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Abstract

Objective: Mitochondrial dysfunction is often associated with various disorders such as diabetes, Alzheimer’s
etc. Reactive oxygen species (ROS), aging, and reduction of mitochondrial biogenesis contribute to mitochondrial
dysfunction. Antimycin-A (AMA) damages the mitochondria through inhibition of mitochondrial electron transport.
The present study sought to investigate effects of quercetin on rat L6 cells and whether quercetin protects
mitochondria against oxidative damage caused by AMA.

Methods: Rat L6 myocytes were used for the study. Effects of quercetin on Antimycin-A induced mitochondrial
dysfunction was studied using cytotoxicity, ATP levels, mitochondrial superoxide production and NDUFB8 mRNA
expression.

Results: In this study, exposure of L6 myocytes to AMA induced an increase cell death, decreased ATP content,
followed by a decrease in mitochondrial superoxide, and decreased expression of NDUFB8. We found that quercetin
protected myocytes from antimycin-A (AMA) induced L6 cell death as evidenced from increased lactate
dehydrogenase (LDH) leakage into extracellular medium, protected ATP production, prevented increase in oxidative
stress and restored levels of NDUFB8 mRNA expression implying improved mitochondrial function.

Conclusion: These results suggest that the quercetin showed protective effect against AMA-induced
mitochondrial dysfunction by increasing ATP production, decreasing oxidative stress, and restoring mitochondrial
function.

Keywords: Quercetin; Mitochondrial biogenesis; Oxidative stress;
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Introduction
Mitochondrial biogenesis is an important process responsible for

regulating energy demand of the cell. Accordingly, it is affected by a
variety of factors, like exercise, low temperature, and oxidative stress
[1,2]. Mitochondrial biogenesis is a type of mitochondrial dysfunction
and can play a role in many diseases, like diabetes and Alzheimer’s, etc.
[3,4]. Increased oxidative damage and inflammation can cause
mitochondrial damage that may lead to serious acute and chronic
pathologies such as multi organ failure, neurodegeneration,
cardiovascular diseases, and cause aging. Mitochondrial biogenesis
enhance cellular function and survival in-vitro and in-vivo and
promote cellular recovery from damage caused by adverse
environmental, pathophysiological, and/or infectious agents [4,5].
Mitochondrial biogenesis is a complex process that includes growth
and division of pre-existing mitochondria, ultimately leading to
increased energy production in cells. High energy status most likely
determines the outcome of cellular insult caused by oxidative stress,
chemical or mechanical injury, inflammation, and routine tissue repair
[6].

Due to the large number of mitochondria myocytes play an
important role in glucose uptake and burning it into ATP. Beneficial

effects of caloric restriction, diet, and physical exercise have been noted
in diabetes, some of these effects are attributed to mitochondrial
biogenesis as newly formed mitochondria are more efficient in terms of
energy utilization [7]. Number of chemicals from plant origin and
plant extracts has been shown to increase mitochondrial biogenesis
[3]. Polyphenols represents beneficial group of naturally occurring
compounds with hypoglycemic potentials. These are the most
abundant antioxidants in the human diet and are commonly found in
onions, apples, tea, coffee, red wine, etc. [8]. Chemically, flavonoids
can be widely classified into different categories such as flavanols,
flavones, catechins, flavanones, etc. [9]. Quercetin is the most well
researched of all flavonoids and it is one of the most potent scavengers
of reactive oxygen species including superoxide and reactive nitrogen
species [10]. Quercetin has also been reported to exhibit anti-oxidative,
antitumor, anti-inflammatory, vasodilatory effects [11]. Besides ROS
scavenging activity it has been shown to promote mitochondrial
biogenesis and improving insulin sensitization in various in-vivo and
in-vitro studies [12]. Quercetin has been shown to promote
mitochondrial biogenesis in brain and muscle and improve exercise
tolerance [13,14].

In mitochondrial respiratory chain, Complex I and III are major
sources of intracellular superoxide and oxidative stress [15].
Antimycin-A is an inhibitor of complex III. The binding of AMA to
complex III is directly associated with inhibition of its enzymatic
activity [16,17] thus increasing ROS formation through complex I and
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II [18]. Mitochondrial biogenesis has been studied in muscle cell lines
as well as in animal models, however these cells has not been used as
model to screen chemicals for mitochondrial biogenesis. Thus in the
present study, we intended to investigate protective effects of quercetin
on mitochondria, ATP synthesis and complex I mRNA expression with
a view to develop a model to study mitochondrial biogenesis and to
identify chemicals of plant origin that cause mitochondrial biogenesis.
We demonstrate that quercetin shows protective effects on oxidative
stress induced myocyte cell death through increasing ATP synthesis-
an indirect but ultimate indicator of mitochondrial biogenesis. An
understanding of the mechanisms underlying mitochondrial
biogenesis may facilitate the development of therapeutics in diseases
involving mitochondrial dysfunction.

Materials and Method

Materials
Quercetin, Antimycin-A and DMSO were obtained from Sigma

Chemical Co (St Louis, MO). PenStrep and DMEM medium were
obtained from VWR international (Randor, PA), FBS was obtained
from ATCC (Manassas, VA), MitoSOXTM Red Mitochondrial super
oxide indicator was obtained from Thermofisher (Grand Island, NY).
Trypsin-EDTA was purchased from Invitrogen (Carlsbad, CA).
CytoTox-ONE Homogenous Membrane Integrity Assay kit and
CellTiter-Glo luminescent cell viability assay kit (ATP) were obtained
from Promega (Madison, WI). The BCA protein assay kit was
purchased from Pierce (Rockford, IL). All other reagents were of
analytical grade and were purchased from commercially available
vendors.

Cell culture
Rat L6 were obtained from ATCC and expanded in laboratory. Cells

were grown in DMEM media with glutamate, supplemented with 10%
FBS and antibiotics (PenStrep). For fluorescence and for luminescence
assays that involved a microplate reader, the cells were seeded in flat
micro-clear bottom 96-well plates (BD Falcon, BD Biosciences, San
Jose, CA) at a density of 3 × 105/mL. All drugs were either directly
added to the culture medium or dissolved in dimethyl sulfoxide
(DMSO) and then added to the culture medium (final DMSO
concentration was 0.1% v/v). Plates were incubated at 5% CO2, 37°C
and 95% relative humidity for 24 or 48 h time period.

Determination of cell injury
Release of lactate dehydrogenase (LDH) into the extracellular

medium was used as an indicator of cytotoxicity. The relative activity
of LDH in the medium (as percentage of total intracellular plus
extracellular activity) was determined using a CytoTox-ONE
Homogenous Membrane Integrity Assay kit. In the presence of LDH,
resazurin is converted to resorufin which was quantified in a
microplate reader (excitation 560 nm, emission 590 nm). Enzyme
activity in the medium was sampled at indicated time points and
expressed as percentage of total intracellular and extracellular LDH
activity.

Determination of cellular ATP content
For determination of ATP content we used a CellTiter-Glo

Luminescent cell viability kit. Luciferin is mono-oxygenated in the
presence of ATP, Mg2+, and molecular oxygen to luminescent

compound oxyluciferin. Briefly, after treatment and incubation with
test chemicals, cells were treated with premixed CellTiter-Glo reagent,
then plates were incubated for 10 min at room temperature to stabilize
luminescent signal. Luminescence emitted out by oxyluciferin is then
measured with luminometer.

Determination of cell number
Measurement of monolayer protein content and actual cell count

over time were used to estimate cell number. Cells were seeded in 6-
well plates at a concentration of 1.2 × 106 cells/well. Cells were treated
with either 0.1% v/v DMSO or 50 μM quercetin and incubated for 24 h
time period at 5% CO2, 37°C and 95% relative humidity. To determine
protein concertation L6 myocyte monolayers were washed with PBS
solubilized in Triton buffer (0.05% Triton X-100, 100 mM Tris-base,
and 150 mM NaCl, pH 7.5). Protein concentrations, were determined
by the bicinchoninic acid (BCA) method according to the
manufacturer's instructions. Actual cell count was made by harvesting
cells and counting using phase contrast microscope and Neubauer
chamber.

Measurement of mitochondrial superoxide
Mitochondrial superoxide was measured with the cell-permeable

fluorogenic probe, hydroethidine coupled to triphenylphosphonium
(mito-HE, MitoSox Red®). Being a lipophilic cation, MitoSOX Red is
selectively targeted to mitochondria where it specifically reacts with
superoxide anion. Quercetin, AMA or quercetin and AMA preexposed
cells were loaded with MitoSOX Red (1 μM) for 10 min at 37°C,
washed with PBS, and then fluorescence was determined using the
excitation at 396 nm and emission at 580 nm as described in
Kashimshetty et al. [19]. Relative Fluorescence Units (RFUs) of
untreated cells was considered as 100 percent.

Quantitative real-time PCR
NADH dehydrogenase (ubiquinone) 1 beta subcomplex subunit 8

(NDUFB8) is also known as complex I, is located in the mitochondrial
inner membrane. It is encoded by nuclear DNA and catalyzes the
oxidation of NADH and electron transfer. Relative increase in levels of
expression of NDUFB8 correlates with increased mitochondrial
function [20-22]. For NDUFB8 mRNA expression, total RNA was
isolated from L6 cells with RNeasy Mini Kit (Qiagen, Valencia, CA).
cDNA was synthesized from 1 µg of RNA template using a RevertAid™
First Strand cDNA Synthesis Kit (Thermo Fisher Scientific, Grand
island, NY). PCRs were carried out by using 3 µl of 1:3 diluted cDNA
template combined with Maxima® SYBR Green qPCR Master Mix (2X)
at a final concentration of 1X (Thermo Fisher Scientific, Grand Island,
NY.), ROX (Thermo Fischer Scientific, Grand Island, NY.) and primers
(Thermo Fisher Scientific, Grand Island, NY) at a concentration of 10
nM and 400 nM respectively. For real-time PCRs primer sequences for
NDUFB8 were: FW: 5’-GGC GAT CCC AAC AAA GAA CC-3’; REV:
5’-TTT CTA GGA TTG AAG GAG TC-3’ and the abundance of
mRNAs was normalized against tubulin FW: 5’-CTC TCT GTC GAT
TAC GGC AAG-3’; REV: 5’-TGG TGA GGA TGG AGT TGT AGG-3’
using the ΔΔCt method. Relative change in mRNA expression was
then expressed as fold change over untreated cells.

Statistical analysis
All data were expressed as mean ± SEM of at least three

independent experiments. Each experiment is performed in triplicates
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(N=3). Statistical analysis was performed using SPSS 20.0 (SPSS,
Chicago, IL) by using one-way ANOVA followed by Tukey's post hoc
test. Data were considered statistically significant at P ≤ 0.05.

Results

Effects of quercetin on antimycin-A (AMA) induced toxicity
Cell viabilities were determined using L6 cells and LDH assay for

various concentrations of quercetin. Dose dependent cytotoxicity was
observed with quercetin (0-500 µM) for 24 h and 48 h time points.
Significant difference in % LDH leakage has been noted at quercetin
concentrations 100, 250 and 500 µM) at 24 h time point and for 50,
100, 250 and 500 µM concentrations at 48 h time point (Figure 1A).

Figure 1: A. Effects of quercetin on cell viability and cytoprotective
effect of quercetin on L6 cells treated with AMA. A. Effects of
quercetin on cell viability at various concentrations and time points.
B. Cytoprotective effect of quercetin on L6 cells treated with AMA.
L6 cells were pretreated with quercetin 50 µM for 1 h and then
treated with 100 μg/mL of AMA. Significant differences over vehicle
control denoted as *p ≤ 0.05. Significant differences over same
treatment group but different time points denoted as #p ≤ 0.05.

We used Antimycin-A to induce cell death in myocyte through
mitochondrial dysfunction. We then determined the dose and time of
exposure to 100 µg/mL AMA required to reduce cell viability by 50%
after 24 h incubation (data not shown). Cells were pretreated with
quercetin 50 µM concertation that showed no significant effects on
myocyte cell death at 24 h time period. One hour (1 h) after quercetin
treatment, cells were then treated with 100 μg/mL AMA in the
presence of quercetin. Significant reduction in cytotoxicity (~30%) has
been noted in group treated with quercetin (50 µM)+AMA compared
with AMA alone (Figure 1B).

Effects of quercetin on ATP levels
To determine whether the quercetin affected energy production, we

measured ATP levels. Cellular ATP levels after treatment with test
chemicals were determined on L6 cells by CellTiter-Glo Luminescent
cell viability kit. Significant difference in % ATP has been noted at
quercetin concentrations 500 µM at 24 h and 250 and 500 µM at 48 h
time point (Figure 2A). Non-significant increase in ATP levels has
been noted with concentration 5, 10 and 25 µM at 48 h time point as
compared to 24 h time point. To determine protective effects of
quercetin on AMA-induced ATP loss, cells were then pretreated with
quercetin 50 µM and then 1h after quercetin treatment cells were
treated with 100 μg/mL AMA in the presence of quercetin. Quercetin

(50 µM) increased cellular ATP by 18% compared to AMA alone
(Figure 2B).

Figure 2: A. Effects of quercetin on total cellular ATP levels. A. Total
ATP levels in L6 cells treated with various concentration of
quercetin at different time points. B. Total ATP levels in L6 cells
treated with AMA. Cells were pretreated with quercetin 50 µM for 1
h then treated with 100 μg/mL of AMA. ATP levels were measured
using the ATP Lite luminescence-based assay in which results are
reported as a percentage of luminescence units over untreated cells.
Significant differences over vehicle control denoted as *p ≤ 0.05.
Significant differences over same treatment group but different time
points denoted as #p ≤ 0.05.

Effects of quercetin on myocyte cell number
Mitochondrial biogenesis has been identified as a compensatory

response to cellular injury and often increased mitochondrial
biogenesis attributed to increased cell proliferation. To determine
whether cell number changed during the 24 h exposure to quercetin,
the amount of cellular protein per well, a marker of cell number was
measured in the presence and absence of quercetin (50 μM) after 24 h
treatment. Monolayer protein content as well as cell number did not
change in the presence of quercetin (Figures 3A and 3B).

Figure 3: Effects of quercetin on rat L6 cell number. A. Cells were
treated with quercetin 50 µM. Protein content per well was
determined using BCA protein assay kit after 24 h treatment with
quercetin. B. Total cell count Cells were counted using neubauer’s
chamber and trypan blue after 24 h treatment with quercetin.
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Changes in mitochondrial superoxide levels
Quantitative measurements of mean intensity from the AMA-

induced cells demonstrated a 187.8% increase compared with u cells
(Figure 4).

Figure 4: Determination of mitochondrial superoxide production
measured using MitoSOX Red. L6 cells were pretreated with
quercetin 50 µM for 1h, and then 100 μg/mL AMA was added.
Quercetin, AMA or quercetin and AMA preexposed cells were
loaded with MitoSOX Red (1 μM) for 10 min at 37°C, washed with
PBS, and the fluorescence was determined using the excitation at
396 nm and emission at 580 nm Relative Fluorescence Units (RFUs)
of untreated cells were considered as 100 percent. Significant
differences over vehicle control denoted as *p ≤ 0.05. Significant
differences over same treatment group but different time point
denoted as #p ≤ 0.05.

In contrast, mitochondrial superoxide levels were 115.5% when cells
were treated with quercetin indicating lower mitochondrial superoxide
levels. In the presence of quercetin+AMA, mitochondrial super oxide
levels were 124.5% suggesting protective effect of quercetin on
mitochondrial superoxide production.

NDUFB8 mRNA expression
We also examined electron transport chain (ETC) integrity by

examining mRNA levels of NDUFB8 which is a nuclear-encoded ETC
protein. We found significant increase in NDUFB8 mRNA expression
in Quercetin+AMA treated cells over cells treated with AMA alone
(Figure 5).

Discussion
Mitochondrial dysfunction plays an important role in cellular

injury, recovery after tissue damage, and pathogenesis of various
disorders and conditions such as Alzheimer’s, aging, development of
insulin resistance in diabetes etc. Preventing mitochondrial
dysfunction by increasing mitochondrial biogenesis is important in
reducing cellular damage. In the present study, we focused on the
flavonoid quercetin for its effect on prevention of mitochondrial
dysfunction. We used AMA to induce mitochondrial dysfunction and
to induce cytotoxicity. In our study, cell viability was increased by the
addition of quercetin in AMA treated cells over just AMA treated cells.
Нese results agree with the findings of others that quercetin protects
against toxicant-induced cell damage [14,23-26]. Mitochondrial
dysfunction induced by AMA results in decreased ATP production.
Oxidative stress increases respiration and generation of ROS, resulting
in ATP depletion [27]. AMA causes oxidative stress and mitochondrial
dysfunction by binding to the matrix side of complex III and inhibiting
the mitochondrial electron transport system [28]. We show here that

treatment with quercetin in AMA exposed cells significantl prevented
loss of ATP, suggesting that quercetin protect cells from mitochondrial
dysfunction

Figure 5: NDUFB8 mRNA expression analysis in rat L6 cells. Total
RNA was isolated from L6 cells, pretreated with quercetin for 1 h,
and then exposed to AMA and quercetin. 1 µg of total RNA
converted to cDNA. Using primer against NDUFB8, relative
intensity of cDNA was detected with SYBR Green qPCR. Data were
expressed as relative fold change over untreated cells. Significant
differences over vehicle control denoted as *p ≤ 0.05. Significant
differences over same treatment group but different time point
denoted as #p ≤ 0.05.

Mitochondrial ROS production is intimately linked to
mitochondrial dysfunction, aging, insulin resistance, exercise
tolerances, etc. [29]. Our data presented here show that cells treated
with quercetin exhibited decreased mitochondrial super oxide
production. The MitoSOX Red results indicate that mitochondrial
superoxide was increased in AMA-induced cells. Cells treated with
quercetin prevented AMA-induced superoxide production by
mitochondria. NDUFB8 is a nuclear encoded protein of electron
transport chain. In the present study we demonstrated that AMA
significantly reduced NDUFB8 expression. On the other hand cell
pretreated with quercetin and then treated with AMA showed
increased NDUFB8 expression without causing appreciable increase in
cell number implying improved mitochondrial function as evidenced
from increased ATP content. Further newly synthesized or divided
mitochondria works efficiently as quercetin+AMA treated cells showed
comparatively lower super oxide production over cells treated with
AMA alone. Mitochondrial dysfunction, characterized by a decline in
cellular ATP, cytotoxicity, and superoxide generation is central to the
execution of myocyte cell death and thus increasing glucose
metabolism in muscle cells to effectively burning glucose to ATP in
mitochondria without generating overtly more superoxide is
important. Therapeutic strategies to increase mitochondrial biogenesis
and reduce oxidative stress would therefore be useful in diseases that
are associated with mitochondrial dysfunction.

Conclusion
In conclusion, quercetin protects AMA-induced cell death. These

results suggest that the protection of cell death is a result of increased
mitochondrial biogenesis as evidenced from improved mitochondrial
function through reduced oxidative stress, increased ATP levels and
increased nuclear encoded NDUFB8 mRNA expression. Rat L6
myocytes in conjunction with direct markers of mitochondrial
biogenesis, and with further understanding of mitochondrial
biogenesis will be an useful tool to screen and identify new chemicals,
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particularly of plant origin that cause mitochondrial biogenesis. The
identification of novel molecules based on mitochondrial biogenesis
principle may play an important role in the treatment and prevention
of diseases associated with mitochondrial dysfunction.
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