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The International Food Information Council (IFIC) has 
defined foods that afford health benefits beyond basic nutrition, as 
“functional foods.” These can range from broccoli to fortified foods 
such as calcium-fortified orange juice, to soy-based products to 
dietary supplements [1]. The formulation of the dietary supplements, 
functional foods or herbal products into marketed medicinal products 
is known as “nutraceuticals”; a term which combines “nutrition” and 
“pharmaceuticals”. The nutraceuticals have many therapeutic benefits, 
and are especially relevant as antifatigue or for preventing or delaying 
a number of age-related diseases, i.e. arthritis, cancer, metabolic and 
cardiovascular diseases, Alzheimer’s, Huntington disease, osteoporosis, 
cataracts, brain disorders, etc. [2]. Examples of nutraceuticals widely 
used nowadays are the polyvitamins, omega-3 fatty acids, carotenoids, 
polyphenols (anthocyanins, proanthocyanidins, flavanones, 
isoflavones, and ellagic acid) [3]. The best characterized polyphenol 
member is Curcumin & its derivatives which are extracted from plant 
turmeric (Curcuma longa, family Zingiberaceae) which exhibits anti-
oxidant, anti-inflammatory, and anti-cancer properties. The latter 
effect was attributed to activation of apoptosis signaling (curcumin 
inhibits Bcl2 and activates Caspase 9 to induce apoptosis) and blockade 
of many cell proliferation signaling pathways, (such as MAP kinase 
pathway, AKT pathway and mTOR pathways) [4-7]. Another wonder 
nutrient is coenzyme Q10, an antioxidant a benzoquinone derivative 
endogenously produced by the human body [8]. It is contained in many 
foods such as liver, heart and muscles of beef, nuts, vegetables and fish 
[9]. Other beneficial phytochemical compound is thymoquinone, a 
potent therapeutic agent of Nigella Sativa, has proven antioxidant, anti-
inflammatory, bronchodilator and anticancer effect [10-12]. The latter 
is mediated through multiple mechanisms: anti-proliferation, apoptosis 
induction, cell cycle arrest, ROS generation and anti-metastasis/anti-
angiogenesis [10]. While it might be easy for a formulator to develop 
a pharmaceutical forms (tablets, powders, capsules, suppositories, 
etc.) containing food bioactives, it is quiet challenging to obtain a 
satisfactory bioavailability for such nutraceuticals. The bioavailability 
is often jeopardized by the low solubility, stability and/or permeability 
of the bioactive in the GIT. In case of curcumin, extremely low serum 
levels, limited tissue distribution, apparent rapid metabolism and 
short circulation half-life are the underlying causes of its low oral 

bioavailability [13]. On the other hand, the bioavailability of the 
lipophilic antioxidant coenzyme Q10 was challenged by its low aqueous 
solubility and slow dissolution rate in GI fluids furnished by its highly 
lipophilic character (log P=21) [14]. Moreover, permeability is limited 
by its large molecular weight (863), P-glycoprotein efflux and active 
transport by a number of transporters (including peptide transporters 
(PEPT1), cation/camitine transporters (OCT1, OCTN1, OCTN2 and 
OCT3) and organic anion transporters (AE2 and MCTl) [15]. 

Another category of nutraceuticals that are quickly growing 
in the past two decades are the “Probiotics” (i.e. health-promoting 
bacteria); with global market value $32.6 billion in 2014 [16,17]. The 
oral delivery of probiotics is hampered by the low instability of the 
bacteria in the GIT and consequent loss of viability under the effect of 
high acidity and bile salt concentrations. The problem of oral delivery 
of the nutraceuticals at acceptable bioavailability has been tackled by 
formulators with various degrees of success. For Probiotics delivery, 
the bacteria could be immobilized into a polymer matrix, which is a 
kind of enteric-system that remains intact in the stomach but degrades 
and dissolves in the intestine. The Probiotics Encapsulation Technology 
or “PET” has emerged recently aiming for the protection and safe 
formulation and delivery of the living probiotic cell. Conditions that 
maintain cell viability like biomaterial selection, solvent type and 
toxicity and choice of proper technology are of paramount concern. 
Pertaining to the biomaterial, natural and synthetic polymers are used; 
factors to be addressed are: (i) physicochemical properties (chemical 
composition, morphology, mechanical strength, stability in GI fluids; 
(ii) toxicity assay; (iii) manufacturing and sterilization processes [18].
The most common biomaterials used for probiotics encapsulation
are alginate, chitosan, carrageenan, gelatin, whey proteins, cellulose
acetate phthalate, locust bean gum and starches [19]. The techniques
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attempted are: spray-drying, freeze-drying, fluidized bed drying, 
extrusion and emulsification techniques. A subsequent challenge is to 
ascertain that the gastro-protected encapsulated probiotics are released 
in simulated intestinal fluid (SIF) in vitro, a step that must be preceded 
by development of a standard protocol that simulates conditions 
prevailing in the GIT [20]. 

The nutraceuticals of non-bacterial origin mentioned above Require 
different yet broad spectrum endeavors including: use of adjuvants/
absorption enhancers like piperine [5], bile salts and surfactants. As 
a continuation, lipid-based systems like liposomes and emulsifyable/
self-emulsified systems (SEDDS) were used. SEDDs are particularly 
interesting because of the larger surface area afforded by the minute 
emulsion droplets, improved diffusion of the microscopic emulsion 
droplets, increased mucosal permeability due to surfactants and 
cosurfactants and improved lymphatic absorption (due to long-chain 
oils). The chain length dictates the route of transport. The molecules 
of long-chain fatty glycerides access the intestinal lymph in preference 
to the portal blood. The digestion products of long-chain triglycerides 
were preferentially resynthesized in the enterocyte, assembled into 
lipoproteins, and secreted into the mesenteric lymph, whereas medium 
chain triglycerides were primarily absorbed directly into the portal 
blood. The digested lipids of medium chain triglycerides with bile salts 
formlipophilic particles, and overcome the barrier of aqueous diffusion 
layer in GI tract [21]. In a different approach, solid dispersions and 
cyclodextrin complexation are promising in maximizing the effective 
surface area available for GI fluids and enhancing dissolution rate 
and oral absorption [22-24]. Figure 1 illustrates a decision tree on the 
formulation strategies to be tackled for poorly soluble nutraceuticals.

The advent of nanotechnology for pharmaceutical applications 
has opened a new avenue for stability, solubility and/or permeability-
enhancement of problematic nutraceuticals [25-27]. In this context, 
nanometric systems in absence or presence of carriers have been 
attempted. In absence of a carrier, nanonization of the bioactive, 
according to Noyes-Whitney equation, overcomes its “grease ball” 
nature and improves its wettability and dissolution rate. In presence 
of a carrier, an armory of nanocarriers is at hand for example: 
nanocapsules, micelles and nanoparticles, however, biocompatibility 

and biodegradability-related issues are crucial. Biodegradable 
FDA-approved polymers e.g. polyesters are favored by formulators 
to develop nutraceutical-loaded nanoparticles. Polymer-based 
nanoparticles modulate the release of encapsulated bioactives, protect 
them from degradation, alter their biodistribution and shift their 
transport across biological membranes from a passive diffusion process 
to endocytosis one [28-31]. Additionally, targeting moiety can be 
fixed to nanoparticles surface [32-35]. The targeted and/or endocytic-
uptake of nanoparticles maximizes their intracellular delivery which 
is strictly needed to exert for example an anticancer effect [36-39]. 
Sub-cellular organelle targeting like mitochondrial-targeting (in case 
of coenzyme Q10) have been achieved by especial targeting moiety 
namely lipophilic triphenylphosphonium cation either chemically 
conjugated to the nanocarrier or the coenzyme Q10 [40], or resveratrol 
molecule [41]. Conjugating resveratrol to the membrane-permeable 
lipophilic triphenylphosphonium cation provided transient protection 
against metabolic conjugation, accumulated into mitochondria 
and was cytotoxic for fast-growing but not for slower-growing cells 
[41]. Such mitochondrial targeting of antioxidant nutraceuticals 
furnished a powerful tool to mediate mitochondrial and cellular redox 
processes of pathophysiological consequences [42]. The approach in 
which a bioactive is chemically linked to a polymer is well known as 
“Polymer Conjugates”. The conjugates modulate the physicochemical, 
pharmacokinetic and therapeutic properties of the therapeutic agent. 
The water-soluble anticancer curcumin polyconjugates showed altered 
biodistribution and improved anticancer efficacy as it combines the 
dual advantage of enhanced aqueous solubility and polymer-mediated 
drug internalization [43]. 

For recapitulation, the consumer preferences and the advance in 
the field of functional foods, dietary supplements and phytochemical 
compounds triggered the search and implementation of novel 
formulation strategies to develop nutraceutical products to overcome 
low bioavailability and improve therapeutic efficacy.
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