Opinion Article

Protozoan Parasites in Immunocompromised Hosts: Challenges and Clinical Management

Fatima Najjar*

Department of Clinical Parasitology, Desert Valley University, Amman, Jordan

DESCRIPTION

Individuals with weakened immune systems due to HIV infection, chemotherapy, organ transplantation, or genetic immune disorders face elevated risk from protozoan infections that would often be controlled in healthy hosts. Organisms such as *Toxoplasma gondii*, *Cryptosporidium*, *Isospora belli*, *Leishmania*, and *Babesia* may cause more severe disease, last longer, or relapse if treatment stops. Infection may spread beyond standard tissue boundaries, affecting organs not typically involved.

In healthy persons Cryptosporidium often causes self-limited diarrhea but in immunocompromised, prolonged dehydration, malabsorption, weight loss can occur. Toxoplasma brain infection may occur with encephalitis, seizures, or focal neurologic deficits in persons with low CD4 counts. Leishmania visceral form may cause extended fever, hepatosplenomegaly, pancytopenia. Babesia in some may produce hemolytic anemia, chills, risk of organ failure. Treatment protocols must account for impaired immune clearance; usual dosages may need adjustment; risk of toxicity increases.

Protozoan parasites are single-celled eukaryotic organisms capable of causing a range of infections in humans. While many protozoan infections remain asymptomatic or self-limiting in immunocompetent individuals, immunocompromised patients are highly susceptible to severe, disseminated, and often life-threatening disease. The global increase in immunocompromised populations due to HIV infection, cancer chemotherapy, solid organ and stem cell transplantation, and the widespread use of immunosuppressive agents has heightened the clinical significance of these infections.

Diagnosis is more complex: parasite numbers in tissues or fluids often lower or more disseminated; standard microscopy may miss low level infection; molecular methods PCR based detection of parasite DNA offer higher sensitivity. Serologic tests may be unreliable; antibody formation may be blunted. Imaging

or endoscopic sampling may be needed when visceral involvement suspected. Monitoring for relapse is needed after treatment stops.

Treatment for immunocompromised hosts often longer duration, combination therapy, sometimes lifelong maintenance to prevent recurrence. For *Toxoplasma*, combination antiprotozoal agents plus prophylaxis when immune status deteriorates are standard. For *Leishmania*, amphotericin B liposomal formulations may be preferred to reduce toxicity. For *Cryptosporidium*, nitazoxanide may help, but restoration of immune function often most critical. Where HIV involved, antiretroviral therapy helps improve immune responses. Supportive care including nutrition, hydration and correction of anemia or electrolyte imbalance underpins recovery.

Prevention entails minimizing exposure to parasite sources: For *Toxoplasma*, avoid undercooked meat and cat feces; for *Cryptosporidium*, safe water; for vectorborne, insect repellent and avoided contact. Prophylactic drugs in those at high risk help reduce incidence. Monitoring immune function and early intervention when signs of infection arise improve outcomes. Together, these efforts can reduce burden in populations vulnerable to severe protozoal disease.

CONCLUSION

Public health dimension includes screening donors of blood products and organs for protozoal infections, since some parasites may transmit *via* grafts or transfusion. Hospital infection control for water systems prevents nosocomial *Cryptosporidium* outbreaks. Education of both patients and caregivers about infection risk, hygiene, safe food handling critical. Research addresses development of drugs effective in low immunity settings, vaccines that stimulate immune responses even in compromised hosts, diagnostics that detect infection early and accurately. Studies of immune restoration and immune modulation may help reduce morbidity and permit less intense treatment regimens.

Correspondence to: Fatima Najjar, Department of Clinical Parasitology, Desert Valley University, Amman, Jordan, E-mail: fatima.al-najjar@dvu.jo

Received: 26-May-2025, Manuscript No. JBP-25-30043; Editor assigned: 28-May-2025, Pre QC No. JBP-25-30043 (PQ); Reviewed: 11-Jun-2025, QC No. JBP-25-30043; Revised: 18-Jun-2025, Manuscript No. JBP-25-30043 (R); Published: 25-Jun-2025, DOI: 10.35248/2155-9597.25.16.550

Citation: Najjar F (2025). Protozoan Parasites in Immunocompromised Hosts: Challenges and Clinical Management. J Bacteriol Parasitol. 16:550.

Copyright: © 2025 Najjar F. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

JBP, Vol.16 Iss.3 No:1000550