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Research into the pathogenesis and progression of endocrine 
tumors has advanced in many ways in the last two decades. Yet, we still 
face major roadblocks in our attempts to find a cure for the most deadly 
disease, i.e., Cancer. Is it possible that research has been studying less 
significant parts of an equation which tips the tender equilibrium 
of balanced ‘normal’ protein synthesis and post-transcriptional 
modifications versus irreversible malignant changes, the latter 
driving the progression normal epithelium to preneoplastic lesions 
and ultimately to aggressively growing, invading and metastasizing 
carcinomas, while missing the most important drivers of malignant 
trans formation? However, due to major advances in high throughput, 
next generation sequencing of DNA and RNA, the relevant epi-/genetic 
changes and their fundamental functional consequences have moved 
into the spotlight of temporary cancer research.

For example, with more than 200,000 new cases diagnosed every 
year, breast cancer remains the most frequent cancer in women in the 
U.S. Although breast cancer-related deaths have decreased over the 
last decade, this dreaded disease is the second most common cause or 
cancer-related deaths in women. Breast cancer has an unpredictable 
course and even after removal of the primary tumor, the risk of 
metastasis continues for 20 years or more [1]. Many patients would 
greatly benefit from detecting the disease in its earliest stages, when 
chances for a complete cure are still high. 

Breast cancer is a complex disease and the cancer cells often show 
alteration in pathways ranging from signal transduction to DNA 
repair, drug response and apoptosis to survival in nutrient or oxygen 
deficient environments [2-7]. Our understanding of the disease seems 
very limited considering cofounding factors such as ethnicity in the 
age at onset or diagnosis of breast cancer [8]. Breast cancers progress 
through accumulation of genomic aberrations that enable development 
of cancer patho-physiological changes such as unlimited growth and 
metastasis.

Accumulated evidence has demonstrated that breast cancer is a 
complex and intrinsically heterogeneous disease in which patients 
may exhibit similar symptoms, but appear to have the same disease 
phenotype, for entirely different genetic reasons. Most published studies 
of breast cancer tumorigenesis have focused on the role of protein-
coding genes during the onset and progression of the disease [9-12]. 
However, the role of genomic DNA sequences not coding for proteins, 
which may make up more than 80% of the human transcriptome, still 
needs to be determined.

Thus, an investigation of the role of large intergenic non-coding 
RNAs (lincRNAs; also known as ‘long non-coding RNAs’ or ‘lncRNAs’) 
[13,14] seems warranted, and an assessment of lincRNAs as potential 
biomarkers for the early detection of breast cancer as well as other 
malignant neoplasms such as prostate or thyroid may be in reach given 
the recent developments in genome research.

Recent discoveries showed thousands of DNA sequences in the 
human genome potentially coding for lincRNAs with individual 

sizes ranging from a few hundred to more than a hundred kb [14]. 
The expression of lincRNAs is strikingly tissue-specific and they are 
typically co-expressed with neighboring genes. It is well documented 
that lincRNAs play key roles in diverse biological processes such as 
gene dosage compensation, imprinting, chromatin remodeling, mRNA 
splicing and tumor metastasis [15-19]. For example, overexpression of 
the lincRNA ‘HOTAIR’ predicts tumor recurrence in hepatocellular 
cancer, and in breast cancer, it has been shown to remodel the 
chromatin state to promote cancer metastasis [15]. In prostate cancer, 
a recent analysis of RNA sequencing (RNAseq) data identified several 
non-coding RNA species associated with disease progression and 
unfavorable prognosis [19]. 

While the expression of particular lincRNA species change as 
normal tissues undergo malignant transformation, detailed knowledge 
might allow us to define biomarkers for early detection of cancer and, 
furthermore, design sensitive tests to predict the course of preneoplastic 
lesions or early stage tumors.

But, in the human genome, there are also vast regions comprised 
of short, simple DNA repeats, termed ‘DNA satellites’ due to their 
appearances as extra peaks in assays fractionating human genomic 
DNA. This type of DNA has long been thought to be a type of passenger 
or ‘junk’ DNA accumulated during the evolution of the human genome. 

For a long time, our lab has been interested in highly repeated 
satellite DNA for its use as chromosome-specific DNA probes [20,21]. 
While evaluating cloned DNA probes, we typically found probes which 
lead to an unacceptable level of cross-hybridization. Some of them, 
however, showed a striking pattern of binding to chromosomes in 
meiosis [22]. Emphasizing the role of expressed satellite DNA, a recent 
RNAseq study using nexgen technology and deep sequencing detected 
transcripts from highly repeated DNA satellite sequences, and was able 
to demonstrate abnormal expression of satellite DNA sequences in 
human tumors [23].

Thus, no longer should non-coding DNA be considered a useless 
bystander or ‘junk’. The studies of lincRNAs and differentially expressed 
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satellite DNA sequences mentioned above ought to be considered to be 
even less than ‘the tip of the iceberg’. Thorough cell biology research, 
bio informatics and data mining of genome as well as transcriptome 
databases will provide much needed insight into the function of non-
coding DNA in mammalian genomes, and that of breast and other 
endocrine tumor, in particular.
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