to the research 
community to explore further advances in targeting drugs to CNS via 
non-invasive patient compatible intranasal route for disease conditions 
that need a rapid onset of action.
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