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ABSTRACT

To speed up the development of improved crop varieties, genomics assisted plant breeding is becoming an important 
tool. With traditional breeding and marker assisted selection, there have been several achievements in breeding for 
diseases resistance. Most research for disease resistance has been focused on major disease resistance genes which 
are highly effective although very vulnerable to breakdown with rapid changes in pathogenic races. In contrast, 
breeding for minor gene quantitative resistance can produce more durable plant varieties although it is very slow 
and challenging breeding. As the genetic architecture of the plant disease resistance shifts from single major R 
genes to many minor quantitative genes, the most appropriate approach for molecular plant breeding is genomic 
selection (GS) than marker assisted selection or conventional breeding. With the advent of new genomic tools, GS 
has emerged as one of the most important approaches for predicting genotype performance to improve genetically 
complex quantitative traits. Consequently, GS helps to accelerate the rate of genetic gain in breeding by using 
whole genome sequence data to predict the breeding value of offspring. GS breeding for quantitative resistance 
will therefore necessitate whole genome prediction models and selection methodology as implemented for classical 
complex traits. With the implementation of GS for yield and other economically important traits, whole genome 
marker profiles are available for the entire set of breeding lines, enabling genomic selection for disease resistance 
with no additional direct cost. Therefore, recent developments in GS including a two stream GS + de novo GWAS 
models (GS+) and GS for combined highest level of quantitative resistance with R genes (QR +R gene) individuals 
are expected to further advance disease resistance plant breeding and briefly discussed.
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INTRODUCTION

Conventional plant breeding strategies for selecting best and 
resistant plant genotypes for release depending on the phenotypic 
trait have proven to be of limited success. To develop improved 
varieties, any breeding program must have an efficient strategy for 
evaluating candidate genotypes for high yield, disease resistance, 
good agronomic performance, and better end use qualities [1]. 
Plant breeding for disease resistance varies depending on whether 
the resistance is considered to be qualitative or quantitative. The 
genetic architecture of disease resistance is closely tied to whether 
the resistance is quantitative or qualitative, and hence both the 
phenotypic and molecular breeding approaches must be matched 
accordingly. Qualitative disease resistance conditioned by single, 
major genes that does not have a complex genetic architecture. It is 
more suitable for identifying and mapping single resistance genes 

of large effect [2]. In contrast, quantitative disease resistance can be 
approached using whole genome prediction models developed for 
quantitative traits [2]. Genomic selection (GS) is an ideal approach 
for highly polygenic complex traits with lower heritability and a 
complex genetic architecture that are controlled by thousands of 
genes each with very small individual effects [3]. 

Recent advances in sequencing technologies helped to apply 
effective genotyping methods such as genotyping by sequencing 
(GBS) in different crop species with large number of markers 
for GS [1,2,4-6]. GS is highly advanced and accurate technique 
in estimating breeding values for complex quantitative traits 
compared to the traditional phenotypic selection or marker 
assisted selection (MAS). GS has more power to capture small 
effect loci that would be missed by MAS [7]. Besides, the use of 
dense genome wide markers increases the chance of markers being 
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in linkage disequilibrium (LD) with QTL influencing the trait 
of interest [8], and determines to some extent how well genetic 
relationship and genetic architecture are captured by the genomic 
selection model [9].

In GS, breeding program representative individual are genotyped 
with dense, genome wide markers, such as SNPs and phenotyped 
for traits of interest. This set of individuals are called a training 
population which will be used to create a genomic prediction 
model [2,10-12]. This model estimates the sum of the additive 
genetic effects of the genome wide alleles on the trait of individuals 
and known as genomic estimated breeding values (GEBVs). In 
selection cycles, non phenotyped breeding materials are genotyped, 
with the same set of markers as training population. Then, 
appropriate prediction model is used to predict their GEBVs for 
the trait of interest. One of the most important features of GS is 
all selected markers need to be significant and used for prediction 
modeling [5-8]. 

METHODS

Breeding for disease resistance 

Breeding methods for disease resistance vary depending on whether 
the resistance is considered to be qualitative or quantitative. 
Qualitative plant disease resistance is resistance controlled by 
a single resistance (R) gene recognizing a virulence factors in a 
classic gene for gene mechanism. With molecular markers for R 
genes, direct selection for disease resistance can be implemented 
in the breeding programs. There has been significant effort 
on the identification of markers linked with major genes and 
mapping quantitative trait loci (QTLs) for disease resistance [2]. 
Several hundreds of R genes have been mapped across important 
crop plants, including rice [13,14], wheat [15-17], maize [18-20], 
soybean [21,22] and potato [23,24] as well as numerous other crop 
pathosystems [25,26]. 

Nevertheless, in applied plant breeding there are relatively very 
few examples of large scale implementation of MAS for disease 
resistance [2]. As reported by Miedaner & Korzun [2] in wheat 
and barley breeding, the lack of markers applied in commercial 
breeding for disease resistance could be due to having few diagnostic 
markers. Besides, few monogenic resistances are durable, and only 
a few QTLs with high effects have been successfully transferred 
into elite breeding material [27]. 

Currently marker assisted selection has failed significantly 
to improve polygenic trait [28,29]. Quantitative resistance is 
considered to be more durable than qualitative disease resistance. 
Unlike resistance based on R genes, quantitative resistance 
generally does not appear to be race specific [30,31]. With race 
specific resistance, the prevalent pathogen race is a component of 
the environment, leading to greater observed G × E interaction. 
By comparison, minor gene resistance that has no or minimal 
gene for gene interaction leads to much less G × E interaction. 
In breeding, yield stability is the ideal target, especially because 
good performance across years is desired. Stability in resistance, 
resistance with minimal G × E, is important for achieving yield 
stability, particularly in areas prone to epidemics.

Breeding for race nonspecific minor gene resistance is one way to 
minimize G × E of resistance. In addition to minimizing G × E, 
there are also quantitative genetic and genomic prediction models 
that can help improve breeding efficiency when G × E is present, 

as long as there is some genetic correlation between environments 
[29,32]. Therefore, as the genetic architecture of resistance shifts 
from single major R genes to a diffused architecture of many minor 
genes, the best approach for molecular plant breeding is shifting 
from marker assisted selection to genomic selection. With the 
implementation of GS for yield and other economically important 
traits, whole genome marker profiles are available for the entire set 
of breeding lines, enabling genomic selection for disease resistance 
with no additional direct cost.

Major steps and advantages of GS 

Genomic selection showed great promise to strongly increase 
the rate of genetic improvement in plant breeding programs [8]. 
It allows a comparative larger gain from selection by estimating 
all marker effects simultaneously and subsequent selection of 
genetically superior individuals based on their genomic estimated 
breeding value (GEBV) [33], instead of using a few significant 
markers as in classical marker assisted selection.

As illustrated in Figure 1, GS uses a training population of 
individuals that have been both genotyped and phenotyped 
to develop a model that takes genotypic data from a candidate 
population of untested breeding materials and produces genomic 
estimated breeding values (GEBVs). These GEBVs say nothing of 
the function of the underlying genes but they are the ideal selection 
criterion. In the plant breeding context, untested breeding 
materials would belong to a broader population defined as a crop 
market class or the breeding program as a whole [1,11].

Besides, very recently a two stream GS breeding scheme was 
developed [34] in which unutilized germplasm is systematically 
incorporated into a GS breeding pipeline again to test and predict 
the presence of new, highly effective allele combinations (Figure 
2). In stream 1: Several pre-breeding materials with many favorable 
alleles from exotic germplasm are sequentially introduced into 
adapted germplasm. After many cycle of backcrossing and 
recombination to break linkages after the initial F1 cross between 
un-adapted and adapted material, selection of individuals from 
breeding population 1 is performed using a combination of GS + 
de novo GWAS models (GS+), in which the exotic QTL are fit as 
fixed effects and phenotype. The training population GS would be 
a subset of breeding population 1, that is, a fraction of breeding 
population 1 would be both genotyped and phenotyped, while the 
rest of breeding population 1 would be genotyped only. 

Stream 2 continues the process of further refining and improving 
existing elite materials. Adapted materials from breeding 
population 1 are crossed into breeding population 2 where they are 
further refined using GS + de novo GWAS models, where the fixed 
effects would include valuable QTL identified based on GWAS 
performed in Breeding Population 2, the exotic QTL from Stream 
1, or any other large effect QTL a breeder might normally target 
for trait improvement. Output from Stream 2 can be advanced 
toward variety release or fed back into stream 1 to serve as parents 
for further crossing and population development. This approach 
helps the breeders to learn directly from data on new and diverse 
germplasm and make rapid genetic gain.

The main factors that affect the accuracy of GS include the 
heritability of the trait, the rate of linkage disequilibrium decay, 
the marker density, and the number of individuals in the training 
population [9]. When LD decays more rapidly, then a greater 
number of markers and individuals for model training are needed. 



3

Dagnachew B, et al. OPEN ACCESS Freely available online

J Plant Pathol Microbiol, Vol. 10 Iss. 4 No: 478

When predicting across populations, as in the case where previous 
breeding candidates are used for model training to predict new 
selection candidates, the relationship between the model training 
population and the selection candidates is important [35].

GS is a promising method for exploiting molecular genetic 
markers to design novel breeding programs and to develop new 
markers based models for genetic evaluation. In plant breeding, it 
provides opportunities to increase genetic gain of complex traits 
per unit time and cost. Therefore, for complex quantitative traits, 
GS provides higher selection accuracy in reduced time giving 
an accurate and good genetic gain per unit time as expected as 

compared with conventional phenotypic selection and MAS for 
complex traits. Besides, the fundamental difference between MAS 
and GS impacting the effectiveness of these two selection tools is 
scale [36]. MAS is limited in its ability to predict breeding values 
as it concentrates on a small number of QTLs that are tagged by 
markers with well-defined associations. In contrast, GS uses a dense 
set of markers from across the entire genome, assuring that all QTL 
are in LD with at least one SNP marker (Figure 3).

Statistical models for GS

There are a variety of statistical models used to estimate breeding 

Figure 1: Steps for predicting genotypic value in GS.

 

Figure 2: New a two stream GS breeding scheme [34].
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values in GS. Based on the crop species, trait considered, and 
breeding population design, the choice of statistical models used 
in GS has been shown to have a significant effect on prediction 
accuracy [37,38]. Very interestingly, for breeding crops like rice and 
wheat with large effect QTL, statistical models that incorporate 

a select number of molecular markers as fixed effects have been 
shown to contribute to improved prediction accuracy [34]. Two 
of the most commonly used models for purely quantitative traits 
are Genomic best linear unbiased prediction (G-BLUP) and 
ridge regression BLUP (RR-BLUP) [2]. G-BLUP is a mixed linear 

Figure 3: Next-generation sequencing (NGS) based marker technologies and high throughput phenotyping (HTP) accelerates GS based plant 
breeding [37].

 

Figure 4: A GS scheme for combining R gene resistance (+R) and high level of Quantitative Resistance (QR) [2].
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model, with individuals as random effects, and the covariance 
among individuals is assumed to be proportional to the genomic 
relationship matrix estimated with genome-wide markers. 

G-BLUP is a modification of the conventional BLUP model [39], 
which uses pedigree relationships rather than genomic relationships. 
When using G-BLUP for prediction, both the model-training and 
validation individuals are included in the relationship matrix, but 
only the model training individuals have phenotypic data. RR-
BLUP is also a mixed linear model, but markers are considered 
random effects [40]. Covariance between markers is considered to 
be zero, and the marker variance is assumed to be the total genetic 
variance divided by the number of markers. This assumes that 
variance is equal for all markers, which enables many more marker 
effects to be estimated than there are phenotypic records [2]. 
Other suitable models for traits that fall between quantitative and 
qualitative inheritance are the Bayesian models Bayes-A, Bayes-B 
[8], Bayes-Cπ [41], and Bayesian LASSO [42]. With Bayes-A, each 
marker is assumed to have a unique variance. Bayes B is an extension 
of Bayes-A and allows some markers to have no effect. 

Successes of GS in disease resistance breeding

In the past few years, there have been a number of research 
investigations that clearly demonstrated the application of many 
whole genome prediction models and GS approaches for disease 
resistance plant breeding (Table 1). These research efforts have 
confirmed the effectiveness of different GS models to capture and 
predict the genetic variation for disease resistance, particularly 
quantitative disease resistance [43-55]. 

One of the most studied plant disease for the application of GS 
models in disease resistance plant breeding is rusts in wheat. The 
major rust pathogens of wheat are stem rust, yellow/stripe rust, 
and leaf brown rust [2]. Wheat rusts disease resistance can be 
either qualitative or quantitative, with several race specific R genes 
[56]. The R genes usually detected in the seedling stage. However, 
quantitative disease resistance loci generally confer resistance 
only in the adult plants, as a result it is referred as adult plant 
resistance (APR). APR has been shown to vary to some degree 
across environments, which could be due to race, temperature, or 
other unknown environmental factors. 

Though disease resistance breeding efforts using major R genes for 
wheat rust have produced highly resistant varieties, their resistance 
breaks very shortly [2]. Therefore, breeding strategy for minor gene 
resistance highly preferred to generate varieties with durable disease 
resistance. Quantitative disease resistance is race nonspecific 
and sometimes effective against more than one rust species [57]. 
Previous studies on the application of GS for wheat rust disease 
resistance reported moderate to high prediction accuracies ranging 
from 0.3 to 0.8, and were able to predict both within and across 
environments with comparable accuracy [54,55]. Besides it is also 
indicated that GS can be relatively with small training population 
[46,48].

Besides, Fusarium head blight (FHB) is a serious disease in 
different parts of the world every year causing a very high yield 
loss and reduction of grain quality [58,59]. Different previous 
studies proven that resistance to FHB in wheat is quantitatively 
inherited [60,61] and that genetic variation for FHB resistance is 
predominantly additive [62,63] showing accumulation of resistance 
genes possible. The first report on GS models for FHB resistance in 
wheat found that various prediction models have high accuracy to 
be useful in breeding [55]. Besides, various studies evaluated RR-
BLUP as well as a nonlinear and a variable selection model on a 
diverse set of breeding lines for FHB and confirmed different traits 
associated with FHB resistance, could be predicted with moderate 
to high accuracy [47]. 

One of the major challenges with GS for disease resistance is 
that many disease resistances are highly heritable, which makes 
phenotypic selection hard to beat in both per-cycle and per unit 
genetic gain [46,47]. In order for GS to outperform phenotypic 
selection for quantitative disease resistance, it may be necessary to 
increase the selection intensity in addition to decreasing cycle time. 
For low-heritability traits, using genotype in addition to phenotype 
can substantially improve selection accuracy [64,65]. 

Recent advances in disease resistance breeding

The main advantage of using GS for durable disease resistance 
plant breeding is, quantitative resistance can be selected in the 
presence major R genes [2]. Several R genes confer a very high level 
of resistance and can severely mask the effect of other resistance 

Table 1:  Major previous works demonstrating GS application for disease resistance breeding.

Crop Disease type References

Wheat Rust [43]

Wheat Septoria tritici blotch [44]

Barley FHB* [45]

Wheat Stem rust [46]

Wheat FHB* [44]

Wheat FHB* [47]

Wheat Stem rust [48]

Wheat FHB* [49]

Maize NCLB** [50]

Maize Gibberella ear rot [51]

Cassava Cassava mosaic disease [52]

Cassava Cassava anthracnose disease [52]

Barley FHB* [53]

Wheat Stem rust [54]

Wheat Yellow rust [54]

Wheat FHB* [55]
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QTLs in the background. In different plant breeding populations, 
both quantitative resistance loci and R genes are present together. 
In this case the ideal genotypes are those individuals with at 
least one effective R gene along with a high level of quantitative 
resistance. Therefore, this would lead to a very high level of 
disease resistance provided that the R gene is effective, and when 
the R gene is rendered ineffective, quantitative resistance in the 
background would still provide a good level of protection against 
yield loss. 

The major advantage of genomics assisted plant breeding for 
disease resistance includes, it provides very good opportunities for 
combined selection of both R gene and quantitative resistance. 
The process mainly begins with crossing two parents that segregate 
for a race specific R gene based resistance to generate a population 
of selection candidates as illustrated in Figure 4. The selection 
candidates are then genotyped with WGS or GBS for genome 
wide markers. The selection candidates without effective R genes 
are then phenotyped for quantitative disease resistance. The 
phenotypes and genotypes are used to train genomic prediction 
model (GS model), which is then used to predict the level of 
quantitative resistance in the individuals with the effective R genes 
[2]. The individuals that combine the highest level of quantitative 
resistance with R genes (QR + R-gene candidates) are then selected 
for further advancement. 

RESULTS AND DISCUSSION

To speed up the development of improved crop varieties to feed 
an ever increasing world population, genomics assisted breeding 
is an important tool in any breeding program in the world. With 
traditional plant breeding and marker assisted selection, there has 
been several successes in breeding for diseases resistance. Most 
research works for disease resistance has been focused on major 
disease resistance genes which are highly effective although very 
vulnerable to breakdown with rapid changes in pathogenic races. 
There were several attempts in constructing genetic maps for 
important disease resistance genes and identifying several markers 
for MAS [2,10,11]. However, for many diseases, MAS quickly 
becomes very complex and intractable in an applied breeding 
program [2]. 

In contrast, breeding for minor gene quantitative resistance can 
produce more durable plant varieties although it is very slow and 
challenging breeding. To develop improved varieties with more 
durable disease resistance, the most appropriate approach is genomic 
selection (GS) than marker assisted selection or conventional 
breeding. The primary objective for implementing GS in plant 
breeding program is selection for high yield to reduce the time 
and costs associated with yield testing. As a result, GS is currently 
broadly accepted as an efficient method to improve genetically 
complex quantitative traits. Besides, recent developments in 
different sequencing technologies created excellent opportunities 
to apply different genotyping techniques including whole genome 
sequencing, genotyping by sequencing (GBS) in different crop 
species yielding an appropriate large number of markers for 
genomic. Therefore, GS helps to speed up the rate of genetic gain 
in breeding by using whole genome data to predict the breeding 
value of offspring. GS breeding for quantitative resistance will 
therefore necessitate whole genome prediction models and 
selection methodology as implemented for classical complex traits 
such as yield. With the application of GS for yield and other several 
economically important traits, whole genome marker profiles will 

be available for the entire set of breeding lines, enabling genomic 
selection for disease resistance with no additional direct cost. 

GS has a great potential to improve plant breeding progress 
through increased selection intensity and decreased cycle time. 
In several studies, field based high throughput phenotyping 
highly demonstrated potential to measure different phenotypic 
traits faster and more accurately [66]. The combined power of 
genomics and phenomics is highly expected to lead to new eras in 
plant breeding and functional genomics [66,67]. Besides, current 
advances in disease resistance plant breeding through applications 
of a two stream GS breeding scheme using a combination of GS + 
de novo GWAS models (GS+) and genomic prediction model that 
combine the highest level of quantitative disease resistance with R 
genes (QR + R-gene candidates) are expected to further advance the 
implementation GS in disease resistance plant breeding. 

CONCLUSION

Currently, there is a strong confidence and foundation for 
application of GS breeding for disease resistance plan breeding. 
Several studies successfully demonstrated the great potential of the 
current whole-genome prediction models efficiency to predict and 
select for quantitative disease resistance. With the implementation 
of GS for yield and other economically important traits, whole 
genome marker profiles will be available for the entire set of 
breeding lines, enabling genomic selection for disease resistance 
with no additional direct cost. Generally, genomic selection can 
increase breeding progress through increased selection intensity 
and decreased cycle time. Toward this major objective, the 
combined power of genomics and high throughput phenotyping 
technologies are expected to lead GS to new eras in disease 
resistance plant breeding and functional genomics studies. Besides, 
recent developments in disease resistance breeding, through a two 
stream GS breeding scheme using a combination of GS + de novo 
GWAS models (GS+) and GS model that combine the highest level 
of quantitative disease resistance with R genes (QR+R-gene) will 
further revolutionize the implementation GS in disease resistance 
plant breeding.
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