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Introduction
Background

Heat maps have been employed as a data visualization tool in 
the social sciences since the late nineteenth century [1-3], and more 
recently in arenas as diverse as astronomy [4-6], business analysis 
[7-9], meteorology [10-12] and quantum mechanics [13]. Changes 
in the ambient conditions of complicated systems like galaxies, the 
stock market, or large meteorological phenomena can be readily 
displayed via differences in color or grayscale to assist investigators 
in hypothesis generating or data interpretation activities. Heat maps 
afford investigators the ability to study high-density data sets in a single 
visualization, while maintaining measurement relationships and data 
integrity [14-16]. 

The popularity of heat maps has grown substantially with 
developments in the field of bioinformatics [17]. Numerous examples 
of published methods employing heat maps exist [18-31] however, the 
author has not, to date, seen an attempt to represent the information 
present in these very widely used data visualizations with a single 
summary statistic. Commercially available software packages, like 
Spotfire® or SAS JMP®, afford scientific investigators the ability to 
construct heat maps and visualize information from studies, yet do 
not offer any form of summary statistic that would be useful in high-
throughput investigations comparing the results of a large number of 
data visualizations simultaneously or viewing changes in the display 
longitudinally (over time). Previously, Weinstein (1997) had suggested 
using a “difference heat map” to compare visualizations pre and post-
treatment. This approach seems tenable if only two time points are 
under consideration, but would result in several pre-post difference 
heat maps if one were interested in comparing change with baseline 
over time or all pair-wise comparisons of time responses.

One approach to numerically summarizing the content of a heat 
map might be to use a statistic like the percentage of the entire map 
colored or shaded by a specific hue or degree of brightness. Figure 1.1.1 
illustrates three examples of tri-colored heat maps.

One could summarize each heat map by the percentage of tiles of a 
given color relative to the whole. The use of such a statistic would not 
differentiate the apparent geometry of the heat map depicted in Figure 
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1.1.1a from that of the other two. The geometries of Figures 1.1.1 b and 
1.1.1 c might suggest an underlying block structure relationship between 
rows and columns, which possibly could be related to an underlying 
multivariate mechanism with a block diagonal covariance matrix [32]. 
Figure 1.1.1 c has a subtle difference in appearance to Figure 1.1.1 b. 
A black diagonal band bisects the block structure. Thus, a percentage 
approach does not account for the overall pattern presented in a heat 
map and would therefore not serve as a useful numerical summary of 
the relationships suggested.

A second approach could be to characterize the spacing-filling 
geometry of the tiles in the heat map via a Hausdorff-like dimension 
[1]. Consider a non-empty subset of ℜn, say S, which may be covered 
with sets of diameter at most µ (µ>0), such that the diameter of the 
covering sets is normalized to S (i.e., the size of S is considered unity). 

a b c 
Figure 1.1.1: Three tri-colored heat maps with the same proportion of 
red (40%), green (28%) and black (32%) tiles.
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The Hausdorff dimension is calculated in mathematics as a limiting 
procedure related to the logarithm of the number of sets of diameter 
at most, say µ, that cover S as the logarithm of the diameter of these 
sets approaches zero [33]. In practice, it might be the case that size 
of the features that form a pattern might be of interest, as well as the 
patterns themselves. Thus, usage of the Hausdorff dimension in a strict 
mathematical sense might not be practical because of the investigator’s 
desire to consider features at least as large as µ (µ>0).

Consider the bi-colored heat map displayed in Figure 1.1.2 with a 
covering such that µ=0.1. The heat map in Figure 1.1.2 could be covered 
by a set as illustrated in Figure 1.1.3.

From the covering it is easy to calculate a Hausdorff dimension 
for µ=0.1. The major shortcoming of this approach is that, as was the 
cause with the percentage summary, the geometry of two heat maps 
may be markedly different; however, the Hausdorff dimension could be 
identical. An example of this phenomenon is illustrated in Figure 1.1.4.

This limitation of such dimension measurements was first 
recognized by Mandelbrot [34] in the context of numerically 

summarizing fractals. Mandelbrot advocated the usage of a quantity 
called the lacunarity to numerically summarize fractals. The root of the 
word lacunarity is the Latin lacunae, meaning “space” or “hole”. Thus, 
as the Hausdorff dimension characterizes the “space-filling” properties 
of a set, the lacunarity measures the presence of gaps or holes in the set.

Juneau [1] suggested the usage of lacunarity to characterize heat 
maps in two colors or shades, based upon a method suggested by 
Plotnick [35]. Plotnick’s method was based upon a more general case 
originally developed by Allain and Cloitre [2]. This approach will 
provide an investigator with a measure of the “gapiness” for one shade 
or color relative to a second. The balance of this paper will be based 
upon a suggested method for a setting with c color or shades, for c>2. 
Section 1.2 will summarize the gliding box approach of Allain and 
Cloitre and illustrate its behavior for a heat map in 2 colors or shades. 
Section 2 will introduce a proposal for a form of modified lacunarity for 
the setting of c colors or shades (c>2) and highlight the scaling feature 
of the approach. Section 3 will provide examples of three applications 
of the technique: cluster analysis, the summarization of longitudinal 
data in meteorology, and genomics.

The gliding box approach of Allain and Cloitre and the 
calculation of a heat map’s lacunarity for heat maps in two 
colors or shades

For some heat map, H ⊂ ℜ2, let P represent a board [36] that 
partitions H: 

(1) Define p to be a polygon with s sides and diameter (p)=ρ, where 
diameter( ) =maximum of the lengths of the s sides of p;

(2) P={ p ⊆  H | p =

H and i jp p =  φ for ξ i,j ∈ Z+ 
and i ≠ j} ;

(3) diameter (pi)=diameter(pj) ∀ i,j ∈ Z+. Without loss of generality, 
p can be defined to be a rectangle. A subset p ⊂ P can be called a feature 
of the heat map. Figure 1.2.1 provides an illustration of H,P, and the 
partitioning of H by P.

Define a box, B ⊂ P, to consist of a set of contiguous features, p, 
whose union is similar to the polygon, p. Figure 3.2.2 illustrates the 
relationship between B & P.

The procedure for the gliding box approach is as follows. The box, 
B, traverses the length of H, beginning at the upper left corner of H. 
Define an indicator function, χ(p) as follows:

 1 if p is gray (for p  B )

χ(k)=(1.2.1)

 0 otherwise

Figure 1.1.2: A heat map in two colors with a cover selected such 
that µ=0.1.

 Figure 1.1.3: A heat map in two colors with a cover selected such 
that µ=0.1.

  

heat map 
covering 

Figure 1.1.4: Two heat maps with differing geometries (clusters of cells are 
more densely packed in the heat map on the left). For a given covering, the 
Hausdorff dimensions of the two would be identical (for a set totaling 25 ele-
ments, each with µ=0.1,the Hausdorff dimension would be 1.40).
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Call the sum of the values of the indicator variable χ(k) over all 
features p ⊂ B for the mth movement of B across H, the score, ξ . The 
box is moved k features to the right for a box B of diameter, k. Figure 
1.2.3 illustrates the movement of B across H. Thus, for each movement, 
m, of B across H, a single score is calculated by summing up all of the 
values of χ(k):

( )m
p B

kξ χ
⊂

= ∑                                                                        (1.2.2) 
 

The total set of scores, say T, (m=1 to T) for the movement of B T 
times across H, may now be tallied to form a discrete probability mass 
function for all possible values from 0 to k2 for a box of diameter, say, k. 
Call the probability mass function for all values from 0 to k2, Ψ.

The lacunarity of H (Mandelbrot,), Γ(k,T), may then be defined as:

( ) 2
2 1k,T   M ( ) /  (M ( ))ξ ξΓ =                                                    (1.2.3)

where
2

2
1

(1/ )
T

m
m

M T ξ
=

= Ψ∑  (1.2.4) and 2
2

1
(1/ )

T

m
m

M T ξ
=

= Ψ∑                         (1.2.5) 

(i.e., M1 and M2
 represent the first and second un-centered 

moments for the scores, ξ 1, ξ 2, ... ξ T).

For two given sets, the one with the larger value of Γ will be a set of 
gray features more diffusely distributed throughout; i.e., the occurrence 
of black regions will be more frequent and their size relatively larger. 
Figure 3.2.4 provides an illustration of three sets H 1, H 2 and H 3 and 
their corresponding values of Γ.

How was Γdetermined for the left-hand panel of Figure 1.2.4? If 
one employs a gliding box of size k=2, the first row of H 1 would have 
scores of 4, 1, 3, 1 and 3. In the second row, the scores would be 2,3,2,3 
and 2. Thus, if one were to proceed moving the gliding box over the 
entire heat map for the remaining three rows: 

M1=(1/25)*(0*2+1*7+ 2*7+3*8+4*1)= 49/25,

M2=(1/25)*(02*2+12*7+22*7+32*8+42*1)=123/25,

Γ(2)=M2/M1
2=1.27.

Modification to the Allain and Cloitre approach
Development of a modified lacunarity using the Allain and 
Cloitre approach

Consider the heat map, Hc, depicted in Figure 2.1.1. As opposed 
to the heat map, H, depicted in Figure 2.2.1, this display is in more 
than two colors or shades. In Figure 2.2.3, recall that the procedure 
counted the number of features of a desired shade (gray). In essence, 
the procedure described in Section 1.2 describes the distribution of 
gray features relative to the distribution of the complementary features 

   
Figure 1.2.1: The board partition of the heat map H by P.

   
Figure 1.2.2: The board partition, P, and a proper subset, B, consist-
ing of k2 features, p, for some  (in this figure k=3). 

Figure 1.2.3: The board partition, P, and a proper subset, B, consist-
ing of k2 features, p, for some  (in this figure k=3).    

 Hc Pc Partitioning of Hc by Pc. 

Figure 2.1.1: The board partition of the multicolored or multi-shaded heat map, 
Hc, by Pc.

Figure 2.2.1: For a given grayscale heat map, three choices of 
box size (from left to right, k=2, k=3 and k=4).

 
  

1
(2) 1.27HΓ =                            

2
(2) 1.54HΓ =          

3
(2) 1.66HΓ =  

Figure 1.2.4: Three heat maps of varying amounts of gray shad-
ing and their corresponding lacunarity values.
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(those that are not gray). The goal is to develop a form of measurement 
that simultaneously summarizes the clustering of colors or shades for 
feature subsets of Hc relative to the other colors or shades.

One possible approach to developing a modified Allain and Cloitre 
procedure for multi-shaded or multi-colored images or heat maps 
would be to count the number of neighboring discordant pairs within B 
as it traverses over Hc. In an intuitive sense, studying the distributional 
properties of the discordant pairs of features within the gliding box B 
provides a summary of the density of sets of features contained within 
Hc. Just as the lacunarity, Γ, defined in equation 1.2.3 for a two-shaded 
or bi-colored heat map increases as the number of the subsets with 
large clusters of features with the desired shade or color decreases, a 
lacunarity, Γmac, based upon modifying the gliding box algorithm of 
Allain and Cloitre that counts discordant pairs will increase as the 
number of subsets with large clusters of any color or shade decreases 
for a given heat map Hc.

Consider the gliding box, Bc, as defined in Figure 2.1.2. Label each 
feature prs to represent the feature in the rth row and sth column (i.e., in a 
form of matrix element notation). Define a feature, rsp , to be adjacent 
to rsp  if rsp  and rsp  have sides with a common vertex. Now, define 
an indicator function, δ(p) as follows:

Figure 2.2.2: With a gliding box size selected as k=4, dis-
cordance scores cannot be calculated for eight features (il-
lustrated with dotted lines)

 
a b 

Figure 3.1.1: The results of two cluster analyses. Figure 3.1.1 (a) 
consists of 32 items (8-tuples) of simulated uniform (0,1) variates 
with a high degree of clustering induced by the constraint of perfect 
agreement between variates in 25% of the cases. Figure 3.1.1 (b) 
consists of 32 8-tuples simulated based upon functions of Gauss-
ian variates and linear combinations of a subset of the components 
of each item.

 1 if the color or shade of rsp  does not agree with that of r sa ap
 for

 ,
r srs a ap p ⊂  Bc 

 δrs(k)=            (2.1.1)

 0 otherwise

Call the sum of the values of the indicator variable δrs(k) over all 
features prs ⊂ B the discordance score, ∆. The box is moved k features 
to the right for a box B of diameter, k. Thus, for each movement, m, of 
B across H, a single score is calculated by summing up all of the values 
of δ(k):

( )
rs

m rs
p B

kδ
⊂

∆ = ∑                                                                              (2.1.2)

Then a modified lacunarity, based upon the Alain and Cloitre approach 
Γmac, may bedefined in a similar fashion as previously, in equation 1.2.3:

2
2 m 1 mM ( ) /  (M ( ))∆ ∆                                                   (2.1.3)

for all m movements of Bc across the heat map. The same definition 
of the first and second moments expressed by the notation in equations 
1.2.4 and 1.2.5 would hold for equation 2.2.3. The modified lacunarities 
of four heat map data displays with varying amounts of colored features 
are shown in Figure 2.1.3.

How was the value 
1
(3)HcΓ determined? Using an approach similar 

 

Figure 3.2.1: Heat maps summarizing the average daily 
temperature from 1-15 January for the years 1995-2009.

   
 Hc Pc Partitioning of Hc by Pc. 

Figure 2.1.2: The gliding box, Bc, with each feature numbered in matrix ele-
ment notation, prs where 1 ≤ r ≤ k and 1 ≤ s ≤ k.
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to the one used for the calculations of the left-hand panel in Figure 
1.2.4, although, in this instance, with k=3:

M1=(1/225)*(0*0+1*0+ 2*38+3*76+4*41+5*48+6*11+7*6+8*5)=3.80,

M2=(1/225)*(02*2+12*7+22*38+32*76+42*41+52*48+62*11+72*6+82*5) 
=16.45

Γ(3)=M2/M1
2=1.14.

The Choice of box size and its influence on the calculation of 
Γmac

Consider the situation illustrated in Figure 2.2.1. For a given choice 
of the gliding box’s diameter, the coverage of the box over the heat 
map can result in a different number of features that may be contained 
within the gliding box as it completes its first row of coverage. Figure 
2.2.1 illustrates three choices of box size. When k=2, note that for 
each row the movement of the box will result in the same number of 
partition pieces covered; however, this is not the case for k=3 and k=4. 
The algorithm suggested in Section 2.1 may still be employed in the 
circumstances illustrated in Figure 2.2.1 for k=3 and k=4 with minimal 
effect on the calculation of the modified lacunarity if the number of 
movements of the box is large relative to the size of the heat map. When 
a box spans a region outside of the heat map, the author recommends 
using the convention that the discordances be measured only on the 
portion of the box that is covering the heat map. An illustration of this 
suggested convention is illustrated in Figure 2.2.2.

Borys [37] derived the relationship between a reference lacunarity, 
say Γ0, with a gliding box with a diameter µ 0 (normalized to the 
heat map such that the heat map’s size is considered unity) and the 
lacunarity determined for a box with a diameter µ (normalized to the 
same heat map), say, Γ:

Γ=Γ0 (µ0/µ)D-2                                                                                        (2.2.1)

where D is the generalized fractal dimension reported in Ott [38]. 
For a covering of a set, it is possible to determine a fixed D, and a 
lacunarity calculated on a normalized diameter of µ can be compared 

to that of one based on a normalized diameter of µ 0. Thus, despite the 
fact that the user of a lacunarity-based technique is free to choose his or 
her value of scale, the lacunarity values for different choices of scale can 
be related via 2.2.1. If two users cannot agree on a common diameter 
for the box, one can easily transform the corresponding lacunarity 
values from one scale to another.

Illustrations of the Technique in Simulated and Real 
Data
An example of the calculation of the modified lacunarity in 
the arena of cluster analysis with simulated data

As mentioned in Section 1.1, heat maps are used to summarize 
results frequently in the field of bioinformatics, primarily after a 
cluster analysis is performed. Packages like SAS JMP® (version 9) 
allow users to examine the results of cluster analyses via a color map 
within the multivariate analysis module in the analysis platform of 
the product. Two data sets were simulated with SAS JMP®. The first 
data set consisted of 32 8-tuples (items with 8 attributes) of simulated 
uniform (0,1) variates. Perfect agreement between the components of 
25% of the cases was artificially induced in the simulation to create 
large block structures in the SAS JMP® color map (i.e., to artificially 
create a very dense cluster of a small set of the items). A second data set 
consisted of 32 items. The first attribute or component of each item was 
simulated from a standard Gaussian distribution. For the next 5 of the 
components, half of the items were assigned linear combinations of the 
first attribute; the remaining half was assigned random Gaussian noise. 
The sixth and seventh components consisted of values simulated from 
a Gaussian distribution. The eighth component was simulated from 
a uniform (0,1) distribution. The two data sets were independently 
analyzed using the default options (hierarchical and Ward’s method) 
in the multivariate analysis module within the analysis platform of SAS 
JMP®. The results of the cluster analyses for the two data sets are shown 
in Figure 3.1.1.

Γ(2) values were calculated for the two heat maps illustrated in 
Figures 3.1.1 (a) and (b) as follows:

Γa (2):  M1=(1/64)*(0*18+6*6+ 8*12+10*20+12*8)=6.6875

   M2=(1/64)*(02*18+62*6+82*12+102*20+122*8)=64.6250

   Γa(2)=M2/M1
2=1.45.

Γb (2):  M1=(1/64)*(0*8+6*9+ 8*9+10*22+12*16)=6.6875

   M2=(1/64)*(02*8+62*9+82*9+102*22+122*16)=64.6250

   Γa (2)=M2/M1
2=1.19.

The color map in Figure 3.1.1 (a) contains more regions with large 
blocks of a single color than the color map in Figure 3.1.1 (b). Figure 
3.1.1 (a) contains large blocks of orange, green and blue, while Figure 
3.1.1 (b) contains only a single large block of orange. If the two color 
maps were considered as landscapes, metaphorically, it would be as if 
Figure 3.1.1 (a) has several flat regions while Figure 3.1.1. (b) is more 
varied with only one planar region. The modified lacunarities describe 
this phenomenon: the modified lacunarity calculated for Figure 3.1.1. 
(a) is larger than the modified lacunarity of Figure 3.1.1 (b), suggesting 
that the color map of the first has more “holes” or regions of a single 
color (consistency) than that of the second.

 

 
                        

1
(3) 1.14Hc� �   

2
(3) 2.72Hc� �  

  

  
  

3
(3) 6.26Hc� �

    4
(3) 75.00Hc� �  

H  c3 

H  c1 H  c2 

H  c4 

Figure 2.1.3: Four heat maps of varying amounts of 
colored features and their corresponding modified 
lacunarity values.
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An example of the calculation of the modified lacunarity with 
longitudinal temperature data from three cities

A real application of the modified lacunarity can be applied to the 
average daily temperatures measured in the first fifteen days of January 
from the years 1995-2009 for Duluth, Minnesota (USA), Mexico City, 
Mexico and Lima, Peru. These data can be found at http://www.engr.
udayton.edu/ weather, the web site for the University of Dayton’s 
Temperature Data Archive. Data were arranged in three 15x15 arrays. 
The columns of the arrays represent a single year (beginning with 1995 
on the left); the rows days 1-15 of January for that year (beginning with 
1 January in the first row).

The values were entered in MS Excel 2003. A MS Excel macro, 
available as freeware from http://bitesizebio.com/2009/02/03/how-
to-create-a-heatmap-in-excel , was used to generate the heat map 
summaries illustrated in Figure 3.2.1.

A gross inspection of the data represented in the three heat maps 
allows the observer to glean some information. As expected, the 
average daily temperature of Lima, Peru is more consistent than the 
other two cities (because of its latitude and topology), as evident by the 
large blocks of color present in the corresponding heat map. Moreover, 
the average daily temperature of Duluth, Minnesota is more varied, 
as is evident by the relatively smaller blocks of color present in its 
corresponding heat map. These evaluations are highly subjective. If one 
needed to organize a large series of heat maps, of which these three are 
representative, an index of temperature consistency might be of value.

If one were interested in a single index quantifying the consistency 
of the temperatures for the three cities in the first 15 days of January 
for 15 years, he or she could use the modified lacunarity. Suppose 
that a meteorologist were interested in the agreement of temperatures 
between three days over three years as an estimate of consistency. He or 
she could use the modified lacunarity as a possible descriptive statistic. 
ΓDuluth (1,3)=1.13, ΓMexico City (1,3)=1.19 and ΓLima(1,3)=1.21. Once again, 
the modified lacunarity summarizes the topology of the heat maps: 
larger values reflect the presence of more regions with a consistent 
temperature.

An example of the calculation of the modified lacunarity for a 
study of longitudinal system-based analysis of transcriptional 
responses to Type I Interferons

A third illustration of the modified calculation was made based on 
Figure 1.D in [39] a study of the transcriptional response to Type I 
Interferons. If one were to use a 2x2 gliding box, it would be possible 
to use the figure to estimate Γ(2) for the portions of the heat map 
corresponding to APP x IFN-β1a (upper left-hand 10x6 portion), 
APPxIFN-α2b (right-hand side, adjacent 10x6 portion), JS x APP x 
IFN-β1a (12x6 portion below APP x IFN-β1a) and APPxIFN-α2b (12x6 
portion right-hand side, adjacent portion). The values would be 1.69, 
1.13, 1.10 and 0.91. These values are consistent with the concept of the 
modified lacunarity: to find large homogeneous blocks within the heat 
map with little diversity in color. The figure with the most color change 
is APPxIFN-α2b, suggesting a greater change in activity (varying from 
very dark blue to very bright yellow, or from -1 to 1, respectively.

Discussion
The concept of lacunarity introduced by Mandelbrot is used as a 

summary statistic in many applications [40-45]. To date, the lacunarity 
statistic has been applied only in settings with images of two colors 
or shades and has not been applied to summarize the content of heat 

map data displays. The proposed modified lacunarity statistic affords 
investigators the option of summarizing or indexing large numbers 
of heat maps based upon the presence of large monochromatic blocks 
of features. The modified lacunarity proposed in this work is easy to 
compute and its interpretation intuitive in applied settings.

The limitation of this proposed statistic is its small variation 
relative to the larger variation perceived by the interpreter of a heat 
map. This feature is evident in Figure 3.2.1. The cause of this small 
variation in the value of the modified lacunarity is most likely due to 
the smaller correlations in yearly temperatures for a given day relative 
to the correlations between days within a given year. Where larger 
correlations exist between rows and columns in a heat map, larger 
blocks of uniform color can exist (see Figure 3.1.1). In the presence of 
larger blocks of color, values of the modified lacunarity can be more 
potentially more discriminating without the need for several decimal 
places (see Figure 2.1.3). 

All of the lacunarity calculations performed in this work were 
calculated with MS Excel 2003. With the current state of the art in 
computer software, it seems plausible that one could output the color 
codes used to produce an image, transfer them to a simple spreadsheet 
and automate the gliding box process for several box sizes. Thus, due 
to the relatively simple implementation, ease of calculation and its 
intuitiveness, the modified lacunarity has the potential to be a new tool 
that can be used in many scientific arenas to aid in exploratory data 
analysis and subsequent hypothesis generation.
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