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ABSTRACT

To address Quantum Artificial Neural Networks (QuANNs) as quantum dynamical computing systems, a 
formalization of quantum artificial neural networks as dynamical systems is developed, expanding the concept of 
unitary map to the neural computation setting and introducing a quantum computing field theory on the network. 
The formalism is illustrated in a simulation of a quantum recurrent neural network and the resulting field dynamics 
is researched upon, showing emergent neural waves with excitation and relaxation cycles at the level of the quantum 
neural activity field, as well as edge of chaos signatures, with the local neurons operating as far-from-equilibrium 
open quantum systems, exhibiting entropy fluctuations with complex dynamics, including complex quasiperiodic 
patterns and power law signatures. The implications for quantum computer science, quantum complexity research, 
quantum technologies and neuroscience are also addressed.

Keywords: Quantum artificial neural networks; Quantum neural maps; Quantum computing field theory; Complex 
quantum systems; Edge of chaos

INTRODUCTION

The connectionist paradigm for Artificial Intelligence (AI) played 
a key role in the development of cybernetics and the complexity 
sciences [1-4]. The dynamics of networked computational systems 
led, within the cybernetics paradigmatic basis, to the development 
of an interdisciplinary link between dynamical systems science, 
computer science, and evolutionary biology [1-8].

The next generation of cybernetics is quantum cybernetics which 
extends the connectionist paradigm to the quantum framework, 
with Quantum Artificial Neural Networks (QuANNs) as a main 
computational model [3,9-14], which has recently been incorporated 
within the wider context of quantum machine learning [11,15-17].

From a quantum computer science standpoint, a QuANN with 
n neurons and a two-level firing pattern can be addressed as an 
n-qubits quantum computing network, where the quantum 
computing gates are conditional unitary operators that obey the 
network’s connections, that is, the unitary quantum computing 
operation associated with a given neuron is conditional upon the 
input neurons’ firing patterns [9-13], this leads to an extension of 
the circuit model of quantum computation applied to the quantum 
connectionist paradigm, such that, given the conditional gate 
structure associated with each neuron, the final quantum circuit 
depends upon the neuron activation sequence [11].

As shown in [11], while a QuANN is capable of running quantum 
algorithms and also of selecting algorithms depending on the task, 

it can also operate as a quantum networked dynamical system, 
with the computation performed having a dynamical signature at 
the level of the quantum averages, leading to complex dynamics 
also observed in models of classical (co)evolutionary computing 
systems, developped with networked computation approaches.

Major models of networked computing systems involved in 
evolutionary computation and Artificial Life (ALife) research, 
such as cellular automata, Artificial Neural Networks (ANNs) and 
random Boolean networks [5-8,18], when analyzed as dynamical 
systems, led to the discovery of four major classes of behavior:

• Class 1: steady state or fixed point dynamics; 

• Class 2: periodic dynamics; 

• Class 3: random-like dynamics; 

• Class 4: an intermediate dynamics between classes 2 and 3. 

Class 4, also known as the edge of chaos, was a key focus of 
complexity research since it was shown that, at the edge of chaos, 
an evolutionary computing system maximized its fitness [5-8], also, 
the edge of chaos dynamics seem to play a role in the conditions 
for the emergence of complex noise resilient dynamics, since, at 
the edge of chaos, a system is able to conserve an emergent order 
and at the same time is capable of sustaining the necessary adaptive 
change [8].

It was shown that QuANNs interacting with an environment can 
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lead to complex dynamics at the level of the mean neural firing 
energy with edge of chaos-like signatures [11].

To research on QuANNs as quantum dynamical systems, however, 
we need to expand the theory to include a quantum field theory on 
the network, this is the main objective of the present work, which 
is focused on two major contributions:

1. The introduction of a complete formalism for QuANNs as 
quantum dynamical systems (section 2) with:

a. The definition of the networked computing formalism 
(subsection 2.1); 

b. The formalization of the concept of a unitary quantum neural 
map, which expands the concept of unitary quantum map, 
originally worked within the context of quantum chaos theory 
[19,20] (subsection 2.1);

c. The expansion of quantum field theory to QuANNs, defining 
the concept of a quantum neural field operator, and addressing 
the field’s dynamics as a function of the network’s dynamics, with 
the formalization of recurrence analysis methods to study the 
quantum field dynamics on the neural network, we also exemplify 
the main theory with a specific field, which is the neural activity 
field (subsection 2.2); 

d. The application of von Neumann entropy to address the dynamics 
of each neuron as an open quantum system in connection with the 
network (subsection 2.3). 

2. An implementation of section 2’s theoretical framework to a 
two-neuron quantum recurrent neural network (QRNN) and the 
study of the mean neural activity field’s dynamics and entropy 
dynamics (section 3). 

As we show, in section 3, for the most elementary QRNN comprised 
of two neurons, the quantum neural activity field’s dynamics, for 
different parameter values, can exhibit standard class 1 and class 
2 dynamics, for other parameter values brainwave-like patterns 
emerge for the mean neural activity field dynamics with strongly 
correlated local mean field values, calculated as the quantum 
averages for the field at each neuron, for other parameter values, 
the emergent dynamics is class 4.

While the whole network undergoes a unitary evolution, there 
are entropy fluctuations at the local neuron level, therefore, in 
conjunction with the analysis of the dynamics for the mean neural 
activity field, we study the resulting entropy sequences for each 
neuron, thus, treating each neuron as an open quantum system.

For a window of parameter values, we find that an emergent wave-
like periodic pattern driving a quasiperiodic neural dynamics 
translates to an also emergent periodic pattern driving the local 
(neuron-level) entropy dynamics, while for other parameter values, 
we find that the emergent class 4 mean neural activity field 
dynamics also leads to a class 4 entropy dynamics, including power 
law signatures at the local neuron-level entropy sequences with 
fluctuations never leading to maximum entropy associated with a 
depolarized mixed density, with the neuron-level entropy dynamics 
ranging from near zero entropy values to high but not maximum 
entropy, therefore, each neuron operates as a far-from-equilibrium 
open quantum system with no stabilized fixed decoherence 
pattern, a result that may be key for the development of advanced 
networked quantum technologies, since the local computing units 
do not tend to a maximum entropy and recurrently return to near 
zero entropy values.

The implications of the work for quantum computer science, 
complexity research, quantum technologies and neuroscience are 
addressed in section 4.

COMPUTATIONAL STRUCTURE OF 
QUANTUM ARTIFICIAL NEURAL NETWORKS 
AND QUANTUM NEURAL MAPS

In order to produce a general computational framework on which 
to discuss QuANNs, we need to consider a directed graph (digraph) 
structure for the n neuron network extended with a Hilbert space 
structure and a set of conditional unitary operators, one operator 
for each neuron, with the unitary computation conditional on the 
input neural connections, formally this digraph can be defined as 
follows: 

Definition 1: (QuANN) A QuANN is a digraph with the structure.

( , , , ( ))= Θnet netG Q D H H 	 	 (1)

Where 0 1 1Q {n ,n ,..., n }−= n is the set of neurons, D is the set of 
ordered pairs corresponding to the directed edges, NetH  is the 
network’s Hilbert space and 0 1 1( ) {U , U ,..., U }−Θ =net nH is a set of 
conditional unitary operators on NetH  , one for each neuron. 

The computational dynamics of QuANNs can be addressed as a 
system of spinors on a network [11]. In the spinor model, when each 
neuron can have just two base computational patterns of activity, 
firing or nonfiring, corresponding to two energy levels, the Hilbert 
space for the full network is given by n tensor product copies of 
the Hilbert space H2, which is spanned by the standard qubit 
basis 2 {| 0 ,|1 }= 〉 〉B  , where the vector | 0〉  represents a nonfiring 
neural activity and the vector |1〉 represents a firing neural activity, 
we are using the standard Dirac’s notation where a column vector 
is called a ket vector and is represented as | w〉  while its conjugate 
transposed, called a bra vector, is denoted by | w〉 .

The Hilbert space for the network, in the case of a binary firing 
pattern, is defined by the tensor product space 2

⊗= n
NetH H and 

spanned by the firing pattern basis [11]:

2 0 1 1{| , ,..., : s 0,1; 0,1,..., 1}⊗
−= 〉 = = −n

n kB s s s k n 	 (2)

A generalization of this model, for a finite number of logical 
states encoded in quantum a neural firing activity, is obtained 
by expanding the single neuron basis to {| 0 ,|1 ,...,| 1 }= 〉 〉 − 〉lB l  , 
spanning the single neuron l-dimensional Hilbert space lH  , which 
would lead to the neural network’s Hilbert space given by the tensor 
product of n copies of the single neuron Hilbert space, ⊗= n

Net lH H  
, spanned by the generalized firing pattern basis: 

0 1 1{| , ,..., : s 0, ; 0,1,..., 1}⊗
−= 〉 = = −n

l n kB s s s l k n  ,	 (3)

When l=2, this last basis reduces to the standard two-level firing 
pattern basis. In this section, we work with the generalized 
formalism, since it contains the two-level as a special case. In 
section 3, the example is worked for l=2.

Now, the classical information states encoded in a neural firing 
dynamics, formalized as basis vectors in ⊗n

lB  , are not the only 
possible information states, we can also have a superposition 
of different neural firing patterns, which can be formalized as a 
normalized ket vector on the network’s Hilbert space, expanded in 
the firing pattern basis as follows:

0 1 1

0 1 1 0 1 1
, ,...,

| ( , ,..., ) | , ,...,
−

− −Ψ〉 = Ψ 〉∑
n

n n
s s s

s s s s s s  (4)

The squared modulus of each expansion weight, called a quantum 
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amplitude, 0 1 1( , ,..., )−Ψ ns s s  provides for a statistical weight 
associated with each neural firing pattern, so that, for an ensemble 
of identical independent QuANNs, the probability of a network 
exhibiting a specific firing pattern  0 1 1, ,..., −ns s s  is given by 

2
0 1 1| ( , ,..., ) |−Ψ ns s s  .

Different interpretations of quantum mechanics interpret this 
statistical measure differently, for instance, in an Everettian 
interpretation [21,22], each alternative firing pattern with a non-
zero amplitude can be formally considered as corresponding, 
in this case, to a projected dimension of systemic activity, with 
a projective intensity coinciding with the squared norm of the 
projection which, in turn, corresponds to the squared modulus of 
the amplitude 2

0 1 1| ( , ,..., ) |−Ψ ns s s  , so that, considering an ensemble 
of identical independent neural networks all described by the same 
multidimensional projective pattern (the same ket vector), the 
ensemble density operator description leads to a statistical measure 
(as a relative frequency) exactly coincident with 2

0 1 1| ( , ,..., ) |−Ψ ns s s  
, which means that, choosing at random one network in the 
ensemble, the probability associated with that network’s exhibiting 
a given projected firing pattern coincides with the squared modulus 
of the quantum amplitudes, this point was addressed in [10] in 
connection with an Everettian interpretation of QuANNs.

Other interpretations of the probability link are possible [11-
13], we will not, however, assume here a specific interpretation 
quantum mechanics, with the formalism holding for different 
interpretations. The relevant point is the link to the probabilistic 
description, since, further on we will need to work with quantum 
averages for quantum fields on the network that rely on the above 
correspondence between the squared modulus of the amplitudes 
and statistical weights in an ensemble of identical independent 
networks.

Now, quantum computations on the network are formalized by way 
of the operations of the unitary gates in ( )Θ NetH  on the normalized 
ket vectors |Ψ〉  , considering this point, in order to introduce the 
concept of a unitary neural map, let :{0,1,.., 1} {0,1,.., 1}− −p n n   
represent a permutation of the neuron indices, then, we can 
formalize the concept of a unitary neural map as follows: 

Definition 2: (Unitary Neural Map) A unitary neural map F is 
defined such that, given a permutation p of neuron indices, the 
map is given by the product: 

	 ( 1) (1) (0)...−= p n p pF U U U  ,	 (5)

with  ( ) ( ), 0,1,..., 1∈Θ = −p k NetU H k n

In this way, a unitary neural map is a product of the unitary gates in 
( )Θ NetH in an order corresponding to a neuron activation sequence 

that matches the permutation p. Given a unitary neural map, we 
can define the sequence of iterations of the map as: 

	 | ( ) | ( 1)Ψ 〉 = Ψ − 〉t F t  ,	 (6)

which expands the unitary maps, worked in quantum chaos theory 
[19,20], to the quantum neural computational setting.

In this case, t represents the iteration step, and the QuANN’s 
dynamics is addressed in terms of a unitary quantum map which 
matches the quantum computing circuit described by equation (5). 
Given equation (6), and letting the initial ket vector | (0)Ψ 〉be the 
input vector for the network, we get the output at iteration t as: 

	  | ( ) | (0)Ψ 〉 = Ψ 〉tt F 	 (7)

The above iteration scheme allows us to deal with QuANNs as 
quantum networked dynamical systems. Now, in order to better 
address the network’s dynamics we need to introduce a quantum 
neural computing field theory.

QUANTUM NEURAL COMPUTING FIELD 
THEORY

QuANNs, when addressed as quantum networked dynamical 
systems, lead to a bridge between quantum field theory and quantum 
computing, indeed, to address QuANNs as quantum networked 
dynamical systems implies the need to develop a quantum field 
theory on the network. Working with the formalism introduced in 
the previous subsection, we can develop a formalism for quantum 
fields on the network by introducing a general quantum neural 
field operator ( )kα  as a field operator on the network, formally: 

Definition 3: (Quantum Neural Field Operator) A quantum 
neural field operator on an n neurons QuANN with   firing levels 

( ,D,H , (H ))⊗ ⊗= Θn n
l lG Q   is a field operator ( )kα  on the network 

defined with the following structure: 
1

( 1) (n )
2 2

0
( ) 1 | | 1

−
⊗ − ⊗ −

−

= ⊗ 〉〈 ⊗∑
l

k k
s s s

s
k aα α α 	  ,	 (8)

where the coefficients sα are real-valued and the projectors
| |〉〈s sα α project over a basis 0 0 1{| ,| ,...,| }−〉 〉 〉lα α α  spanning the 
single neuron Hilbert space Hl   

Given the above definition, it follows that the operators commute, 
and, for any normalized ket vector on the network of the form: 

| | | |Ψ〉 = 〉⊗ 〉⊗ 〉sφ α ϕ ,	 (9)

where ( 1)
2| ⊗ −〉∈ kHϕ  and (n )

2| ⊗ −〉∈ kHϕ  , the following eigenvalue 
equation holds: 

( ) | | | |Ψ〉 = 〉⊗ 〉⊗ 〉s skα α φ α ϕ ,	 (10)

For s=0,1,…, l.

Now, under the action of the quantum neural map, the field 
dynamics can be adddressed in the Heisenberg picture as follows:

( , ) ( , 1)= −k t F k t Fα α 	  	 (11)

Therefore, in the Heisenberg picture, the field operators undergo 
the unitary evolution while the vectors stay at their initial 
configuration, so the unitary map’s iteration rule applies to the 
field operators rather than to the vector.

Assuming ( ,0) ( )=k kα α  , recursive application of the map leads to 
the following link: 

( , ) ( †) ( )( )= t tk t F k Fα α  	(12)

Now, given the initial ket vector | (0)Ψ 〉  , the quantum average of 
the field at iteration step t and at neuron k, in the Heisenberg 
picture, is given by: 

( , ) (0) | ( , ) | (0)
−

= 〈Ψ Ψ 〉k t k tα α ,	 (13)

applying equation (12) we can transition from the Heisenberg to 
the Schrödinger picture since:

†( , ) (0) | ( , ) | (0) (0) | ( ) ( )( ) | (0)
−

= 〈Ψ Ψ 〉 = 〈Ψ Ψ 〉t tk t k t F k Fα α α  ,	 (14)

which leads to the equivalent result for the quantum mean field 
value at neuron k obtained from the quantum averages calculated 
in the Schrödinger picture: 

( , ) ( ) ( ) | ( ) | ( )
−

= 〈 〉 = 〈Ψ Ψ 〉tk t k t k tα α α ,	 (15)

so that both pictures lead to equivalent results.
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Taking the sequence of real-valued quantum averages ( )〈 〉 tkα  , for 
an n neuron network we can embed the sequence in nR  , so that 
we get a sequence of points ( (0) , (1)..., ( 1) )〈 〉 = 〈 〉 〈 〈 − 〉t t tnα α α α  , which 
leads to a trajectory in R n  .

Taking advantage of the Euclidean space metric topology of R n  
, for any sample path 0, 0 0{ : 1,..., t 1}〈 〉 = + + −t t t t Tα , we can 
calculate the distance matrix S  that stores the distances for each 
pair of points, with entries defined as: 

' ',
S || ||= 〈 〉 − 〈 〉tt t t

α α  ,	 (16)

where || . ||   stands for the Euclidean metric defined on R n  .

The distance matrix is symmetric of rank T  , with the main 
diagonal entries all equal to zero and it contains the information 
about recurrences in a sample trajectory.

Taking advantage of the Euclidean metric topology of R n  , the 
pattern of recurrences can be extracted from the distance matrix 
using a closed  -neighborhood structure, which leads to the binary 
recurrence matrix  Rδ

 with entries: 
1 2

1 2
1 2

0,|| ||

1,|| ||,
〈 〉 − 〈 〉 >

 〈 〉 − 〈 〉 ≤
= t t

t tt tRδ
α α δ

α α δ  	 (17)

The matrix Rδ  is, thus, binary and symmetric with an entry 
containing the value 1 when two points in the sample trajectory 
are not apart from each other more than  , in a closed Euclidean 
neighborhood, which is the definition of a recurrence event, of 
course, given this property, the diagonal of the matrix, which 
corresponds to the cases in which 1 2=t t  , is comprised only of 1s.

We are using a closed neighborhood because it allows us to identify 
fully periodic dynamics, since, when the dynamics is fully periodic, 
if the radius is set equal to zero, all diagonal lines parallel to the 
main diagonal corresponding to the period in question will have a 
value of 1 in each matrix entry, otherwise the value will be 0. When 
the dynamics is not periodic there is a cutoff radius below which 
we do not get any recurrences. In the nonperiodic case, diagonal 
lines with a value of 1 in each entry, at a given radius, correspond 
to a periodic or a quasiperiodic skeleton that the dynamics revisits, 
these are 100% recurrence lines, that is, lines where the percentage 
of points (recurrence matrix entries) that are recurrence points is 
equal to 100%. These lines are particularly important in identifying 
periodic, quasiperiodic dynamics and, even, chaotic dynamics [19-
23].

For the analysis of sequences of quantum averages, extracted 
from the iterations of the quantum neural map, we calculate the 
following three recurrence measures [11,24]:

	 The recurrence probability: this is the number of 
diagonals below the main diagonal with recurrence points, divided 
by the total number of diagonals below the main diagonal in the 
recurrence matrix, since the recurrence matrix is symmetric only 
the diagonals below the main diagonal are counted, in this case, 
this metric provides for the probability of finding a line with 
recurrence, in a random selection of diagonal lines below the main 
diagonal.

	 The recurrence strength: this is the sum of the number of 
points that fall within a distance no greater than the radius, in each 
diagonal below the main diagonal, divided by the total number of 
diagonals below the main diagonal with recurrence, this measure 
evaluates how strong on average the recurrence is, if all lines with 
recurrence had 100% recurrence, for the radius chosen, then this 
number would be equal to 1, the lower this statistic is, that is, the 

closer to zero it is, the more interrupted the diagonals there are, 
which occurs for stochastic systems and also for dererministic 
chaotic dynamics. 

	 The conditional 100% recurrence probability: this is 
the probability that a diagonal line with recurrence has 100% 
recurrence, for the radius chosen. 

 These recurrence statistics can be used alongside the visual analysis 
of a recurrence plot that plots the recurrence matrix (black and 
white plot) or the distance matrix (colored recurrence plot), in the 
black and white plot, which we will use in the present work, a point 
is painted in black if it is a recurrence point and white if not, this 
plot is a key element in addressing recurrence properties of both 
low and high-dimensional dynamical systems [11, 24-26] and have 
been employed frequently in the analysis of neural network models 
as well as in studies on brainwave dynamics [27-30], it was also 
applied to QRNN simulations [11,24].

In the present work, we will apply it to the study of the behavior 
of the quantum neural activity field with a two-level neural firing 
pattern, which can be built from the fermionic raising and lowering 
operators on the Hilbert space 2Η  , these raising and lowering 
operators are defined as: 

0 1 0 1
| 0 1| , † |1 0 |

0 1 0 1
   

= 〉〈 = = 〉〈 =   
   

a a 	  	 (18)

For the anticommutator {A,B} AB BA= +  , these operators obey 
the following relations: 

2

0 1
{ , †} 1

0 1
 

= =  
 

a a 	  	 (19)
0 0

{ , } { †, †}
0 0
 

= =  
 

a a a a 	  (20)

† | 0 0 | 0〉 = 〉a a 	  	 (21)

† | 0 1|1〉 = 〉a a  	 (22)

From the above equations, we can introduce the special case of a 
quantum neural field operator which is the neural activity field 
operator (K)N  on the network defined as:

( 1) (n )
2 2( ) 1 † 1− −= ⊗ ⊗ ⊗k kN k a a ,	 (23)

which has the eigenvalue spectrum obeying the following equation: 

( ) | ....,s ,... s | ....,s ,...〉 = 〉k k kN k 	  ,	 (24)

thus, considering the neural firing basis, at each neuron, the field 
operator yields a value of 0 when the corresponding neuron is not 
firing (not active) and of 1 when it is firing (active).

For the sequence | ( )〉tψ  with the expansion: 

0 1 1

0 1 1 0 1 1
, ,..,

| ( ) ( , ,.., ) | , ,.., ,
−

− −〉 = 〉∑
n

t n n
s s s

t s s s s s sψ ψ 	  	 (25)

the quantum averages for the neural activity field at each neuron 
coincide with the squared modulus of the quantum amplitudes, 
which coincide, in turn, with the statistical measure for the neuron 
to be active (firing): 

 
0 1 1 1

2

,..., , ,...,
( ) ( ) | ( ) | (t) | (...,s 1,...) |

− + −

〈 〉 = 〈Ψ Ψ 〉 = Ψ =∑
k k n

t k
s s s s

N k t N k  	 (26)

Using the  R n  embedding ( (0) , (1) ,..., N(n 1) )〈 〉 = 〈 〉 〈 〉 〈 − 〉t t t tN N N , 〈 〉 tN    
corresponds to the configuration of the mean neural activity field 
at each neuron. As a final point, regarding the quantum neural 
activity field, it is relevant to stress the relation between the neural 
activity field operator and the local (neuron level) neural firing 
energy Hamiltonian operators, formally these Hamiltonians can be 
defined as: 

( )= kH N kω ,	 (27)
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Where 2= fω π  with f  corresponding to a neural firing frequency 
in Hertz. Given the above equations, the energy eigenvalue 
spectrum for the neuron is given by: 

| ...,s ,... | ...,s ,...〉 = 〉k k k kH sω  ,	 (28)

so that the energy is zero when the neuron is nonfiring and  when 
the neuron is firing, with   being the reduced Planck constant.

These operators commute and the total neural firing energy for the 
network is given by: 

1 1

0 0
( )

− −

= =

= =∑ ∑ 

n n

k
k k

H H N kω ,	 (29)

with the eigenvalue spectrum: 
1

0 1 1 0 1 1
0

H | , ,..., | , ,...,
−

− −
=

〉 = ∑
n

n k n
k

s s s s s s sω 	  	 (30)

Having addressed the field theory, we now address the issue of the 
local (neuron-level) von Neumann entropy dynamics.

ENTROPY

Formally, in a QuANN, due to the networked nature of the quantum 
computation, the quantum dynamics at the local neuron level leads 
to entanglement between the neurons’ quantum dynamics, which 
means that, locally, the neuron operates as an open quantum 
system. In general, with entanglement, we cannot describe the 
neuron’s information state in terms of a vector, but rather by a 
local density operator, tracing out the rest of the network’s degrees 
of freedom, which lead to the local (neuron-level) densities:

( ) (| ( ) ( ) |)= Ψ 〉〈Ψk kt Tr t tρ 	  	 (31)

The quantum information dynamics of the network, at the local 
neuron level, can be addressed by calculating the von Neumann 
entropy with a binary basis, indeed considering the general formula: 

2( ) ( log )= −S Trρ ρ ρ ,	 (32)

 which is equal to 0 for a pure density, that is, a density given by 
a projector | |〉〈ϕ ϕ  , with | 〉ϕ   being a normalized vector, we can 
study the local neuron-level entropy dynamics employing similar 
recurrence analysis techniques as those introduced in the previous 
subsection, indeed, calculating the local von Neumann entropies 
for each neuron in binary basis we get the local entropy sequences: 

2( ) ( ( )) ( ( ) log ( ))= = −k k k kS t S t Tr t tρ ρ ρ ,	 (33)

that we can embed in nR , 0 1 1( ( ), ( ),..., ( ))−nS t S t S t , and to which we 
can apply the recurrence analysis techniques in order to analyze the 
main dynamics for the local entropies.

When the input for the network is given by an initial pure density (a 
projector) the entropy for the full network is zero and remains zero 
under the evolution of the quantum neural map, since the map is 
unitary and therefore does not change the global entropy, in this 
case, the local neuron-level entropies, however, are not necessarily 
zero, due to the entanglement dynamics associated with quantum 
networked computation [11].

Since the neuron-level densities are usually not equal to a projector, 
there is ususally some level of entropy fluctuations at the local 
neuron-level, indeed, the neuron-level networked dynamics tends 
to a far-from-equilibrium dynamics that does not stabilize in a fixed 
maximum entropy level, that is, while, in certain iterations, the local 
neuron level’s entropy can be led to close to the maximum entropy 
this is not always the case, and there can be entropy reductions to 
close to zero entropy, followed by entropy increases. In the case of 
class 4 dynamics, for instance, we can also get class 4 dynamics at 

the level of the entropy fluctuations themselves, with the entropy 
fluctuating in a fluctuation band that is not maximal.

Having introduced the main concepts and framework, we now 
address the example of the most elementary family of quantum 
recurrent neural networks (QRNNs), the QRNNs comprised 
of two neurons characterized by a two-level neural firing activity 
(nonfiring and firing with a fixed energy level).

COMPLEX DYNAMICS OF A QUANTUM 
RECURRENT NEURAL NETWORK

Structure of the network

The most elementary QRNN is a network comprised of two 
neurons characterized by a two-level neural firing activity, which, 
following the previous section’s formalism, is defined by: 

2 2
0 1 0 1 1 0 2 2({n ,n },{(n ,n ), (n , n )} ( ))= ⊗ Θ ⊗QRNNG H H 	  (34)

The neural firing pattern basis for this network is given by: 

 2
2 {| 0,0 ,| 0,1 ,|1,0 ,|1,1 }⊗ = 〉 〉 〉 〉B (35)

The set of operators  0 1( ) { , }Θ =NetH U U  is, in turn, defined such 
that each operator is a conditional unitary operator that follows the 
neural connections, namely:

0 0,0 0,1| 0 0 | |1 1|= ⊗ 〉〈 + ⊗ 〉〈U U U 		  (36)

'1 1,0 1,1
| 0 0 | |1 1|= 〉〈 ⊗ + 〉〈 ⊗U U U ,		  (37)

where r,sU  , for r, s=0, 1, are elements of the unitary group U(2).

From the above equations, it follows that, under the connection  

0 1( , )n n , as described in equation (37), the unitary gate 1,1U is 
applied at the second neuron when the first neuron is firing, while 
the unitary gate 1,0U  is applied at the second neuron when the first 
neuron is nonfiring. In the reverse direction, as per equation (36), 
a similar conditional computation is performed, so that when the 
second neuron is firing the computation at the first neuron is given 
by the operator  0,1U  while, when the second neuron is nonfiring, 
the computation at the first neuron is given by the operator 0,0U  .

Now, for a specific operator set ( )Θ NetH  , there are two possible 
activation orders for a unitary neural map 1 0U U  or 0 1U U  , the second 
alternative activates first the connection  and then the feedback 
(recurrent) connection 0 1( , )n n , the first alternative activates first the 
connection 1 0( , )n n  and then the feedback (recurrent) connection 

1 0( , )n n  . In what follows, we will be working with the activation 
sequence 0 1U U  .

The neural map that we will be analyzing has the following structure: 

0 1=F U U 	 (38)

1 | 0 0 | |1 1|= 〉 〈 ⊗ + 〉 〈 ⊗ rU I U 	  	 (39)

0 | 0 0 | |1 1|= ⊗ 〉 〈 + ⊗ 〉 〈rU I U
	  	 (40)

cos (| 0 | 0 |1 1|) sin ( | 0 |1 |1 0 |)
2 2

   = 〉 〈 + 〉 〈 + − 〉 〈 + 〉 〈   
   

r
r rU π π

	 (41)

 In matrix representation, the two operators 1U  and 0U  are given 
by: 

1

1 0 0 0
0 1 0 0

0 0 cos sin
2 2

0 0 sin cos
2 2

 
 
 
    = −    

    
    
    

    

r rU

r r

π π

π π

	  	 (42)
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0

1 0 0 0

0 cos 0 sin
2 2

0 0 1 0

0 sin 0 cos
2 2

 
 

    −       =  
 
    
    

    

r r

U

r r

π π

π π

	  ,	 (43)

which leads to the following matrix structure of the neural map 

2

2

1 0 0 0

0 cos sin sin cos
2 2 2 2

0 0 cos sin
2 2

0 sin sin cos cos
2 2 2 2

 
 

        − −               
 =     −       
 

        
                

r r r r

F r r

r r r r

π π π π

π π

π π π π

	  (44)

Considering the Schrödinger picture iteration: 

0 1| ( ) | ( 1) U U | ( 1)Ψ 〉 = Ψ − 〉 = Ψ − 〉t F t t ,	 (45)

and assuming the two expansions: 

0 1

1 0 1 0 1
,

| ( 1) ( , ) | ,−Ψ − 〉 = Ψ 〉∑ t
s s

t s s s s 	  	 (46)

0 1

0 1 0 1
,

| ( ) ( , ) | ,Ψ 〉 = Ψ 〉∑ t
s s

t s s s s  ,	 (47)

the amplitudes at t – 1 and at t are linked by: 

1(0,0) (0,0)t t−Ψ = Ψ 	  	 (48)
2

( 1) ( 1) ( 1)(0,1) cos (0,1) sin (1,0) sin cos (1,1)
2 2 2 2t t t t

r r r rπ π π π
− − −

       Ψ = Ψ − Ψ − Ψ       
       

 (49) 	
	           

( 1) ( 1)(1,0) cos (1,0) sin (1,1)
2 2t t t

r rπ π
− −

   Ψ = Ψ − Ψ   
    	 (50) 	

2
( 1) ( 1) ( 1)(1,1) sin (0,1) cos sin (1,0) cos (1,1)

2 2 2 2t t t t
r r r rπ π π π

− − −
       Ψ = Ψ + Ψ + Ψ       
       

 (51)	
 	

For 0r =  , 0 1 1 0 1( , ) | ( , )t ts s s s−Ψ = Ψ , so that we get a class 1 
dynamics, that is, a fixed point, since | ( ) | (t 1)tΨ 〉 = Ψ − 〉  , so that the 
following holds: 

| ( ) | (0)tΨ 〉 = Ψ 〉 ,	(52)

for every normalized initial ket vector. With respect to the neural 
activity field, introduced in the previous section, we get the 
quantum averages: 

2 2
0 0(0) (| (1,0) | | (1,1) |tN〈 〉 = Ψ + Ψ 	  	 (53)

2 2
0 0(1) | (0,1) | | (1,1) | )tN〈 〉 = Ψ + Ψ ,	 (54)

which leads to a class 1 dynamics when the embedding in R2 is 
performed, since the dynamical point for the mean field is a fixed 
point: 

2 2 2 2
0 0 0 0(| (1,0) | | (1,1) | ,| (0,1) | | (1,1) | )tN〈 〉 = Ψ + Ψ Ψ + Ψ      (55)	

On the other hand, when r=1, the dynamics is class 2. The reason 
for this requires a closer look at the iteration steps, in this case from 
| ( 1)tΨ − 〉  to | ( )tΨ 〉   we get the transition sequence: 

1 1 1 1| ( ) | (0,0) | 0,0 (1,0) | 0,1 (1,1) |1,0 (0,1) |1,1t t t tt − − − −Ψ 〉 = Ψ 〉 −Ψ 〉 −Ψ 〉 +Ψ 〉  (56)

1 1 1 1| ( 1) | (0,0) | 0,0 (1,1) | 0,1 (0,1) |1,0 (1,0) |1,1t t t tt − − − −Ψ + 〉 = Ψ 〉 +Ψ 〉 −Ψ 〉 −Ψ 〉  (57)
| ( 2) | ( 1)t tΨ + 〉 = Ψ − 〉 	  	 (58)

Therefore, we have a 3-cycle, that is, after three iterations, the ket 
vector returns to the configuration in which it was three iterations 
before, which leads to the embedded sequence:

2 2 2 2
1 1 1 1(| (1,1) | | (0,1) | ,| (1,0) | | (0,1) | )t t t t tN − − − −〈 〉 = −Ψ + Ψ −Ψ + Ψ  (59)

2 2 2 2
1 1 1 1 1(| (0,1) | | (1,0) | ,| (1,1) | | (1,0) | )t t t t tN + − − − −〈 〉 = −Ψ + −Ψ Ψ + −Ψ  (60)

2 1t tN N+ −〈 〉 = 〈 〉 					     (61)

While only class 1 and 2 dynamics are possible for these two 
parameters, more complex dynamics arise when 0<r<1, for different 
initial conditions, as we now show.

Network simulations

In Figure 1, we show the simulated sequences for the mean neural 
activity field values at each neuron,  (0)N〈 〉  and (1) tN〈 〉  , when 
r=0.0005, for | (0) | |Ψ 〉 = + 〉 ⊗ + 〉  , with | (| 0 |1 ) / 2+ 〉 = 〉+ 〉  .

In this case, we get an emergent pattern which follows a sinusoidal 
curve for both neurons, with a high level of synchronization in the 
sinusoidal pattern between the two neurons.

It is important to stress that the plot in Figure 1 is a actually a 
scatterplot, the appearance of a continuous periodic curve is due 
to the close proximity of the dots, which means that the sinusoidal 
pattern holds as an emergent pattern that appears in the dots’ 
sequence for each iteration.

The sequence of dots shown in the graph is actually quasiperiodic, 
since for a recurrence radius of 0 we get a recurrence probability 
equal to 0, however, the quasiperiodicity is following an emergent 
continuous periodic curve, that is, we get an emergent brainwave-
like pattern that determines the dynamics at the level of the mean 
field at each neuron which, while being quasiperiodic, follows, 
in fact, an emergent continuous periodic shape. Since the two 
emergent periodic curves are synchronized, we get a pattern that 
is like an emergent synchronized neural wave driving the network’s 
dynamics.

While 0r =  leads to a fixed point dynamics, increasing the 
parameter to 0r >  , for low values of this parameter we get an 
emergent “brainwave” for different initial conditions.

In Figure 2, we show the corresponding sequences of mean neural 
activity field values at each neuron for the initial conditions 
| (0) | 0,1Ψ 〉 = 〉 , | (0) |1,0Ψ 〉 = 〉 and | (0) |1,1Ψ 〉 = 〉  , and r=0.0005, in all 
three cases we get an emergent pattern that is like a continuous 
wave, with a high correlation between the mean field dynamics at 

Figure 1: Simulation of the QRNN for r=0.0005, | (0) | |Ψ 〉 = + 〉 ⊗ + 〉  , 
with 20,000 iterations after 10,000 initial iterations being dropped for 
transients, the sample correlation between the two neurons’ values for 
the mean neural activity field is 0.99999977.
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each neuron, however, for the first two cases, the sample correlation 
is negative, which corresponds to a neural inhibitory dynamics, 
while, for the last case, it is positive, corresponding to a neural 
reinforcing dynamics. In the inhibitory cases, this leads to an 
emergent negatively correlated excitation-relaxation cycle between 
the two neurons with a plateau in the excited phase and a smooth 
but faster relaxation phase [24-30].

The dynamics, shown in Figures 1 and 2 are also characterized 
by emergent continuous periodic dynamics driving the neurons’ 
entanglement dynamics with a signature at the von Neumann 
entropy levels, which is different from Everett’s quantum 
automaton dynamics where the entanglement leads to a fixed 
branching entanglement pattern [21,22], the difference is that 
Everett’s quantum automata theory is linked to a formalization 
of a laboratory-based theory of quantum measurement, and the 
measurement is a feedforward single interaction between the 
observer and the observed system plus apparatus, in this sense, at 
the level of the observer’s description, there is an entanglement-
related local decoherence [31,32].

In QuANNs there is, however, no fixed/stable decoherence 
identifiable as a von Neumann entropy rise to a fixed local maximally 
mixed density, instead, due to the networked interaction, the 
entropy fluctuates, so we do not have the same type of framework 
as is assumed in [21,22,31] regarding quantum cognition, which, as 
stated, is an expansion from a laboratory-based framework focused 
on a specific type of interaction which is a quantum measurement, 
instead, for QuANNs, we need to consider the issue of complex 
entropy dynamics associated with interacting quantum systems in 
order to address quantum networked processing at the local neuron 
level, where each neuron’s computational dynamics operates far-
from-equilibrium.

In order to better understand this point, let us consider the local 
neuron description. In the case of the above network, the local 
neuron-level entropy, like the mean neural activity field, is also 
driven by an emergent periodic continuous dynamics and exhibits 
a complex dynamical relation with respect to the mean field values 
as we show in Figure 3, for | (0) | |Ψ 〉 = + 〉 ⊗ + 〉  . In this case, the 
initial entropy for each neuron was zero, since the input vector 
for the network was separated into a tensor product of two ket 
vectors. As the iterations proceed, we find that even though the 
entropy sequence is discrete, like the mean neural activity field 
values, it follows a continuous smooth curve which is periodic in 
pattern, the entropy fluctuations range from near zero entropy, 
which corresponds to a pure density, to near 1, which corresponds 
to a maximum entropy level associated with a depolarized mixed 
density, the mean entropy being around 0.63 bits, as shown in 
Table 1.

Table 1: Main entropy statistics for figure 3’s simulation.

 n0 n1

Minimum entropy 8.03E-09 8.03E-09

Maximum entropy 1 1

Mean entropy 0.63479 0.63479

 There is also a relation between the mean neural activity field at 
each neuron and the respective entropy, in this case, we get an eye-
like structure, such that when the mean field value at the neuron 
is near 0.5, the entropy is either near 0 or near 1. For higher 
values of the mean neural activity field, the dispersion in entropy 
fluctuations diminish converging on a high but non-maximal 
entropy value for the maximum mean neural activity field value, 
which also corresponds to maximum mean energy at the neuron 
level.

Throughout the network’s iterations each neuron is operating as 
an open quantum computing system with fluctuations in entropy 
that can range from a value close to zero to a value close to the 
maximum entropy level, which illustrates the point that we do not 
get the basic fixed decoherence pattern that is addressed in the 
context of quantum measurement theory [21,22,31,32]. This is 
also the case for the entropy dynamics associated with the initial 
conditions (Figure 2).

Emergent smooth periodic curves driving the mean neural activity 
field and entropy values are not the only patterns that are present 
in this network’s dynamics. When the network is initialized for 
| (0) | |Ψ 〉 = + 〉 ⊗ + 〉  , as is increased, in the region of periodic emergent 
brainwave-like patterns, the wavelength of the resulting neural 
waves decreases, so that for very near 0, the wavelength is longer, 
but, as r is increased, the wavelength decreases, as well as the 
sample correlation. As shown in [24], these correlations eventually 
transition from from positive to negative values, with two main 
shapes characterizing the dynamics of the mean neural activity field 
at neuron n0 versus at neuron n1, one with a triketa-like shape, 
which can be obtained from intersections of three ellipsoids, and 
the other with the shape of a trifolium, with the transition from 
the triketa to the trifolium being progressive as r  is increased, 
exhibiting complex quasiperiodic dynamics. Two examples of these 
attractors are shown in Figure 4.

Figure 2: Simulations of the QRNN for r=0.0005, with 20,000 
iterations after 10,000 initial iterations being dropped for 
transients, and with initial conditions given by | (0) | 0,1Ψ 〉 = 〉  (left),  
| (0) |1,0Ψ 〉 = 〉  (middle) and | (0) |1,1Ψ 〉 = 〉   (right), in the first case, the 
sample correlation is -0.87907088, in the second -0.87906459 and in 
the third 0.99999955.

Figure 3: Simulations of the QRNN for r=0.0005, with comparison 
between the mean neural activity field dynamics and the corresponding 
von Neumann entropy values at neuron 0n   (left) and neuron  1n  (right), 
with 30,000 iterations after 10,000 initial iterations being dropped for 
transients, and with initial condition given by | (0) | |Ψ 〉 = + 〉 ⊗ + 〉 .
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The attractor on the left corresponds to a value of where the two 
neurons show a close to zero correlation, in this case, the sample 
correlation for the simulation is 1.85638176e-05, while, for the 
attractor on the right, the correlation is negative with the estimated 
sample value of -0.49961075.

While positive correlation indicates a dominance of an excitatory 
dynamics between the two neurons, and a negative correlation 
indicates the presence of an inhibitory relation, in the close to zero 
and negative correlation region, unlike the positive correlation 
region, the dynamics obtained for | (0) | |Ψ 〉 = + 〉 ⊗ + 〉   is characterized 
by complex quasiperiodic dynamics with two main attractor shapes, 
one is the triketa, which is the dominant geometrical structure, the 
other is the trifolium only emerging for r greater than 0.99. It is 
important to stress that even though we get the same triketa shape, 
different values of the parameter r lead to different complex 
quasiperiodic patterns with different recurrence structures as 
systematized in [24].

The nonlinear relation between the sequences of mean field values 
at each neuron emerges as r increases, and the triketa becomes 
the dominant emergent dynamical geometry both for near zero 
correlation and negative correlation. In this sense, the linear 
correlation measure becomes misleading as measure of the relation 
between the mean neural activity field at each neuron.

This point becomes particularly relevant when considering the near 
zero correlation case, since, while there is no dominant excitatory 
or inhibitory dynamics, there is still a nonlinear relation between 
the neurons which is characterized by a dynamics that exhibits, in 
the recurrence structure, both signatures of dynamics with multiple 
periodicities characterized by long resilient diagonals with 100% 
recurrence as well as broken diagonals and isolated dots that 
ususally appear in stochastic or chaotic systems.

The dynamics is actually not chaotic nor periodic, instead, it is 
closer, in regards to the recurrence structure, to the previously 
referred edge of chaos, such types of dynamics have been identified 
in other QuANN models including recurrent networks interacting 
with an environment [11], as reviewed in the introduction. The 
recurrence plots for the near zero correlation case are shown in 
Figure 5, illustrating this point.

As can be seen in Figure 5, we no longer have the sequence of mean 
field values following an emergent continuous periodic pattern, 
instead, we get a dispersion in the form of a cloud of points, 
with the complex pattern only being visible for higher number of 
iterations. The edge of chaos recurrence signatures show up upon 
an analysis of the recurrence quantification measures.

In Table 2, we show the results from the previously reviewed 
recurrence statistics calculated for the ordered pairs ( (0) , (1) )t tN N〈 〉 〈 〉  
, for a 20,000 iterations sample after 10,000 initial iterations being 
dropped for transients, with r=0.550129597.

Table 2: Recurrence plot statistics for the ordered pairs ( (0) , (1) )〈 〉 〈 〉t tN N  , 
from 20,000 iterations after 10,000 initial iterations dropped for transients, 
r=0.550129597, | (0) | |Ψ 〉 = + 〉 ⊗ + 〉  .

Radius
Recurrence 
probability

Mean recurrence 
strength

P[100% Rec](Euclidean 
metric)

0 0 - -

0.001 0.00675 0.116914 0.081481

0.01 0.069303 0.126819 0.08658

0.02 0.140057 0.129167 0.085684

0.03 0.211161 0.132081 0.085721

0.04 0.284464 0.134353 0.084725

0.05 0.360418 0.136247 0.083657

0.06 0.439772 0.137854 0.082661

0.07 0.525426 0.138656 0.080415

0.08 0.621031 0.138282 0.077939

0.09 0.737737 0.135577 0.073946

0.1 0.941097 0.123607 0.064502

 The Table shows how the recurrence statistics change with the 
increasing radius, for radius 0, the recurrence probability is zero 
since there are no diagonals, below the main diagonal, with 
recurrence, which is indicative of a nonperiodic dynamics, the 
recurrence probability and the mean recurrence strengths rise 
with the radius reaching a 94.1097% recurrence probability for the 
radius 0.1, the probability of finding a diagonal line with 100% 
recurrence conditional for diagonals with recurrence points, 

Figure 4: Attractor plots, showing the mean neural activity field at 
neuron 0n   versus at neuron 1n  , for r=0.550129597 (left) and r=0.999 
(right), with 10,000 iterations after 10,000 initial iterations being 
dropped for transients and initial condition given, in both cases, by  
| (0) | |Ψ 〉 = + 〉 ⊗ + 〉 , also shown are the respective iterations graphs with 
the time series sequences for the mean neural activity field values.

Figure 5: Sequence of mean field values at each neuron and recurrence 
plots obtained for the ordered pairs ( (0) , (1) )〈 〉 〈 〉t tN N  , r=0.550129597, 
500 iterations (left) and 5,000 iterations (right), after 10,000 initial 
iterations being dropped for transients, the radius used for the 
recurrence plot was 0.1, the distance used was the Euclidean distance, 
with recurrence points plotted in black and initial condition given, in 
both cases, by | (0) | |Ψ 〉 = + 〉 ⊗ + 〉  .
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however, rises initially with the radius but then starts dropping, 
this indicates that the new recurrence points that appear with 
the rise in radius are predominantly isolated and clustered dots 
more characteristic of a noisy recurrence structure, in this case, 
there is a resilient quasiperiodic skeleton of lines with 100% 
recurrence, but the remaining recurrence points do not tend to 
produce a 100% recurrence, which leads to a mix of an emergent 
stochastic-like recurrence pattern intermixed with a few long 
diagonals, characterizing a complex quasiperiodic dynamics, this is 
characteristic of edge of chaos signatures.

To evaluate the periodicities involved, we can calculate the distances 
between the 100% recurrence lines, these distances provide for an 
evaluation of the quasiperiodic skeleton, in this case, for a radius 
of 0.1, we find the present of three cycles, a 5 iterations cycle, a 
21 iterations cycle and a 26 iterations cycle, the fact that there are 
different cycles present is characteristic of quasiperiodic dynamics, 
in this case, there are two dominant cycles, for a radius of 0.1, the 
first is the 21 iterations cycle, which occurs 836 times, followed by 
the 5 iterations cycle which occurs 352 times, by contrast, the 26 
iterations cycle only appears 25 times, as shown in Table 3.

Table 3: Distances between 100% recurrence lines for the ordered pairs 
( (0) , (1) )〈 〉 〈 〉t tN N , 20,000 iterations simulations after 10,000 initial 
iterations dropped for transients, r=0.550129597, | (0) | |Ψ 〉 = + 〉 ⊗ + 〉  , 
radius 0.1.

Distances Frequencies %

5 352 29.02%

21 836 68.92%

26 25 2.06%

 Now, if we consider the von Neumann entropy dynamics, for 
r=0.550129597, we need to consider the sequences of entropy 
values associated with neurons 0n  and 1n  , respectively, 0 ( )S t  and  

1( )S t , calculated from the respective neuron-level reduced densities, 
as shown in Figure 6 we also get a an nonperiodic dynamics, with 
multiple diagonals but also a high number of interrupted diagonals 
and isolated clusters, the power spectrum has multiple spikes at the 
high frequency level for both neurons’ entropy sequences.

Figure 6: Sequences of entropy values 0 ( )S t  and 1( )S t  associated, 
respectively, with neuron  0n  and 1n  , with r=0.550129597, recurrence 
plot obtained for the ordered pairs 0 1( ) , ( )S t S t   and power spectrum 
associated with each entropy sequence, 10,000 iterations were 
plottted, after 10,000 initial iterations being dropped for transients, 
the radius used for the recurrence plot was 0.1, the distance used was 
the Euclidean distance, with recurrence points plotted in black, and 
initial condition given by | (0) | |Ψ 〉 = + 〉 ⊗ + 〉  .

There is, in this case, a predominant cycle which corresponds to a 
47 iterations cycle that occurs 248 times with respect to the 100% 
recurrence lines at a radius of 0.1, the second cycle, in importance, 
is a 68 iterations cycle, that occurs 88 times and a 115 iterations 
cycle, that occurs 20 times, as shown in Table 4.

Table 4: Distances between 100% recurrence lines for the ordered pairs 

0 1( ) , ( )S t S t  , 20,000 iterations simulations after 10,000 initial iterations 
dropped for transients, r=0.550129597, | (0) | |Ψ 〉 = + 〉 ⊗ + 〉 , radius 0.1.

Distances Frequencies %

47 248 69.66%

68 88 24.72%

115 20 5.62%

Given the above results, we do not have, again, the stabilization in 
a fixed entropy regime, the entropy fluctuations exhibit a complex 
dynamics, associated with changes in entanglement levels and 
quantum amplitudes.

As shown in Table 5, the lowest entropy value is close to zero, while 
the highest entropy value is around 0.819 bits, no neuron is ever led 
to the maximum entropy level, associated with a depolarized mixed 
density, and the mean entropy is around 0.498, so each neuron is 
operating as a far-from-equilibrium open quantum system.

Table 5: Main entropy statistics for figure 6’s simulation.

 n0 n1

Minimum entropy 2.30E-08 2.30E-08

Maximum entropy 0.81915 0.81915

Mean entropy 0.49763 0.49763

 For r=0.999, the entropy also has a complex pattern, as shown in 
Figure 7.

While, in Figure 7, the entropy series values follow an emergent 
smooth complex periodic curve, the process is very nontrivial, 
indeed, working with the power spectrum, we find the presence of 
a power law decay in the spectrum obtained for the von Neumann 
entropy sequences  and  with an additional rise for a significant 
peak at the high frequency scale, indicating the presence of a 

Figure 7: Sequences of entropy values 0 ( )S t  and 1( )S t  associated, 
respectively, with neuron 0n  and 1n , with r=0.999, recurrence plot 
obtained for the ordered pairs 0 1( ) , ( )S t S t  and power spectrum associated 
with each entropy sequence, 10,000 iterations were plottted, after 
10,000 initial iterations being dropped for transients, the radius used 
for the recurrence plot was 0.1, the distance used was the Euclidean 
distance, with recurrence points plotted in black.
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strong periodicity at that higher frequency. The recurrence plot 
shows elements of a periodic skeleton but also local neighborhood 
fluctuations in the sequence.

As shown in Table 6, the interval of values for the entropy 
fluctuations is similar to the previous one, the lowest entropy value 
is close to zero, the highest entropy value is around 0.843 bits, the 
mean entropy is, however, lower that in the previous case, around 
0.261 bits, again, no neuron is ever led to the maximum entropy 
level and each neuron is computing far from the maximum entropy 
level.

Table 6: Main entropy statistics for figure 7’s simulation.

 n0 n1

Minimum entropy 9.52E-09 9.52E-09

Maximum entropy 0.84273 0.84273

Mean entropy 0.26089 0.26089

DISCUSSION AND CONCLUSION

In the present work we introduced a formalism for studying 
QuANNs as complex quantum dynamical systems, demanding the 
introduction of a quantum field theory on a quantum computing 
network and an expansion of the concept of unitary map, worked 
within quantum chaos theory, to the quantum computer science 
context of QuANNs and expanded further to the quantum 
computing field theory.

The simulation of QuANNs as dynamical systems shows a diversity 
of complex dynamics, even in small networks. For the most basic 
QRNN, a network comprised of just two neurons, we obtained 
a diversity of complex regimes in the quantum computational 
field dynamics that matches the dynamical classes identified in 
classical networked computational models studied within classical 
complexity sciences, and leads to each neuron operating as a far-
from-equilibrium open quantum system.

In the current work, we showed that dynamical classes, researched 
upon in the classical complexity sciences in regards to networked 
evolutionary computing systems’ dynamics, characterize not only 
the quantum mean neural activity field dynamics but also the 
local entropy sequences, which differentiates between QuANNs 
operating as quantum computing networked dynamical systems 
from another class of quantum automata worked by Everett 
[21,22] to address a type of measurement-like interaction where 
the entropy for the local system rises to a fixed level marked by a 
local diagonalization of the local density, which has characterized 
the decoherence by interaction with the environment literature 
[31,32]. When linked in network, each neuron operates as an 
open quantum computing system, exhibiting entropy fluctuations 
that can get close to zero and, in the case of the studied example, 
class 4 emergent quantum neural computing field dynamics, never 
achieving, in this last case, a maximum entropy value.

Further research is needed into QuANNs as dynamical systems, 
both in regards to the formalism of quantum computing field theory 
and in regards to the simulation of these networks, especially with 
the addition of more neurons and connections. From a computer 
science standpoint, such a research may provide new results into low 
decoherence far-from-equilibrium complex networked quantum 
computing systems with possible applications in nanotechnology, 
quantum biology research, quantum computing, quantum 
internet and A.I. research. Also, the far-from-equilibrium class 4 
dynamics leads to the emergence of a a form of resilient dynamical 

memory encoded in the sequence of quantum averages, as resilient 
recurrences, which may open up a research route into quantum 
dynamical memory storage.

Another implication of the results obtained from the simulations 
is the need for a dialogue with neuroscience, considering especially 
the fact of the emergence of brainwave-like patterns with different 
wavelengths and the possibility of including network adaptive 
response to signals leading to different wavelength responses at the 
quantum neural activity level.

From the standpoint of complexity sciences, QuANNs as 
dynamical systems provide for an expansion of the research 
field on evolutionary computation and far-from-equilibrium 
dynamics studied in the context of networked systems, which have 
characterized the ALife research field.
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