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The Problem 
Plants are sessile and face various biotic and abiotic stresses in their 

surrounding environment. Plants have thus evolved complex response 
systems to deal with these stresses. Microbial pathogens, by definition, 
have evolved advanced invasive strategies to tap photosynthates from 
plants. Because they evolve faster than host plants, microbial pathogens 
are more inherently adaptable and, in most cases, have the upper hand 
in the everlasting co-evolutionary struggle with their host plants. In 
addition, because defense mechanisms of plants against microbial 
invasion are highly conserved across species, various pathogens readily 
become experts in abrogating this immune system. The large-scale 
deployment of a few genotypes of crop plants in modern agriculture 
makes crops at higher risk of disease epidemics. Despite various control 
measures, on a global scale, about 15% of crops are lost due to diseases. 
Hence, protecting crops from pathogens presents a constant challenge 
in agriculture.

The Approaches 
The utilization of natural plant resistance mechanisms is 

without doubt the best strategy because it is most cost-effective and 
environmentally friendly. The key to this strategy is to produce and 
deploy new resistant cultivars in a timely manner when resistance 
of cultivars in the field is overcome by pathogens. However, genetic 
constraints with conventional plant breeding may hinder this process. 
This often becomes a rate-limiting step in mitigating losses due to 
disease epidemics. 

Tremendous progress has been made in the past 20 years towards 
understanding the molecular mechanisms of plant defense and 
microbial pathogenesis. Together with the concomitant development 
of the (trans) gene technology, the new knowledge on plant-pathogen 
interaction has been translated into a number of novel approaches that 
can accelerate/complement conventional breeding to create disease 
resistant crop cultivars. Here, I provide an overview on these novel 
approaches that engage (trans) gene technology. For more detailed 
reviews on similar topics, I recommend three recent review articles [1-
3]. 

RNA Interference (RNAi) as an Effective Antimicrobial 
Strategy

As an earlier step of transgene-base strategy to fight against viral 
infection, expression of coat protein genes in host plants has achieved 
demonstrated success [4]. This strategy has been used to create 
commercial transgenic papaya resistant to papaya ringspot virus [5,6] 
and squash resistant to multiple viruses [7]. RNAi has become a more 
common strategy for engineering resistance to viruses in many crop 
plants [8]. Notable successful examples include RNAi-based transgenic 
bean with resistance to bean golden mosaic virus [9] and cassava 
with resistance to brown streak Uganda virus [10]. Through a careful 
construct design, the RNAi-based approach can be used to control 
multiple viruses with a single dsRNA-expressing transgene [11]. Such 
transgenic crop plants have been subjected to field trials and their 
release into commercial production is anticipated. The RNAi-based 
approach has also been adapted to silence nematode genes critical for 
pathogenesis, thereby creating novel resistance [12-14]. Moreover, this 

approach has recently been adopted for targeting fungal pathogens with 
considerable success [15,16]. Finally, RNAi may also be used to down 
regulate host susceptibility factors thereby inducing host resistance 
[17,18]. 

PAMP-Triggered Immunity for Control of Pathogens 
across Species: 

Pattern recognition receptors (PRRs) at the cell surface of plant cells 
recognize highly conserved pathogen-associated molecular patterns 
(PAMPs) that are critical to the survival of (thus highly conserved in) 
a class of pathogens. This recognition subsequently triggers immune 
responses. PAMP-triggered immunity contributes to overall plant 
health in confronting a vast array of potential pathogens. Aggressive 
pathogens secrete effector proteins into the host cell to abrogate this 
layer of host defense, causing disease. It has recently been demonstrated 
that EFR, a PRR found only in the Brassicaceae family that induces 
immune response upon recognition of a conserved 18 amino-acid 
N-terminal epitope from the prokaryotic translation factor EF-Tu 
[19], could retain the same PAMP recognition and induce resistance to 
multiple bacterial pathogens in tomato and tobacco in the Solanaceae 
family [20]. Conceivably, there may be other taxonomically restricted 
PRRs that can function across species barriers. Therefore, such PRRs 
may be added to the transgene arsenal for induction of resistance against 
pathogens of the same class in sexually incompatible plant species [2]. 

Effector-Triggered Immune Signaling for Engineering 
Broad-Spectrum Resistance 

Apart from PRRs for PAMP perception, plants have also evolved 
immune receptors to recognize the presence and/or activities of 
pathogen effectors. The predominant classes of such receptors contain 
a nucleotide-binding (NB) site and a leucine-rich-repeat (LRR) 
domain. Characterized NB-LRR receptor genes are historically defined 
as resistance (R) genes that confer narrow resistance to one or few 
strains of a particular pathogen carrying the same effector (called the 
Avirulence or Avr gene). Although R-dependent resistance constitutes 
the main defense form in plants to fight against adapted pathogens, in 
most cases, R-gene resistance is readily overcome by pathogens through 
mutation or deletion of the recognized Avr gene. This imposes high cost 
and time constraints for breeding single R-gene based resistance. With 
the rapid accumulation of detailed genetic and genomic information 
from both plants and pathogens, there are a number of ways to 
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alleviate this problem. First, if information is available about R genes 
with required distinct specifies, breeders can pyramid multiple R 
genes via marker-assisted selection in the same genetic background. 
Such cultivars are resistant to multiple pathogens and their resistance 
is likely more stable [21,22]. Second, using transgene technology, 
multiple R genes or different alleles of the same R gene can be tandem-
arrayed in the same construct and introduced into target cultivars [23], 
providing protection against multiple pathogens or pathogen strains. 
Lastly, expressing an Avr gene by a pathogen-inducible promoter in 
plants containing the cognate R gene may confer resistance to a range 
of pathogens as long as their infection induces the expression of the Avr 
transgene [24]. This strategy was successfully exploited by expressing 
the HR elicitor cryptogein under the control of the pathogen-inducible 
promoter hsr203J in tobacco [25]. However, caution is needed when 
employing this strategy as promoter leakage may result in costly 
constitutive or non-specific defense responses.

TALEN-Based Technology for Engineering Novel 
Resistance 

Transcription activator-like (TAL) effectors from plant pathogenic 
bacteria Xanthomonas spp. bind to the promoters of host genes, 
activating their expression for the benefit of the pathogens. As a unique 
contribution to molecular biology from plant biologists, the cracking 
of the code by which TAL effectors bind specific nucleotide sequence 
represents a milestone discovery that renovates gene technology across 
the plant and the animal kingdoms [26,27]. The development of the 
TALEN technology, which centers on using customized TAL effector 
(for precise targeting) in fusion with the DNA cleavage domain of 
FokI nuclease (for cutting), revolutionizes many aspects of genetic 
engineering [28]. For plant disease resistance, TALEN technology has 
been successfully used in two different ways to create disease resistance 
plants: (i) Engineer the promoter sequence of an existing R gene such 
that the modified promoter is capable of binding (by “tricking”) multiple 
known TAL effectors thereby inducing expression of the downstream 
R gene and resistance to pathogen strains carrying any of the binding 
TALs [29]. (ii) Modifying the TAL-binding sites of the promoters of 
sugar transporter genes that are targeted by pathogens via TAL effectors 
for deriving nutrients, thereby inducing resistance [30]. Additional 
creative ways of using TALENs can also be envisioned. For example, 
one can use TALEN to target critical regions of viruses to inhibit their 
replication or spread. Alternatively, one may modify coding sequences 
of host proteins (susceptibility factors) engaged by pathogens for 
pathogenesis. Moreover, TALEN-based gene modification can allow 
removal of residual DNA of TALEN and marker genes by chromosomal 
segregation; therefore it is possible to develop GMO-free crop plants 
with engineered resistance to pathogens. 

Ectopic Expression of Immune Components for 
Enhancing Resistance

Since PAMP- and effector-triggered immune signaling pathways 
are conserved across plant species, another logical approach to heighten 
immune response is to over express positive or down regulate negative 
key regulatory components in the immune signaling pathways. Indeed, 
considerable success has been achieved towards engineering broad-
spectrum resistance in several different crop plants by over expressing 
native or heterologous NPR1, the master regulator of plant immune 
signaling [31-34]. Similarly, overexpression of wheat defense-related 
transcription factor WRKY45 confers resistance to multiple pathogens 
[35]. In addition, ectopic expression of non-receptor type R protein 
Lr34 (an ATP-binding cassette transporter) from resistant wheat [36] 
in susceptible wheat, and other cereals may confer similar durable 

resistance to multiple fungal pathogens [37]. In cases where the role of 
specific pathogen enzymes in pathogenesis has been characterized, it is 
possible to generate plants with improved tolerance to the pathogens 
by overexpressing proteins that can inhibit the activity of the target 
pathogen enzymes. A good example of this approach is provided by 
overexpression of polygalacturonase-inhibitory proteins to inhibit the 
activity of the fungal cell wall-degrading polygalacturonases thereby 
increasing tolerance to the fungal pathogens that require these enzymes 
for infection [38]. 

Utilizing Antimicrobial Proteins for Improving 
Resistance

Overexpression of pathogenesis-related, antimicrobial proteins 
(AMPs), such as defensins, thionins and lipid transfer proteins from 
the same plant species or from other organisms has been extensively 
explored as a means to improve disease resistance in plants [39]. Simple 
nonspecific expression alone may not produce strong resistance though 
a few successful cases have been reported [40,41]. Targeted expression 
and delivery of AMPs in plants may hold more promise. For example, 
AMPs can be targeted to the extracellular space of certain cell or tissue 
types such that a threshold concentration toxic to pathogens can be 
reached. Indeed, expression of MtDef4.2, an Medicago truncatula 
AMP, in Arabidopsis leaves conferred robust resistance to a virulent 
oomycete pathogen when targeted to the extracellular space, whereas 
ER- or vacuole-localized MtPdf4.2 was ineffective [42]. Similarly, 
targeting AMPs to the pathogen cell wall via fusion with a pathogen-
specific antibody could induce more focused resistance against the 
pathogen [43]. Analogously, expressing and secreting neuropeptides 
that interfere with key aspects of nematode biology in root cells may 
confer resistance to nematode pathogens, as demonstrated in animals 
[44]. For controlling haustorium-forming pathogens such as powdery 
mildew, it has been proposed that the extra-haustorial membrane-
localized protein RPW8 may be utilized as a delivery vehicle to target 
AMPs to the host-pathogen interface for engineering more effective 
broad-spectrum resistance [45]. 

Other Potential Strategies
As new knowledge about molecular mechanisms underlying 

plant-pathogen interaction accumulates, potential novel strategies will 
continue to be conceived and developed. For example, understanding 
how fungal and oomycete pathogens deliver their effectors across the 
host-pathogen interface into the host cell will inspire new strategies 
to reduce or prevent effector entry. In this regard, the finding by Kale 
and colleagues that a diverse group of RxLR-containing effectors 
from oomycete and fungal pathogens specifically bind a membrane 
lipid phosphatidylinositol 3-phosphate (PI3P) for host entry is 
very exciting and opens possibilities to intervene this process [46]. 
For instance, expressing and targeting PI3P-binding or degrading 
proteins to the apoplastic space or better the extra-haustorial 
matrix where RxLR effectors are delivered to from haustoria of the 
pathogens, may interfere with entry of RxLR effectors into the host 
cell, and consequently reduce disease susceptibility (Brett Tyler, 
personal communication). For prevention and control of vector-
borne diseases in plants such as citrus greening or Huanglongbing 
(HLB), a strategy analogous to vector transgenesis for control of 
vector-borne diseases in animals [47] may be envisioned. This would 
require new knowledge concerning the symbiotic or commensal 
microbes in the Asian citrus psyllid, the HLB vector that transmits 
Candidatus Liberibacter asiaticus, the causal agent of HLB. With 
such information, it is possible to genetically modify an appropriate 
symbiont of the Asian citrus psyllid to produce molecules within the 
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vector that are deleterious to C. liberactor asiaticus, thereby reducing 
or eliminating HLB in citrus.

Concluding Remarks
We are now or soon will be in a post-genomics era. Our knowledge 

concerning the genomic sequences of crop plants and their pathogens, 
and the molecular mechanisms by which they interact and co-evolve 
with each other, is expanding exponentially. Over the past two decades, 
gene technology has facilitated basic biological research, and more 
importantly, bridged basic research to translational explorations. Gene 
technology will undoubtedly play a bigger role in catalyzing bioscience 
and biotechnology development in the coming decades. Creative 
exploitation of key immune components native to plants or from other 
organisms through individual or combinatory approaches discussed 
above will provide novel, disease-resistant plant materials for potential 
commercial application in agriculture. Due to the complex nature of 
various pathogens, there is no heroic “Bt”-like gene that can be used 
for engineering generic resistance to pathogens as compared to the 
Bt (i.e. the Bacillus thuringiensis toxin) gene for resistance to insects. 
However, by utilizing the novel methods summarized in figure 1, it will 
be possible to significantly renovate and expand the arsenal of crop 
plants for fighting against infection in the long co-evolutionary arms-
race between plants and pathogens. 
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