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Bangrooe5, Farooq Ahmad Khan6

ABSTRACT

Biogas is a renewable source of energy, generally a mixture of methane and carbon dioxide which are naturally released 
when organic materials including aquatic weeds, agricultural residue, animal waste, food waste etc. decomposes 
under anaerobic conditions. The experiment was conducted under two conditions viz. room temperature and poly-
house temperature and included four treatments T1 (Dal weed 100%), T2 (Dal weed+agricultural residue), T3 (Dal 
weed+food waste) and T4 (Dal weed+agricultural residue+food waste) with four replications for each treatment and 
statistically designed as Completely Randomized Design (CRD) to investigate biogas production. The maximum 
methane production was observed in T1 (531.25 mL kg-1) and T4 (436.25 mL kg-1) under poly-house and room 
temperature, respectively. However, the increase of pH, TS, VS and total nitrogen caused a corresponding increase 
in biogas production. Whereas, the decrease in ammonium nitrogen, total phosphorus, and COD triggered an 
increase in the production of biogas. 
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INTRODUCTION

Considering the huge generation of aquatic weeds in lakes as well 
as agricultural and food waste, there are various management 
practices for their conversion to energy which includes anaerobic 
digestion in the form of biogas, pyrolysis, gasification, liquefaction, 
bio-hydrogenation, combustion, etc. For residues containing more 
moisture content, biogas production through anaerobic digestion 
for its conversion to energy is the preferred method. Biogas is an 
environment friendly fuel which is part of nature’s own cycle. 
It consists of a mixture of methane and carbon dioxide which 
are produced naturally when organic materials such as animal, 
agricultural, domestic and industrial waste decompose under 
anaerobic conditions [1]. In recent years, agricultural residues have 
become an important pollution source, and the problem caused 
by poultry and animal faeces is of global attention. Random 
straw burning and livestock excrement in the world especially in 
developing nations have caused a series of environmental problems 
[2]. Therefore, energy generation from agricultural residues is among 
the most effective methods for disposing of agricultural waste. It 
refers to the conversion of agricultural waste into clean energy. 
This includes the use of crop field residues such as crop straw, crop 

process residues such as rice husk and corncob, livestock breeding 
waste such as farm bedding and manure, slaughter house waste 
such as carcasses and wastewater. Accordingly, a great variety of by-
products are generated during the process of energy utilization of 
agricultural waste, such as biogas residue which latter is being used 
as fertilizers [3]. 

The production of energy from renewable sources is becoming an 
urgent target to reduce the impact of Greenhouse Gases (GHG), 
mainly derived from fossil fuel combustion [4]. Biogas from wastes, 
residues and aquatic weeds will play a vital role in future. The 
production of biogas through anaerobic digestion offers significant 
advantages over other forms of bioenergy production. It has been 
evaluated as one of the most energy-efficient and environmentally 
beneficial technology for bioenergy production [5]. The digestate is 
an improved fertilizer in term of its availability to crops which can 
substitute mineral fertilizer. Production of biogas using anaerobic 
digestion is a multistep biological and chemical process that is 
beneficial in not only waste management but also energy creation. 
The breakdown of substrates in the absence of oxygen is facilitated 
by a combination of microorganisms present in each stage of the 
digestion process. There are four fundamental steps of anaerobic 
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digestion that include hydrolysis, acidogenesis, acetogenesis, and 
methanogenesis. Throughout this entire process, large organic 
polymers that make up biomass are broken down into smaller 
molecules by chemicals and microorganisms. Upon completion 
of the anaerobic digestion process, the biomass is converted into 
biogas, namely carbon dioxide and methane, as well as digestate 
and wastewater [6]. 

There have been a number of studies conducted throughout the 
world on biogas production by anaerobic digestion using aquatic 
weeds, agricultural residues and food waste as substrates. Keeping 
this in view, this investigation on biogas production using different 
substrates, namely, aquatic weeds from Dal Lake, agricultural 
residues (falling apples and crop substrates), and food waste (kitchen 
waste) through anaerobic digestion was carried out to study the 
effect of substrates on biogas production under poly-house and 
room temperature condition, and the relationship of physico-
chemical parameters of substrates with methane production.

METHODOLOGY

Description of study area

The area of study were based on two locations, 1st one was Dal 
Lake located between 34°04' – 34°11' N, 74°48' – 74°53' E in the 
northeast township of Srinagar in the heart of Kashmir Valley in 
western Himalayas (1583 m above the sea level) and the 2nd was 
Sher-e-Kashmir University of Agricultural Sciences and Technology 
– Kashmir Shalimar Campus located between 34°08' 10" – 34°09' 
00" N, 74°52' 40" – 74°53' 10" E in the northeast of Dal Lake in 
Srinagar City as shown in Figure 1. Total area of the Dal Lake is 
about 23 km2 of which approximately 12 km2 is the total open 
water spread area [7,8]. Dal Lake is integral to Kashmir tourism and 
recreation, though it sustains commercial benefits from fisheries, 
water plant harvesting and vegetable production in floating 
gardens. Human interference by way of settlement in the lake to 
facilitate pedestrian traffic and establishment of lake tourism by 
providing floating residences (house-boats) got accelerated. The 
length of the lake is 7.44 kilometers (4.62 miles) with a width of 
3.5 kilometers (2.2 miles). The average elevation of the lake is 1,583 
meters (5,190 ft). The depth of water varies from 6 meters (20 ft) 

at its deepest in Nagin Lake to 2.5 meters (8.2 ft), the shallowest at 
Gagribal [9]. 

Sample collection

The research was conducted using three types of substrates, 
namely: Dal weed, agricultural residue and food waste. Dal weed 
was collected randomly by boat men from weed collection points 
of the banks of Dal Lake on 1st September, 29th September, 13th 
June and 11th June 2020 without specifying species. Agricultural 
residues were collected on 17th August and 20th August 2020 from 
agricultural field of SKUAST-K Shalimar campus which comprised 
of tomato straw and fallen apples. Food waste was collected on 17th 
August 2020 from the vegetarian mess of boy’s hostel, SKUAST-K 
Shalimar campus. About 2-4 kg of food waste was collected daily 
and taken to laboratory to be prepared for digesters.

Experimental design

Experimental research was conducted in two different environments 
to distinguish them on the basis of temperature, via; under room 
conditions and poly-house conditions. The total number of 
treatments was four, each having four replications giving a total 
of 16 digesters as shown in Table 1, which were used for the bio-
digestion of the waste materials for the production of biogas. The 
statistical design used for data analysis was Completely Randomized 
Design (CRD) (Table 1 and Figures 2a and 2b).

Substrate composition

The ratio of substrates varied in digesters based on the composition 
of dal weed, agricultural residue and food waste as given in Table 2. 
In each digester, 1.5 kg of substrate was used constituting different 
weight of substrates. The water used in digesters was collected from 
irrigation channels of the university campus. For each digester, 
10 L of water was mixed with 500 g fresh cow dung as inoculum 
in a bucket and stirred well with a rod. The solutions/inoculum 
was then added to each labeled digester. First condition (room 
temperature) of bio-digestion commenced on the 15th October 
2020; Second condition (poly-house temperature) of bio-digestion 
commenced on the 1st February 2021 (Table 2).

Figure 1: Generation of aquatic weeds in lakes as well as agricultural and food waste.
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Table 1: Experimental design showing room and poly-house conditions of study for biogas production.

Under room conditions Under poly-house condition

Study area: Dal lake and SKUAST-K Shalimar campus Study area: Dal lake and SKUAST-K Shalimar campus

Experimental material: Dal weed, agricultural residue and food waste Experimental material: Dal weed, agricultural residue and food waste

Treatments: 4 Treatments: 4

Replications: 4 Replications: 4

Design: CRD Design: CRD

Figure 2: Digital map of study/sampling area.

Figure 2a: Digester sets under room temperature.

Figure 2b: Digester sets under poly-house temperature.

Table 2: Substrate ratio used for production of biogas through anaerobic digestion.

Treatment Substrates used for anaerobic digestion Ratio

T
1

Dal weed -100%

T
2

Dal weed+Agricultural residue 02:01

T
3

Dal weed+Food waste 02:01

T
4

Dal weed+Food waste+Agricultural residue 2 : 0.5 : 0.5
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Design of bio-digesters

A batch-type biogas digester that has been used by many researchers 
was designed and constructed to generate biogas from different 
substrates which includes Dal weed, Agricultural residue and Food 
waste [10-12]. The components of the digesters include: plastic tank 
of capacity 20 L, conical flask of 1 L capacity containing the barrier 
solution which is composed of 20 g sodium hydroxide (NaOH 2%) 
in 1 L distilled water. A rubber pipe connected with tap fitted in 
between each digester tank and conical flask. Methane gas was 
measured using measuring cylinders connected to each digester, 
and each cylinder contained 50 ml of distilled water. By opening 
the tap on each digester, the total gas (CH4, CO2, H2O(g) etc.) 
goes to the barrier solution connected to each digester respectively 
and reacts with gases such as CO2 and H2S filtering out the pure 
methane CH4 which then enters the measuring cylinder of each 
digester causing a rise in water level in the cylinders. The rise in 
water level is seen as the total volume of methane entering the 
cylinders from each digester. The digester ensures the anaerobic 
degradation of the feedstock in order to generate biogas.

RESULTS AND DISCUSSION

Parameters for initial substrate analysis

The data in Table 3 shows the variation in the parameters analyzed 
for the initial substrates used for biogas production. The variations 
in pH obtained in the initial bio digestion of various substrates 
are: 6.23 (Dal weed), 4.69 (Agricultural residue) and 5.51 (Food 
waste). The higher pH of Dal weed might be because of the lake 
water pH, temperature and presence of various minerals [13]. 
The lower pH in agricultural residue may be attributed to its 
composition (tomato straw and fallen apple) which are acidic in 
nature and have been proven to be of lower pH [14-16]. The low 
pH of Food waste may be due to the microbial decomposition of 
food materials which has a correlating effect on odor and pH [17-
19]. The close proximity in the data for Total Solids (TS) has been 
reported by several researchers who did their work using different 

substrate [20-22]. This might be due to the fact that each of the 
substrates was chopped and grinded before analysis. It is this total 
solid that is converted into volatile solids which are then used by 
methanogenic bacteria to produce biogas [23-26]. With respect to 
moisture content, agricultural residues had the highest percentage 
(46.57%). It was reported by Saputra and Putri in 2017 that 
aquatic weeds contain high moisture content, reaching more than 
90%. Nevertheless, the moisture content for all initially analyzed 
substrates was below 90% as before analysis they were shade dried. 
The higher content of total nitrogen (3.35%) in Dal weed may be 
due to the fact that macrophytes absorbs large amount of nitrogen 
in the form of nitrates for the development of chlorophyll and 
amino acids. Also Yu et al., (2015) and Su et al. (2019) reported 
that the higher concentration of total nitrogen was present in 
aquatic weed. On the other hand, agricultural residue exhibited 
high content of ammonium nitrogen (62.21 mg/L). Bacteria can 
only get nitrogen in the form of ammoniacal-nitrogen (NH4-N), 
which is soluble in nature. After the hydrolysis stage, nitrogen is 
converted to ammonium ions for bacterial use [27,28]. Lowest 
concentration of total phosphorus was recorded from Dal weed as 
compared to the other substrates. This can be attributed to its less 
availability in water due to its fixation in sediments. High pH in 
Dal weed and effect of temperature, might have allowed Dal weed 
to frequently release phosphorus under reducing circumstances 
[29,30]. In relation to Chemical Oxygen Demand (COD), food 
waste exhibited the highest level (20.28 g/L) which may be due to 
its high content of biodegradable organic matter, allowing bacteria 
to easily break it down. A higher bio-degradation rate at higher 
temperatures indicates a greater level of biological activity [31,32]. 
With respect to the analyzed heavy metals (Pb, Cd, and Cu), Dal weed 
exhibited higher concentrations. Aquatic weed (macrophytes), have 
been examined for their ability to bio-accumulate and bio-magnify 
heavy metals from water bodies [33,34]. Also, the concentration of 
heavy metals in all the substrates were less than Central Pollution 
Control Board (CPCB) 1986 standards for effluent discharge into 
both surface water and public sewers as given in Table 4 (Tables 3 
and 4).

Table 3: Parameters analyzed for initial substrates used for biogas production.

Parameters Dal weed Agricultural residue Food waste

pH 6.23 4.69 5.51

Total solids (g/L) 18.65 18.59 19.95

Volatile solids (g/L) 9.89 10.62 12.47

Moisture content (%) 23.61 46.57 17.01

Total nitrogen (%) 3.35 1.95 3.27

NH4-N (mg/L) 27.69 62.21 44.93

Total phosphorus (mg/L) 0.8 6.39 2.65

COD (g/L) 10.43 17.36 20.28

Pb (mg/L) 0.22 0.18 0.18

Cd (mg/L) 0.03 0.03 0.03

Cu (mg/L) 0.03 0.006 0.001

Table 4: CPCB standards 1986 (anaerobic digestion in heavy metals).

Heavy metals Into surface water Into public sewers

Lead (Pb) mg/L 0.1 1

Cadmium (Cd) mg/L 2 1

Copper (Cu) mg/L 3 3
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Total and volatile solids

A decreasing trend from initial to finial of total solids in all 
treatments under both conditions (room and poly-house) as 
depicted in Table 7 and similar decreasing trend was observed with 
volatile solids in all treatments as shown in Table 8. Decreasing 
effect can be related to the fact that in anaerobic digestion Total 
Solids (TS) which is the organic and inorganic components of 
matter had to be broken down necessarily into volatile solids 
which is the organic component of total solids upon which the 
production of biogas is dependent which further decreases in the 
process by decomposition. The amount of TS in feedstock which is 
degraded into volatile solids has an impact on anaerobic digestion 
performance, particularly biogas production efficiency [40,41]. 
Methane production has been noted to be exactly proportional 
to the rate of Volatile Solids (VS) decomposition [42]. However, 
methane generation has been noted to decrease when the total 
solids level increased from 10 to 25% in an anaerobic digestion 
(Tables 7 and 8) [43].

Total nitrogen and ammonium-nitrogen

Data reveals a decreasing trend of total nitrogen in all treatments 
from initial to final stage under both conditions (room and 
poly-house) as shown in Table 9. Similarly, decreasing trend of 
ammonium nitrogen was observed in all treatments from initial to 
final stage under both conditions (room and poly-house as shown 
in Table 10. Decreasing trend in total nitrogen from initial to final 
is because nitrogen is converted into ammonium and ammonia 
which are used by microorganisms especially ammonium nitrogen 
to build-up their cell structure. The pH of digesters has been 
noted to affect the amount of ammonium composition [44,45]. 
Amount of ammonium will increase in more acidic conditions in 
the digestion process and the reverse is also true as reported by 
Syaichurrozi et al., 2013. Ammonium concentration is dependent 
on pH and temperature. The correct amount of ammonium-
nitrogen (50 mg/L) is considered beneficial whereas free ammonia 
should be avoided if possible (Table 9 and 10) [46].

Physico-chemical parameters of substrates in anaerobic 
batch digestion under room and poly-house conditions

PH

The results presented in Table 5 of pH under both the conditions 
(room and poly-house) on weekly basis showed that under room 
temperature pH ranged from 5.15 to 6.58 and under poly-house 
temperature it ranged between 7.29 to 5.21. T1 (Dal weed 100%) 
recorded highest pH under both room and poly-house temperature 
ranging from 5.70 – 6.58 and 6.00 – 7.29, respectively. This might 
be due to the fact that the initial substrate of Dal weed recorded 
highest pH (6.23) in Table 3 which can help to keep the digestors 
in optimal condition for better biogas production. Cioabla et al. 
in 2012 stated that, in an anaerobic digester, the pH range of 6.8 
to 7.2 is optimal for biogas production, but the procedure can 
withstand a pH range of 6.5 to 8.0. Also, the increase or decrease in 
temperature can also influence the pH level in digesters [35]. Having 
lower pH than the range might be due to the high concentration 
of Volatile Fatty Acids (VFAs), which has been reported by many 
researchers as one of the main factors influencing pH levels [36-
38]. Statistically pH as shown in Figure 3 has a significant (p ≤ 
0.05) positive correlation with methane gas production. Which 
means the increase in pH will lead to a corresponding increase 
in methane production. Towards neutral range of pH, methane 
is highly generated and as it approaches toward acidity (decrease 
in pH), methane production decreases too (Figure 3 and Table 5).

Temperature

Data on temperature (°C) under both the conditions (room and 
poly-house temperature) is given in Table 6. It is clear from the 
data that the temperature under poly-house was higher than 
room temperature. Nevertheless, the production of biogas in 
all the treatments was dependent on the temperature in both 
the conditions as shown on the correlation graph of Figure 4. 
Temperature had a significant (p ≤ 0.05) positive correlation with 
biogas production that with increase in temperature is strongly 
related with increase in biogas production regardless of the pH 
effect especially when temperatures are low (Figure 4 and Table 6) 
[39].

Figure 3: pH during digestion of substrates for biogas production. Note: (●) Methane (room condition), (●) Methane (polyhouse condition), (─) 
Linear (Methane (room condition)), (─) Linear (Methane (polyhouse condition)).
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Table 5: pH of substrates under room and poly-house condition.

Under room condition Under poly-house condition

Date (week)
T1 Dal weed 

100%)

T2 (Dal 
weed+agricultural 

residue)

T3 (Dal 
weed+food 

waste)

T4 Dal 
weed+food 

waste)
Date (week)

T1 (Dal 
weed 
100%)

T2 (Dal 
weed+agricultural 

residue)

T3 (Dal 
weed+food 

waste)

T4 (Dal 
weed+agricultural 

residue+food 
waste)

22/10/2020 
(1)

5.83 ± 0.27 5.15 ± 0.04 5.46 ± 0.21 5.48 ± 0.16
08/02/2021 

(1)
6.50 ± 0.66 6.25 ± 0.19 5.74 ± 0.17 5.84 ± 0.29

29/10/2020 
(2)

5.84 ± 0.20 5.22 ± 0.09 5.37 ± 0.16 5.38 ± 0.10
15/02/2021 

(2)
6.19 ± 0.59 5.89 ± 0.12 5.40 ± 0.13 5.59 ± 0.27

05/11/2020 
(3)

6.10 ± 0.19 5.64 ± 0.08 5.75 ± 0.09 5.80 ± 0.04
22/02/2021 

(3)
6.00 ± 0.60 5.36 ± 0.06 5.32 ± 0.25 5.29 ± 0.30

12/11/2020 
(4)

6.00 ± 0.19 5.48 ± 0.09 5.59 ± 0.10 5.68 ± 0.03
01/03/2021 

(4)
6.02 ± 0.49 5.31 ± 0.06 5.38 ± 0.26 5.37 ± 0.30

19/11/2020 
(5)

6.44 ± 0.23 5.82 ± 0.10 5.84 ± 0.08 5.97 ± 0.10
08/03/2021 

(5)
6.11 ± 0.39 5.21 ± 0.09 5.45 ± 0.37 5.48 ± 0.36

26/11/2020 
(6)

6.58 ± 0.21 5.94 ± 0.11 5.83 ± 0.06 6.07 ± 0.19
15/03/2021 

(6)
6.15 ± 0.34 5.34 ± 0.08 5.60 ± 0.36 5.55 ± 0.39

03/12/2020 
(7)

5.84 ± 0.20 5.52 ± 0.03 5.39 ± 0.04 5.45 ± 0.04
22/03/2021 

(7)
6.18 ± 0.29 5.41 ± 0.05 5.79 ± 0.29 5.86 ± 0.18

10/12/2020 
(8)

5.70 ± 0.19 5.35 ± 0.03 5.21 ± 0.05 5.22 ± 0.05
29/03/2021 

(8)
6.21 ± 0.34 5.41 ± 0.04 6.01 ± 0.40 6.04 ± 0.11

17/12/2020 
(9)

5.74 ± 0.20 5.38 ± 0.04 5.22 ± 0.05 5.25 ± 0.04
05/04/2021 

(9)
6.25 ± 0.39 5.45 ± 0.11 6.16 ± 0.42 6.07 ± 0.20

24/12/2020 
(10)

5.73 ± 0.21 5.39 ± 0.06 5.23 ± 0.05 5.25 ± 0.02
12/04/2021 

(10)
7.02 ± 0.67 5.65 ± 0.10 6.24 ± 0.40 6.18 ± 0.19

- - - - -
19/04/2021 

(11)
458.63 ± 

13.81
410.25 ± 22.78

415.13 ± 
56.54

430.00 ± 46.62

- - - - -
26/04/2021 

(12)
368.00 ± 

14.57
276.38 ± 46.98

287.13 ± 
27.72

341.88 ± 64.05

- - - - -
03/05/2021 

(13)
255.50 ± 

16.11
195.88 ± 4.97

185.25 ± 
24.73

219.25 ± 33.21

- - - - -
10/05/2021 

(14)
154.63 ± 

28.38
114.38 ± 5.54

110.38 ± 
14.97

127.63 ± 20.58

Figure 4: Temperature (°C) correlation with biogas production. Note: (●) Methane (room condition), (●) Methane 
(polyhouse condition), (─) Linear (Methane (room condition)), (─) Linear (Methane (polyhouse condition)).
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Table 6: Average temperature (°C) variation under room condition.

Under room condition Under poly-house condition

Date (Week) Temperature (°C) Date (Week) Temperature (°C)

22/10/2020 (1) 10.42 08/02/2021 (1) 13.08 -

29/10/2020 (2) 11.48 15/02/2021 (2) 18.02 -

05/11/2020 (3) 16.4 22/02/2021 (3) 19.28 -

12/11/2020 (4) 20 01/03/2021 (4) 27.44 -

19/11/2020 (5) 20.86 08/03/2021 (5) 29.14 -

26/11/2020 (6) 24.5 15/03/2021 (6) 27.82 -

03/12/2020 (7) 21.36 22/03/2021 (7) 28.6 -

10/12/2020 (8) 18.4 29/03/2021 (8) 27.82 -

17/12/2020 (9) 13.78 05/04/2021 (9) 27.48 -

24/12/2020 (10) 18.28 12/04/2021 (10) 35.8 -

- - 19/04/2021 (11) 35.3 -

- - 26/04/2021 (12) 35.1 -

- - 03/05/2021 (13) 34.8 -

- - 10/05/2021 (14) 34.2 -

Table 7: Total solids (g/L) under room and poly-house conditions.

Under room condition Under poly-house condition

Treatments Treatments details
Initial

(15th – 29th 
Oct.)

Middle
(12th – 26th 

Nov.)

Final
(17th – 31st 

Dec.)

Treatments Treatments details
Initial (1st – 
15th Feb.)

Middle (15th – 
29th Mar.)

Final (19th Apr. 
– 3rd May)

T
1

Dal weed 100%
29.94 ± 

3.23
28.61 ± 

2.11
26.03 ± 1.60 T1 Dal weed 100% 70.64 ± 13.45 67.73 ± 12.73 64.77 ± 13.36

T
2

Dal 
weed+agricultural 

residue

24.50 ± 
4.07

24.14 ± 
3.80

23.23 ± 3.18 T2
Dal 

weed+agricultural 
residue

49.03 ± 9.13 46.67 ± 9.56 43.72 ± 9.87

T
3

Dal weed+food 
waste

23.80 ± 
1.51

22.86 ± 
1.71

22.22 ± 1.50 T3
Dal weed+food 

waste
81.71 ± 30.42 79.45 ± 29.71 76.10 ± 30.82

T
4

Dal 
weed+agricultural 

residue+food waste

29.03 ± 
1.19

28.32 ± 
1.66

27.22 ± 2.02 T4
Dal 

weed+agricultural 
residue+food waste

109.11 ± 1.50 107.21 ± 1.41 105.69 ± 0.56

C.D. (p ≤ 0.05) 3.26 C.D. (p ≤ 0.05) 22.1

Table 8: Volatile solid (g/L) treatment under room conditions.

Under room condition Under poly-house condition

Treatments Treatments details
Initial (15th 
– 29th Oct.)

Middle (12th 
– 26th Nov.)

Final (17th – 
31st Dec.)

Treatments Treatments details
Initial (1st – 

15th Feb.)

Middle 
(15th – 29  

Mar.)

Final (19th 
Apr. – 3rd 

May)

T
1

Dal weed 100% 13.41 ± 0.92 12.50 ± 1.22 10.91 ± 1.29 T
1

Dal weed 100% 29.54 ± 6.33
27.26 ± 

5.90
25.02 ± 5.58

T
2

Dal 
weed+agricultural 

residue
15.22 ± 0.53 14.58 ± 0.38 14.09 ± 9.64 T

2

Dal 
weed+agricultural 

residue
26.61 ± 7.22

23.02 ± 
5.29

21.03 ± 5.66

T
3

Dal weed+food 
waste

14.67 ± 0.53 14.26 ± 0.75 13.85 ± 0.79 T
3

Dal weed+food waste 30.35 ± 9.68
29.53 ± 

9.12
28.06 ± 9.14

T
4

Dal 
weed+agricultural 

residue+food waste
18.92 ± 0.48 18.63 ± 0.48 18.27 ± 0.80 T

4

Dal 
weed+agricultural 

residue+food waste
60.65 ± 3.54

57.28 ± 
3.90

56.81 ± 3.74

C.D. (p ≤ 0.05) 1.11 C.D. (p ≤ 0.05)
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g/L (final); T3 decreased from 27.41 (initial) to 26.36 g/L (final) 
and T4 decreased from 31.92 (initial) to 31.08 g/L (final) as data 
given in Table 12. Similar finding of a decreasing trend in methane 
has been reported by Elaiyarju and Pratha (2016). Higher biogas 
production in bioreactors is linked to improved COD because 
producing more methane (in a relatively constant methane/biogas 
yield) implies that more organic matter has been consumed by 
anaerobic organisms, resulting in lower COD at the end of the 
digestion process as reported by Hallaji et al., in 2018. Chemical 
Oxygen Demand stabilization can also be used to estimate methane 
production. Biogas production is directly related to the decrease of 
COD in the wastewater. Therefore, COD removal rate is used as an 
alternative parameter for biogas production (Table 12) [48].

Heavy metals (Pb, Cd and Cu)

The data on heavy metals (Pb, Cd, and Cu) has shown in Tables 13 
and 14 for both the conditions reveals that there was no significant 
variation (p ≤ 0.05) in the concentrations of the analyzed heavy 
metals among treatments. The presence of heavy metals in all the 
substrates might be due to their absorption from water as in the 
case of Dal weed and soil with respect to agricultural residue and 
food waste [49]. Nevertheless, the concentrations of heavy metals in 
the substrates were all below the standard of the Central Pollution 
Control Board (CPCB) for effluent discharge into surface water 
and public sewers as given in Table 4 (Table 13 and 14).

Total phosphorus (TP)

Data of total phosphorus in all treatment under both the conditions 
(room and poly-house) showed no significant variation (p ≤ 0.05) 
at the initial, middle and final stage of the bio digestion. Total 
Phosphorus (TP) has little/no impact on anaerobic digestion of 
biogas production or it has no direct effect in methane production 
as reported by Moller and Muller in 2012. PH affects the solubility 
of Total Phosphorus (TP) and micronutrients; for example, raising 
the pH causes the chemical balance to shift toward the production 
of dissociated phosphate ions, which aids the precipitation of 
insoluble Ca and Mg phosphates in the digestors [47]. Though 
anaerobic digestion has no significant effects on Phosphorus (P) 
removal, anaerobic digestion effluent still contains a high level of 
phosphorus (either organic or inorganic phosphate) (Table 11).

Chemical oxygen demand (COD)

Chemical Oxygen Demand (COD) under room temperature 
showed a decreasing trend from initial to final in all the treatments 
as T1 decreased from 11.31 (initial) to 11.17 g/L (final); T2 decreased 
from 19.41 (initial) to 18.59 g/L (final); T3 decreased from 25.14 
(initial) to 24.58 g/L (final) and T4 decreased from 30.31 (initial) 
to 29.16 g/L (final). Under poly-house temperature, Chemical 
Oxygen Demand (COD) also showed a decreasing trend from 
initial-final in all treatments as T1 decreased from 13.99 (initial) 
to 13.66 g/L (final); T2 decreased from 20.75 (initial) to 19.89 

Table 9: Total nitrogen (%) under room temperatures.

Under room condition Under poly-house condition

Treatments Treatments details
Initial (15th – 

29th Oct.)

Middle 
(12th – 

26th Nov.)

Final (17th 
– 31st 
Dec.)

Treatments Treatments details
Initial (1st – 
15th Feb.)

Middle 
(15th – 

29th Mar.)

Final (19th 
Apr. – 3rd 

May)

T
1

Dal weed 100% 3.21 ± 0.42 3.08 ± 0.33
3.04 ± 
0.33

T
1

Dal weed 100% 2.12 ± 0.36 2.10 ± 0.25 2.05 ± 0.20

T
2

Dal weed+agricultural 
residue

2.38 ± 0.54 2.37 ± 0.56
2.34 ± 
0.55

T
2

Dal weed+agricultural 
residue

1.53 ± 0.24 1.50 ± 0.19 1.47 ± 0.32

T
3

Dal weed+food waste 3.06 ± 0.33 3.02 ± 0.34 3.01 ± 0.34 T
3

Dal weed+food waste 2.27 ± 0.02 2.16 ± 0.06 2.13 ± 0.05

T
4

Dal weed+agricultural 
residue+food waste

3.08 ± 0.41 3.05 ± 0.40 3.05 ± 0.41 T
4

Dal weed+agricultural 
residue+food waste

2.20 ± 0.13 2.10 ± 0.16 2.09 ± 0.10

C.D. (p ≤ 0.05) 0.55 C.D. (p ≤ 0.05) 0.28

Table 10: Ammonium-Nitrogen (mg/L) under room conditions.

Under room condition Under poly-house condition

Treatments Treatments details
Initial (15th 
– 29th Oct.)

Middle (12th 
– 26th Nov.)

Final (17th – 
31st Dec.)

Treatments Treatments details
Initial (1st – 
15th Feb.)

Middle (15th 
– 29th Mar.)

Final (19th Apr. 
– 3rd May)

T
1

Dal weed 100%
50.10 ± 

2.51
48.89 ± 3.14 42.49 ± 8.81 T

1
Dal weed 100%

52.10 ± 
3.87

52.00 ± 2.48 51.34 ± 3.89

T
2

Dal 
weed+agricultural 

residue

55.44 ± 
2.61

54.71 ± 2.61 52.68 ± 5.18 T
0

Dal 
weed+agricultural 

residue

58.02 ± 
3.31

57.83 ± 3.54 56.78 ± 5.56

T
3

Dal weed+food 
waste

60.27 ± 
10.96

59.70 ± 
10.47

58.97 ± 
10.49

T
3

Dal weed+food 
waste

61.58 ± 
11.42

60.65 ± 
11.43

60.45 ± 10.81

T
4

Dal 
weed+agricultural 

residue+food waste

57.69 ± 
3.23

55.65 ± 4.19 54.48 ± 2.31 T
4

Dal 
weed+agricultural 

residue+food waste

59.37 ± 
3.53

57.93 ± 2.71 57.93 ± 2.68

C.D. (p ≤ 0.05) 8.56 C.D. (p ≤ 0.05) 8.26
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Table 11: Total phosphorus (mg/L) and treatment details.

Under room condition Under poly-house condition

Treatments Treatments details
Initial (15th 
– 29th Oct.)

Middle (12th 
– 26th Nov.)

Final (17th – 
31st Dec.)

Treatments Treatments details
Initial (1st – 
15th Feb.)

Middle (15th 
– 29th Mar.)

Final (19th Apr. 
– 3rd May)

T
1

Dal weed 100% 1.97 ± 0.81 1.30 ± 0.30 1.20 ± 0.29 T
1

Dal weed 100% 2.00 ± 0.83 2.00 ± 0.92 1.95 ± 0.76

T
2

Dal 
weed+agricultural 

residue
3.49 ± 1.72 2.48 ± 1.22 1.80 ± 0.70 T

0

Dal 
weed+agricultural 

residue
4.18 ± 1.34 4.12 ± 1.28 4.02 ± 1.28

T
3

Dal weed+food 
waste

2.25 ± 1.69 2.25 ± 1.66 2.11 ± 1.45 T
3

Dal weed+food 
waste

3.57 ± 1.58 3.56 ± 1.56 3.51 ± 1.51

T
4

Dal 
weed+agricultural 

residue+food waste
3.14 ± 1.71 2.36 ± 0.97 2.32 ± 0.99 T

4

Dal 
weed+agricultural 

residue+food waste
3.53 ± 1.47 3.25 ± 1.05 3.12 ± 1.12

C.D. (p ≤ 0.05) 1.63 C.D. (p ≤ 0.05) 1.62

Table 12: Chemical oxygen demands (mg/L) in agricultural and food waste.

Under room condition Under poly-house condition

Treatments Treatments details
Initial (15th 
– 29th Oct.)

Middle (12th 
– 26th Nov.)

Final (17th – 
31st Dec.)

Treatments Treatments details
Initial (1st – 
15th Feb.)

Middle (15th 
– 29th Mar.)

Final (19th Apr. 
– 3rd May)

T
1

Dal weed 100% 11.31 ± 0.11 11.26 ± 0.09 11.17 ± 0.09 T
1

Dal weed 100%
13.99 ± 

0.76
13.82 ± 0.66 13.66 ± 0.71

T
2

Dal 
weed+agricultural 

residue

19.41 ± 
0.13

18.96 ± 0.31 18.59 ± 0.48 T
0

Dal 
weed+agricultural 

residue

20.75 ± 
0.52

20.35 ± 0.51 19.89 ± 0.67

T
3

Dal weed+food 
waste

25.14 ± 
0.12

24.86 ± 0.23 24.58 ± 0.30 T
3

Dal weed+food 
waste

27.41 ± 
0.57

26.78 ± 0.64 26.36 ± 0.94

T
4

Dal 
weed+agricultural 

residue+food waste

30.31 ± 
0.61

29.60 ± 0.48 29.16 ± 0.35 T
4

Dal 
weed+agricultural 

residue+food waste

31.92 ± 
0.50

31.26 ± 0.48 31.08 ± 0.43

C.D. (p ≤ 0.05) 0.48 C.D. (p ≤ 0.05) 0.83

Table 13: Heavy metals treatment in (Pb, Cd and Cu) mg/L.

Treatments Treatments details
Heavy metals

Pb (mg/L) Cd (mg/L) Cu (mg/L)

T
1

Dal weed 100% 0.223 ± 0.045 0.029 ± 0.001 0.029 ± 0.007

T
2

Dal weed+agricultural 
residue

0.243 ± 0.063 0.028 ± 0.001 0.028 ± 0.007

T
3

Dal weed+food waste 0.273 ± 0.015 0.029 ± 0.001 0.036 ± 0.029

T
4

Dal weed+agricultural 
residue+food waste

0.275 ± 0.044 0.031 ± 0.002 0.037 ± 0.011

C.D. (p≤ 0.05) 0.063 0.002 0.023

Note: Pb-Lead, Cd-Cadmium, Cu-Cupper

Table 14: Heavy metals (Pb, Cd and Cu) mg/L (anaerobic digestion).

Treatments Treatments details
Heavy metals

Pb (mg/L) Cd (mg/L) Cu (mg/L)

T
1

Dal weed 100% 0.483 ± 0.051 0.017 ± 0.003 0.001 ± 0.001

T
2

Dal weed+agricultural 
residue

0.475 ± 0.068 0.017 ± 0.003 0.003 ± 0.003

T
3

Dal weed+food waste 0.515 ± 0.077 0.018 ± 0.002 0.001 ± 0.001

T
4

Dal weed+agricultural 
residue+food waste

0.515 ± 0.081 0.019 ± 0.003 0.005 ± 0.003

C.D. (p≤ 0.05) 0.098 0.004 0.003

Note: Pb-Lead, Cd-Cadmium, Cu-Cupper
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Biogas production under room and poly-house conditions

Methane production on weekly basis in both the conditions (under 
room and poly-house temperature) is shown in Table 15. Under 
room temperature, T4 (Dal weed+agricultural residue+food waste) 
had the highest methane production of 436.25 mL kg-1 among 
all other treatments [50]. This might be due to the mixture of the 
different substrate in T4 (Dal weed+agricultural residue+food 
waste), and the effect of temperature which enhanced microbial 
growth and degradation of organic matter. The combinations of 
different substrates in several studies have proven to be excellent 
in the production of biogas [51,52]. However, under poly-house 
condition, T1 (Dal weed 100%) produced the highest methane gas 
of 531.25 ml kg-1 among all other treatments. Dal weed produces the 
most biogas because it has a higher water content and soft organic 
matter with a fine texture, which creates favorable circumstances 
for anaerobic digestion to produce more biogas (Table 15).

CONCLUSION

On the basis of results obtained during the present investigation, 
T1 (Dal weed 100%) was more effective for the production of biogas 
under poly-house condition. This is due to the fact that it is easily 
degradable by microbes due to its fine texture. On the other hand, 
due to different substrate mixture of T4 (Dal weed+agricultural 

residue+food waste), and because of favorable temperature resulted 
in enhancing the microbial growth and degradation of organic 
matter thus producing maximum biogas. Lower pH in the digesters 
is due to high concentration of Volatile Fatty Acids (VFAs), with 
the increase in pH results in the conversion of acids to methane 
during biogas production. Quantity of biodegradable solids will 
gradually decrease due to its microbial degradation into volatile 
solids which is later converted into biogas. Microbial degradation 
of organic matter results in conversion of Total Nitrogen (TN 
into NH3 and NH4 which are used by microbes to build up their 
cell structures. Decrease of total nitrogen in digestion process is 
expected due to microbial degradation and decrease of oxygen is 
due to anaerobic digestion. Chemical oxidation of organic matter 
results in high chemical oxygen demand. The relationship of the 
physico-chemical parameters of substrates with biogas is explained 
in this wise: The increase of pH, TS, VS and total nitrogen caused a 
corresponding increase in biogas production. Whereas, the decrease 
in ammonium nitrogen, total phosphorus, and COD triggered an 
increase in the production of biogas. Based on the observations 
made during the present investigations, Dal weed can be used as 
a single substrate for biogas production, and a higher temperature 
under controlled conditions (20°-40°C) is more favorable for the 
production of biogas.

Table 15: Production of methane gas (mL kg-1) from anaerobic digestion using different treatments.

Under room condition Under poly-house condition

Date (week)
T1 Dal weed 

100%)

T2 (Dal 
weed+agricultural 

residue)

T3 (Dal 
weed+food 

waste)

T4 Dal 
weed+food 

waste)
Date (week)

T1 (Dal 
weed 
100%)

T2 (Dal 
weed+agricultural 

residue)

T3 (Dal 
weed+food 

waste)

T4 (Dal 
weed+agricultural 

residue+food 
waste)

22/10/2020 (1)
126.25 ± 

34.97
120.00 ± 21.60

162.50 ± 
25.00

166.25 ± 
24.96

08/02/2021 
(1)

130.00 ± 
7.07

103.75 ± 20.16
120.00 ± 

14.72
141.25 ± 4.79

29/10/2020 (2)
185.00 ± 

40.41
155.00 ± 23.80

202.50 ± 
34.03

207.50 ± 
30.96

15/02/2021 
(2)

156.25 
± 10.31

143.75 ± 8.54
140.00 ± 

26.77
147.50 ± 20.62

05/11/2020 (3)
247.50 ± 

80.67
271.25 ± 61.29

298.75 ± 
34.00

315.00 ± 
23.80

22/02/2021 
(3)

220.00 
± 4.08

221.25 ± 6.29
201.25 ± 

4.79
226.25 ± 22.50

12/11/2020 (4)
392.50 ± 

49.92
358.75 ± 33.76

347.50 ± 
37.75

407.50 ± 
19.36

01/03/2021 
(4)

368.75 
± 8.54

358.75 ± 8.54
350.00 ± 

14.14
368.75 ± 20.97

19/11/2020 (5)
417.50 ± 

29.86
390.00 ± 65.95

391.25 ± 
17.50

420.00 ± 
20.41

08/03/2021 
(5)

382.50 
± 22.55

361.25 ± 20.56
346.25 ± 

13.77
378.75 ± 36.37

26/11/2020 (6)
397.50 ± 

27.54
380.00 ± 44.16

383.75 ± 
19.31

382.50 ± 
30.14

15/03/2021 
(6)

415.00 ± 
36.74

353.75 ± 26.58
381.25 ± 

28.69
390.00 ± 20.41

03/12/2020 (7)
410.00 ± 

27.99
406.25 ± 14.93

387.50 ± 
25.98

436.25 ± 
13.15

22/03/2021 
(7)

435.00 
± 15.81

405.00 ± 27.99
405.00 ± 

21.21
411.25 ± 29.83

10/12/2020 (8)
343.75 ± 

30.10
322.50 ± 54.24

346.25 ± 
31.98

375.00 ± 
7.07

29/03/2021 
(8)

423.75 
± 34.73

368.75 ± 38.16
378.75 ± 

11.81
395.00 ± 15.81

17/12/2020 (9)
217.50 ± 

27.84
170.00 ± 24.15

191.25 ± 
8.54

200.00 ± 
22.73

05/04/2021 
(9)

416.25 ± 
32.76

403.75 ± 22.13
405.00 ± 

31.36
410.00 ± 29.72

24/12/2020(10)
185.00 ± 

44.16
153.75 ± 54.37

167.50 ± 
41.13

168.75 ± 
33.51

12/04/2021 
(10)

531.25 ± 
16.52

463.75 ± 22.13
468.75 ± 

25.94
496.25 ± 46.97

- - - - -
19/04/2021 

(11)
458.63 
± 13.81

410.25 ± 22.78
415.13 ± 

56.54
430.00 ± 46.62

- - - - -
26/04/2021 

(12)
368.00 
± 14.57

276.38 ± 46.98
287.13 ± 

27.72
341.88 ± 64.05

- - - - -
03/05/2021 

(13)
255.50 
± 16.11

195.88 ± 4.97
185.25 ± 

24.73
219.25 ± 33.21

- - - - -
10/05/2021 

(14)
154.63 ± 

28.38
114.38 ± 5.54

110.38 ± 
14.97

127.63 ± 20.58
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