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Introduction
DNA is the molecule that contains genes and genetic information. 

Genetic information determines the appearance and function of living 
organisms. In addition to genes, DNA strands contain other parts 
such as gene regulatory regions that are necessary for gene expression 
regulation and specify organisms’ phenotypes. These regulations are 
parts of various stages of the optimal utilization of gene information. 
A promoter is a part of gene regulation region that is RNA polymerase 
connection position and the site of transcription initiation. In bacteria, 
core RNA polymerase contain five subunits: Beta, Beta′, Omega, and 
two Alpha subunits (α2ββ′ω). To compose holoenzyme and recognize 
promoters, core polymerase requires another subunit that is specialized 
for contacting promoter sequences and called the sigma factor (σ) [1-
3]. E. coli RNA polymerase have seven σ factors which each bind to 
different groups of promoters: one primary sigma factor (σ70) which 
is the major sigma factor and recognize housekeeping gene, and six 
alternative sigma factors (σ19, σ24, σ28, σ32, σ38, σ54) which are 
used in particular conditions such as stress [4,5]. Promoter sequences 
include certain characteristics in order to be identified by the sigma 
subunit such as two short sequence elements in approximately 10 
and 35 bp upstream from the transcription start site. For σ70 the two 
conserved sequences are TTGACA and TATAAT with 17 ± 1 base 
space between them [6]. That is the optimal template of promoter 
sequences and the nucleotides, and their interval could be different 
compared with this template in these two conserved sequences [7]. The 
rate of similarity between the promoter sequences and the template 
indicates the strength and function of the promoters [8]. Among the 
other elements that help RNA polymerase to recognize and connect 
to promoters are extended -10 and UP elements. The extended -10 is 
a weakly conserved sequence that has two nucleotides and is upstream 
of the -10 elements [9,10]. The UP element is located upstream of the 
-35 region, recognized by α- subunit. The presence of this element
increases promoter strength [11,12]. Since promoters are located just
before genes, the identification of their exact location is very important 
because it represents the location and the start site of the genes.

Prediction in the presence of promoters in eukaryotes and prokaryotes 
by using different algorithms is one of the most widely used and 
important methods of finding genes [13-17]. 

The machine learning approaches are very important 
computational methods and efficacious tools in bioinformatics 
research. In classification, the task is to predict the outcome associated 
with a particular object given a feature vector describing that object. 
In clustering, objects are grouped together because they share certain 
properties [18]. In this work, two learning approaches for prediction 
of promoters in bacterial DNA sequences are used which are the 
expectation maximization method for clustering and the support vector 
machine method for classification. We call this combination expectation 
maximization support vector machine (EMSVM). Clustering is useful 
in bacterial DNA for separating promoter sequences from non-
promoter sequences. Clustering provides significant advantages over 
classification techniques which help identify groups of data earlier that 
behave similarly or show similar characteristics. When compared with 
the support vector machine and another algorithm, EMSVM shows a 
significant improvement in promoter’s prediction accuracy.

The rest of the paper is organized as follows. Section 2 illustrates 
datasets, reviews related work and describes the proposed method. 
Computational experiments and results are presented in Section 3. 
Finally, conclusions are drawn in Section 4.
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Abstract
Promoter is a part of the DNA sequence that comes before the gene and is key as a regulator of genes. Promoter 

prediction helps determine gene position and analyze gene expression. Hence, it is of great importance in the field 
of bioinformatics. In bioinformatics research, a number of machine learning approaches are applied to discover new 
meaningful knowledge from biological databases. In this study, two learning approaches, expectation maximization 
clustering and support vector machine classifier (EMSVM) are used to perform promoter detection. Expectation 
maximization (EM) algorithm is used to identify groups of samples that behave similarly and dissimilarly, such as the 
activity of promoters and non-promoters in the first stage, while the support vector machine (SVM) is used in the second 
stage to classify all the data into the correct class category. We have applied this method to datasets corresponding 
to σ24, σ32, σ38, σ70 promoters and its effectiveness was demonstrated on a range of different promoter regions. 
Furthermore, it was compared with other classification algorithms to indicate the appropriate performance of the 
proposed algorithm. Test results show that EMSVM performs better than other methods.
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Materials and Methods
Dataset

In this paper, we used the promoter regions in E. coli genome for 
the implementation of the proposed method [19]. For this purpose, the 
σ24, σ32, σ38, σ70 promoters were used which contain 520, 309, 217, 
1907 instances respectively. All promoter regions contain 81 nucleotides 
between -60 to +21 bp, respectively, downstream and upstream from 
the transcription start site. Each of these datasets is located alongside 
the 2000 non-promoters (which are randomly extracted from the E. 
coli genome non-promoter areas).

Furthermore, the dataset applied in previous research (E. coli-
2) was used in order to evaluate the performance of the proposed 
algorithm. This dataset consists of 106 instances, 53 of which are 
positive instances (promoters). The negative instances were generated 
from larger DNA sequences that are believed to contain no promoters. 
An instance consists of a sequence of 57 nucleotides (fifty nucleotides 
prior to the beginning of the gene along with seven nucleotides in the 
beginning of the gene)[20]. 

Related work

The need to provide promoter prediction in E. coli has motivated 
the research community to deal with the problem of the detection 
of promoters. Burden et al. suggested a series of time delay neural 
networks (TDNNs) to model multiple promoter elements. They 
demonstrate greatly improved accuracy when distance to gene start 
site is incorporated into the models. However, the number and type of 
model elements was fixed and the TDNNs are typically time consuming 
to train [15]. Li et al. proposed a position correlation scoring matrix 
(PCSM) algorithm by using conservative hexamer segments for 
predicting whether s70 promoter is present [20]. Gordon et al. suggested 
a position weight matrices (PWM) method for promoter prediction 
using a variant of the mismatch string kernel. The SVM approach was 
more accurate than the PWM approach but the highest accuracy was 
obtained with a model that combined scores from the combination of 
SVM, PWMs and the gene start to TSS distance [21]. Rhodius et al. 
checked the ability of different methods to predict promoter strength 
and the sequence properties that distinguish between active and weak 
promoters. They discovered that a combination of selected modules is 
moderately predictive of promoter strength and that imposing minimal 
motif scores distinguished active from weak promoters [8].

Using E. coli-2 dataset, different methods were proposed by other 
researchers for more accurate predictions of promoters [22]. Towel et al. 
suggested using KBANN (Knowledge-Based Neural Network) for the 
prediction of promoters. KBANN is a hybrid approach mixing neural 
networks and domain knowledge. KBANN was designed specifically to 
show how adding domain knowledge could improve the performance 
of a neural net learning algorithm. This approach was compared with a 
decision tree induced with an ID3 algorithm, a multilayer perceptron 
neural network, a clustering algorithm k-NN and the technique known 
as O’Neill. Tavares et al. applied several machine learning methods and 
the hidden Markov model (HMM) to the construction of classifiers for 
detection of promoters in the DNA of E. coli [23]. Ramos-Pollán et 
al. described a machine learning framework for medical classification 
that is scaled for grid computing. They used the Biomed TK software to 
train artificial neural networks (ANNs) with different methods in order 
to use them for the classification of medical datasets [24].

Expectation maximization support vector machine (EMSVM) 
learning approach

Learning approaches provide high detection rate in identifying 
genes. The EMSVM learning approach is formed by combining 
clustering and classification techniques. The expectation maximization 
clustering technique is used as a pre-classification component for 
grouping similar data at an earlier stage. For the second step of the 
clustering, the data will be classified by the category of genes using 
support vector machine classifier. Thus, data which are misclassified 
during the first stage will be classified according to their category in the 
second stage.

The expectation maximization algorithm was first introduced in 
1958 by Hartley et al. and developed in 1977 by Dempster et al. The 
EM algorithm is used to find the maximum likelihood parameters of a 
statistical model in cases where the equations cannot be solved directly. 
One requirement of the EM parameter learning procedure is that initial 
values for the parameters be specified. With each iteration, the EM 
algorithm will try to find parameters that improve fit to the data by 
maximizing the log likelihood function; a measure of model’s fit with 
each iteration. In other words, the EM algorithm is an algorithm for 
probability based clustering [25,26]. The probability distribution of (X, 
Z) can be written as L (θ; X, Z) = p(X, Z|θ). Thus, it must be maximized 
with the likelihood function:

( ) ( ) ( ); ,
Z

L X p X P X Zθ θ θ= =∑   (1) 
Suppose that Z is the missing data and x is the observed data and the 
stepwise approach of EM algorithm requires parameter 𝜃 (𝑡) and the 
searcher’s next step parameter 𝜃 (𝑡+1). These steps are also classified into 
the expectation (E) step and the maximization (M) step.

Expectation stage:
( )

( ) ( )| ,Q ( | ) log ; ,t
t

Z XE L X Z
θ

θ θ θ=                                          (2)

Maximization stage:
( ) ( )( )1 arg max |t tQθ θ θ θ+ =                                               (3)

In practical usage, we initialize 𝜃 (0) with any other proper values 
(or vectors) and iteratively calculate 𝜃 (𝑡) to a desirable range of 
approximation level.

The support vector machine is emerging as a popular technique in 
machine learning [27]. This approach is a classification technique and 
is based on neural network technology [28]. It is a parametric statistical 
linear classifier that performs a nonlinear mapping of the input space 
to a new feature space to which a linear machine can be applied. SVM 
constructs a hyper plane separating the positive examples from negative 
ones in the new space representation. To avoid over fitting, SVM 
chooses the optimal separating hyper plane that maximizes the margin 
in the feature space [29]. The margin is defined as the minimal distance 
between the hyper plane and the training examples. The selected data 
points that support the hyper plane are called support vectors. A smaller 
number of support vectors reflect a better generalization for linearly 
separable problems. SVM employs a maximum margin hyper plane for 
separating examples belonging to two different classes [25]. A support 
vector machine is a useful method for data classification and regression 
analysis. A classification task generally involves training and testing 
data which consist of some data instances. Each instance (promoters, 
non-promoters) in the training set contains one attribute class (+, -) 
and several attributes (a, c, g, t). The aim of SVM is to produce a model 
which predicts the attribute class of data instances in the testing set 
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which are only given the attributes.

Given some training data: 

( ) { }{ }, , 1,1p
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Subject to:

( ). 1i i iy w x b ξ− > −              0iξ ≥                                               (5)

Here 𝑥𝑖 is a feature vector, training vectors x are mapped into a 
higher (high or infinite) dimensional space by the function. Therefore, 
SVM finds a linear separating hyper plane with the maximal margin 
in this higher dimensional space. w is normal to the hyper plane, C is 
the penalty parameter of the error term and 𝜉𝑖 is slack variables that 
measure the degree of prediction error of xi for a given hyper plane. 
The parameter b/||𝑊|| determines the offset of the hyper plane from 
the origin along the normal vector w. If the space separating the two 
target classes is not linear, the points can be transformed into another 
high dimensional feature space. If the transformation to the high 
dimensional space is φ(). Then:

( ) ( )K( , )i j i jX X X Xϕ ϕ=                                                 (6)

K is called the kernel function. Kernel function has a good 
performance if the support vectors that are calculated by using the 
corresponding transformation are few and the classification of the 
test data is successful. With a suitable kernel, SVM can separate in the 
feature space the data point that in the original input space was non-
separable. Two common kernels functions include:

Gaussian radial basis function kernel:
2| |K( , ) i jX X

i jX X e γ −−=                                                                  (7)

The polynomial kernel:
K( , ) ( . 1) p

i j i jX X X X= +                                                          (8)

In the proposed automated diagnostic system, we experimented 
with both the Gaussian radial basis function kernel and the polynomial 
kernel.

The dataset related to the sigma 70 is used in Figure 1, which 
perfectly displays the process of the EMSVM algorithm. Initially, 3907 
instances (1907 promoter and 2000 non-promoter) were classified into 
eight clusters used by the EM algorithm. The numbers are real numbers 
defined over the interval [0 10] in these clusters. The clustered data 
would be applied in the SVM algorithm in order to make predictions.

Computational Experiments and Results
In this paper, the EMSVM algorithm was implemented in Waikato 

 
 
 
 

 
 
 
 
 
 
 
 
 

Expectation Maximization Algorithm 

No.  
1     ACGGGAAACAGACTCATGTTGACCTTGGTTGTAAAGAGAGAGCAGGCGTTATTATTTTCAGCATCTGTCGCCGCAGAGAAG 
2     GCGAGAGCAACATTGCTGTAGATTGATATTTAATATATTAGCGTAACTGTTATGCTGTTATCTATATTATGTGATCTAAAT 
3     GGGCATGGAAAGCCGGGCGAGAGCAACATTGCTGTAGATTGATATTTAATATATTAGCGTAACTGTTATGCTGTTATCTAT 
4     GGGAAACAGACTCATGTTGACCTTGGTTGTAAAGAGAGAGCAGGCGTTATTATTTTCAGCATCTGTCGCCGCAGAGAAGGG 
.                                                                                                                         . 
.                                                                                                                         . 
.                                                                                                                         . 
1908  CGCGCTTTAGGGCAAACGCAGCAGATGAGCGATCTGGTTGATGTGGACTGGAATGCAACTATTTCATCTTACATCATGCAG          
1909  AACGGCATTGCAGGCATCGTATAAAGCATTTACCGATATGCAGGGATTGTCGCTCTTCCAGCTCAGCAAATAATTTCGCTT    
1910  AACATATCATGAAACTGGGTATGTTTTGTCTGCCTGCTCTGGGATCGCTGGGGCGGGCATTTTTTTGCCTATTTTGCATTG 
1911  TTAGCAAGGATGCCATTCGATGAATTTTAATATGTTGATTCAAAGATGAAATAAAAAAGCCCTGGCAGTTACCAGGGCTTG      
.                                                                                                                         . 
.                                                                                                                         . 
3907                                                                                                                .                                      

 

No. Cluster_1        Cluster_2       Cluster_3        Cluster_4        Cluster_5        Cluster_6        Cluster_7        Cluster_8           class 

1  1.64247              0.99440             2.56385              8.24248              7.64565             1.40481               0.00383             4.27973               + 
2  6.28534           3.22374             0.02021             0.97930              1.38965              2.47551              5.18695             1.04507               + 
3  2.63804           0.98343             0.00693             1.65624              7.11798              0.00280              3.11426             0.00580                    + 
4  0.00153              0.01165             6.15971             0.63505              0.30454              0.00185              6.55151             0.04468                    +                                                                                                     
.                                                                                                                           .                                                                                                                               + 
.                                                                                                                           .                                                                                                                               + 
.                                                                                                                           .                                                                                                                               + 
1908  4.91661          7.56594             1.63321      0.00193              0.01018   7.44400               0.00271 0.98392                   - 
1909  4.14543          0.00547             1.28066      1.06547              5.22106   0.00559             0.98810 8.12499               - 
1910  0.00137          5.91402             1.10825      0.17024              1.62215   1.13397             0.03892 0.78874               - 
1911  1.23096          2.04577             4.29911      2.81308              0.00906   0.03198                0.00104 0.95773               - 
.                                                                                                                           .                                                                                                                               - 
.                                                                                                                           .                                                                                                                               - 
3907                                                                                                                   .                                                                                                                 - 

Support Vector Machine Algorithm 

Promoter 
Non-Promoter 

Prediction Result 

Figure 1: Process of the EMSVM algorithm using two stages.
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SVM EMSVM
p=1 γ=0.01 p=1 γ=0.01

C=1

SE 0.849 0.865 0.923 0.916
SP 0.857 0.888 0.937 0.942

ACC(%) 85.28 87.63 93.01 92.93
MCC 0.705 0.753 0.860 0.859

C=2

SE 0.847 0.872 0.926 0.918
SP 0.856 0.888 0.933 0.941

ACC(%) 85.15 87.99 92.93 92.93
MCC 0.703 0.760 0.859 0.859

C=3

SE 0.848 0.873 0.931 0.919
SP 0.856 0.892 0.924 0.939

ACC(%) 85.20 88.22 92.75 92.91
MCC 0.704 0.764 0.855 0.858

Table 1: Results of the SVM and EMSVM algorithms using alternative kernel 
functions and penalty parameters C.

-60+21 -60+1 -40+21 -60+10 -50+21

Sigma24

SE 0.867 0.871 0.887 0.871 0.84
SP 0.979 0.976 0.978 0.977 0.973

ACC(%) 95.59 95.43 95.87 95.51 94.56
MCC 0.863 0.859 0.873 0.861 0.831

Sigma32

SE 0.709 0.751 0.803 0.819 0.819
SP 0.973 0.978 0.978 0.982 0.977

ACC(%) 93.76 94.75 95.4 95.97 95.53
MCC 0.719 0.765 0.798 0.822 0.805

Sigma38

SE 0.705 0.645 0.756 0.682 0.774
SP 0.974 0.976 0.98 0.974 0.981

ACC(%) 94.76 94.31 95.76 94.49 96.07
MCC 0.697 0.66 0.754 0.678 0.773

Sigma70

SE 0.923 0.909 0.927 0.912 0.921
SP 0.937 0.934 0.933 0.929 0.933

ACC(%) 93.01 92.14 93.01 92.06 92.73
MCC 0.86 0.843 0.86 0.841 0.855

Table 2: Compare influenced EMSVM on different areas of promoters.  

environment for knowledge analysis (Weka). Weka contains tools for 
developing new machine learning schemes [18]. It can be used for pre-
processing, classification and clustering [30].

Evaluation measures

Next, the performance of the method for calculating the sensitivity 
(SE), specificity (SP), accuracy (ACC) and the Matthews correlation 
coefficient (MCC) of the prediction will be evaluated. These parameters 
can be calculated using equations 9-12, where TP is positive instances 
(promoter sequences) classified as positive, TN is negative instances 
(non-promoter sequences) classified as negative, FP is negative 
instances (non-promoter sequences) classified a positive FN is positive 
instances (promoter sequences) classified as negative.

( )SE sensitivity TP
TP FN

=
+

                                               (9)

( )SP specificity TN
TN FP

=
+

                                                            (10) 

( )ACC accuracy TP TN
TP TN FP FN

+
=

+ + +
                                          (11) 

( )
( ) ( ) ( ) ( )

( * ) *
MCC

* * *

TP TN FP FN
TP FP TP FN TN FP TN FN

−
=

+ + + +
                                    (12) 

Results and discussions

In this step, the SVM and EMSVM algorithms would be compared 
and then the efficacy of the proposed methods would be studied on 
various areas of the σ24, σ32, σ38, σ70 promoters. At the end, the new 
algorithm would be compared to other algorithms by using the E. coli-2 
dataset with the aim of appropriately demonstrating its performance.

The performance of all the classifiers was evaluated using a 
standard 10-fold cross-validation. In the 10-fold cross-validation, the 
dataset was partitioned into 10 subsets. Each subset had an equal ratio 
of promoter and non-promoter fragments. Each classifier was trained 
10 times, each time using nine subsets for training, while keeping the 
10th subset for testing. In this way, 10 models were generated during 
the cross-validation. The final prediction performance was obtained by 
averaging the results obtained from each model.

Performance comparison of SVM and EMSVM: The sigma 70 
dataset (1907 promoter and 2000 non-promoter) was applied in order 
to compare the performance of the proposed method with the SVM 
algorithm. The experimental results for a single classifier support 
vector machine and EMSVM are summarized in Table 1, which 
represents measurements in terms of SE, SP, ACC, and MCC In order 
to develop an SVM model, we experimented with both polynomial and 
Gaussian radial base functions, as they are presented in (7) and (8), 
with three penalty parameters (C). The clustering techniques used as 
a pre-classification component for grouping similar data by classes in 
the earlier stage helps EMSVM produce a better result compared to the 
SVM classifier. For the EMSVM, the best accuracy rate belongs to the 
polynomial kernel with values of C = 1, P = 1 and the Gaussian radial 
basis function kernel with values of C = 1 and 𝛾 = 0.01

Compare influenced EMSVM on different areas of promoters: 
The plot of the distribution of nucleotides generally indicates an 
uneven and unequal distribution in the promoter regions which helps 
them to be identified. According to the lack of uniform distribution 
of a, c, g, t nucleotides in the promoter regions, the effectiveness of 
the EMSVM algorithm has been evaluated in this section. For this 

purpose, the two graphs are presented in Figure 2, which are related to 
the distribution of nucleotides in both the non-promoter region and a 
random region of the E. coli genome. The random distribution in these 
two graphs indicates the absence of clearly defined region which could 
be identified by the RNA polymerase subunits. It should be noted that 
this could reduce the possibility of detecting the region as a promoter. 
Figure 3 respectively displays the distribution plots of σ24, σ32, σ38, 
and σ70 promoters‘ nucleotides. The sequences have been classified 
into five intervals (-60 to +21, -60 to +1, -60 to +10, -40 to +21, -50 to 
+21) and the prediction accuracy of each region was measured by using 
an EMSVM algorithm (Table 2). The predicted results in each interval 
have a remarkable correlation with the distribution of the nucleotides 
in any promoter. The polynomial kernel with values C = 1, P = 1 was 
applied in all the predictions. There is no significant change in the 
results after the exclusion of the initial and final parts of the sigma 24 
promoters, due to the distribution of specific nucleotides between -40 
to +1 (it should be noted that there is no certain distribution in the 
close intervals) except for the -50 to +20 interval in which the exclusion 
of the final ten nucleotides would reduce the prediction accuracy. 
This decrease in accuracy could be improved by eliminating the -40 
to -50 intervals (the percentage of the changes in the distribution of 
nucleotides would be significantly low). The sigma 32 contains a specific 
distribution of nucleotides in the intermediate interval, the same as 
sigma 24. Since there are certain areas with a minimum distribution 
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Figure 2: The plot of the distribution: a) 160 thousands nucleotides of E. coli genome (recognized as a random region, includes the promoter and non-promoter, 
divided into 81 equal intervals) b) 2000 non-promoters.

rate around the intermediate interval, the exclusion of these regions 
might totally increase the prediction accuracy. There is a little region 
with a certain distribution in the +7 to +13 intervals which reduces 
the rate of improvement in the results, in terms of the exclusion of the 
first 20 nucleotides compared with the first 10 nucleotides. There is no 
specific distribution of nucleotides in the -40 to -60 intervals in sigma 
38, thus the results would be improved by the exclusion of this region. 
However, the exclusion of the little specific region in the +1 to +20 
intervals could lead to a reduction in the ability to predict. The graph 
which is related to the sigma 70 variation indicates the non-normal 
distribution in a wider range compared with the other graphs so the 
predicted results would be changed or decreased by the exclusion of 
region in this sequence.

Performance comparison EMSVM and another algorithm: Table 
3 gives detailed results of EMSVM for predicting promoter and non-
promoter sequences by using the E. coli-2 dataset. The evaluation was 
performed in the form of a comprehensive comparison with previous 
studies [22-24]. The Matthews correlation coefficient (MCC), accuracy 
(ACC), sensitivity (SE) and the specificity (SP) values of the proposed 
method are equal to 0.98, 0.99, 0.98 and 1, respectively. ROC is a 
graphical plot which illustrates the performance of a binary classifier 
system as its discrimination threshold is varied [31]. Figure 4 shows a 
ROC space containing EMSVM and different algorithms that are used 
[23]. The x and y axes of the ROC space represent the false positive rate 
(FPR, equal to 1−specificity) and the true positive rate (TPR, the same 
as sensitivity), respectively.

A perfect classifier would be represented by the point (0, 1), which 

corresponds to the maximum specificity and sensitivity, the perfect 
classification. EMSVM has a better place in the ROC environment 
(0, 0.98) compared to other algorithms. This is because expectation 
maximization clustering technique that used as a pre-classification 
component in the first stage groups similar data respectively and 
instances which were misclassified during the first stage of clustering 
were classified correctly by support vector machine classifier in the 
second stage.

Conclusions
In summary, we have developed an accurate prediction method 

for detecting promoters in bacterial DNA sequences. This approach is 
called EMSVM and it is evaluated using σ24, σ32, σ38, σ70 datasets. 
EMSVM comprises two stages. In the first stage, data are clustered using 
the expectation maximization (EM), while in the second stage the data 
obtained from the previous stage are classified using the support vector 
machine (SVM). In this manuscript, a comparison was made between 
the EMSVM and another algorithm. The implementation results on 
the various E. coli datasets demonstrate that the proposed method has 
the best performance in the area of promoter prediction compared to 
the other methods proposed. The main innovation in this research is 
the combination of clustering and a classification algorithm which 
has considerable influence on increasing the accuracy of predictions; 
the second innovation is the proposed algorithm for the different 
intervals in the promoter sequence which lead to reasonable results 
consistent with the structure of the promoter. This paper presents some 
recommendations which will help the results of this article to be further 
developed by future research studies: the proposed algorithm should be 
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Figure 3: The plot of the distribution of nucleotides: a) 520 sigma 24 promoters, b) 309 sigma 32 promoters, c) 217 sigma 38 promoters, d) 1907 sigma 70 promoters.
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Figure 4: EMSVM algorithm in ROC space.

Prediction method Reference tp fn fp tn MCC ACC(%)
Expectation Maximization and Support Vector 

Machine(EMSVM) This paper 52 1 0 53 0.98 99.05

Knowledge Based Neural Network(KBANN)

Geoffrey G. Towell et al.
(1990)

- - - - - 96.22
Multilayer Perceptron - - - - - 92.45

OťNeill’s Method - - - - - 88.68
K-Nearest Neighbors(k-NN) - - - - - 87.74

Decision Tree (ID3) - - - - - 82.08
Hidden Markov Model(HMM)

Leonardo G. Tavares 
et al

.(2008)

50 3 5 48 0.850 92.45
Complement Class Naive Bayes(CNB) 49 4 3 50 0.868 93.40

Multilayer Perceptron Neural Network(MLP) 49 4 3 50 0.968 93.40
Support Vector Machine(SVM) 49 4 4 49 0.849 92.45

LogitBoost 47 6 5 48 0.793 89.62
NBTree 47 6 5 48 0.793 89.62

Lazy Bayesian Rules Classifier(LBR) 48 5 3 50 0.850 92.45
PART 44 9 11 42 0.623 81.13

ANN trained with backpropagation

Raúl Ramos-Pollán et al.
(2012)

- - - - - 89.09
ANN trained with resilient propagation - - - - - 94.36
ANN trained with simulated annealing - - - - - 88.50
ANN trained with genetic algorithms - - - - - 73.37

Table 3: Comparison between our method and other reported methods.

used on other datasets, in order to assess the efficiency of the algorithm 
compared to the other methods applied to the datasets considered. The 
other clustering algorithms and classification should be examined in 
order to compare their performance with the EMSVM. Our collected 
datasets should be applied. Furthermore, the divided intervals and also 
their results should be considered for further research in the field of 
E. coli.
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