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Abstract

Preterm birth (defined as birth prior to 37 completed weeks of gestation), occurs in approximately 10% of all births
and is one of the leading causes of neonatal morbidity and mortality worldwide. Preterm infants are born at a time
when kidney development is still ongoing, and consequently can lead to renal impairment (in both the short-term and
long-term), as well as severe glomerular abnormalities in some preterm infants. Since the glomerular abnormalities
are not present in all preterm kidneys, this suggests that it is not preterm birth per se that leads to the glomerular
abnormalities but may relate to factors associated with the etiology of the premature delivery, or factors in neonatal
care. In this review, we provide an overview of what is currently known of how prenatal and postnatal factors can
potentially impact on the immature kidneys of infants born preterm.

Keywords: Preterm birth; Intrauterine growth restriction; Kidney;
Nephrogenesis; Neonatal care

Introduction
Preterm birth occurs in approximately 10% of all births and is one

of the leading causes of neonatal morbidity and mortality worldwide.
Preterm infants are born at a time when their organ systems are
immature and hence, being born early can lead to adverse effects on
organ structure and function both in the short-term and in the long-
term. Preterm birth can lead to renal impairment in the neonatal
period and can lead to glomerular abnormalities in some preterm
infants. Since the glomerular abnormalities are not present in all
preterm kidneys, this suggests that it is not preterm birth per se that
leads to the glomerular abnormalities but may relate to factors
associated with the etiology of the premature delivery or factors in
neonatal care. Indeed, the etiology of preterm birth is multifactorial
and the neonatal care of preterm infants is different for all individuals,
depending on their postnatal sequelae. In this review, we provide an
overview of what is currently known of how prenatal and postnatal
factors can potentially impact on the immature kidneys of infants born
preterm.

Preterm Birth
Preterm birth occurs in approximately 10% of all births and is one

of the leading causes of neonatal morbidity and mortality worldwide
[1]. Preterm birth is defined as birth prior to 37 completed weeks of
gestation, with birth between 38-42 weeks of gestation considered as
full term [2]. Preterm birth can be further sub-classified into
moderately preterm, very preterm and extremely preterm. Moderately
preterm infants are classified as those born between 32 to 36 weeks of
gestation, very preterm births are those born between 28 and 31 weeks
gestation, extremely preterm births are those born before28 weeks
gestation [3]. Babies born prior to 23 weeks usually do not survive.
The majority (60-70%) of preterm newborns are born between 34 and

36 weeks of gestation. The incidence of preterm infants born at 32-33
weeks gestation is ~20% and ~15% are born at 28-31 weeks, preterm
birth prior to 28 weeks is the least common [3].

The global number of preterm deliveries each year has been slowly
increasing and at the present time it is around 10% of births worldwide
[4]. In the USA the incidence of preterm birth is 12.3% [5], in Europe
it is 5-7% [4], and in Australia it is 8.2% [6]. However, within these
populations some ethnic groups have a higher incidence of preterm
birth. For example in African Americans the incidence of preterm
birth is high at 17.5% [7] and in Indigenous Australians 13.3% of all
births are preterm [6]. Of concern, the prevalence of preterm birth in
developing countries is very high; for example, up to 17.5% of the
reported birth sin South Africa are preterm and this is likely to be even
higher as many births are not recorded [4].

Survival following preterm birth (especially in those born very,
extremely preterm) has improved dramatically since the first
introduction of neonatal intensive care units (in the 1960s). With
subsequent refinements in prenatal and neonatal care, newborns born
as early as 25 weeks gestation now have a 80% chance of survival [8,9].
In particular, the use of antenatal/neonatal corticosteroids (which
accelerate lung maturation in the newborn) and surfactant therapy
(which reduces alveolar surface tension in the presence of respiratory
distress syndrome) have facilitated the recent improvement in survival
[10].

The cause of premature delivery is multifactorial and differs with
each pregnancy. It can occur spontaneously or be the result of
emergency induced delivery. The most common identified causes of
spontaneous preterm delivery are onset of premature labour (45%),
and premature pre-labour rupture of the membranes (25%) [3]. The
main identified cause of emergency induced delivery is maternal and
fetal infection (35%) [3]. To date, the etiological mechanisms leading
to spontaneous preterm labour and premature pre-labour rupture of
the membranes are not well defined. There are a number of risk
factors associated with increased risk of preterm delivery [3].
Pregnancy complications that often lead to emergency induced
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preterm delivery include: Chorioamnionitis, placental insufficiency/
abruption, pre-eclampsia, oligohydramnios (abnormal amniotic fluid
levels) and intrauterine growth restriction (IUGR); IUGR is often a co-
morbidity of these other pregnancy complications.

Although there has been a marked improvement in the survival of
preterm infants over recent decades, preterm birth still remains the
leading cause of infant mortality and morbidity. Perinatal mortality is
currently around 6 to 8.5 times higher in preterm infants than in term
infants [11]. Preterm infants are vulnerable to many postnatal
complications due to the increased functional demands in the extra-
uterine environment, at a time when the immature organs are ill-
equipped for the functional transition to life ex-utero.

The increasing awareness of the potential adverse effects of being
born early to immature organ systems has led to many studies over
recent years looking at the consequences of preterm birth on fetal
organ development, such as in the lungs [12], brain [13,14],
gastrointestinal tract [15], and the kidney [16-19]. The effects of
preterm birth in the neonatal kidney form the focus of this review.

Preterm Birth and its Effects on Renal Function and
Nephrogenesis

Renal function
In the case of preterm infants, they are delivered at a time when

nephrogenesis is often ongoing. In preterm neonates glomerular
filtration rate (GFR) is very low at birth, and does not rise as rapidly as
full term infants during the neonatal period [20,21]. As expected,
glomerular filtration rate has shown to increase more rapidly after 34
weeks gestation [22,23] which coincides with the timing of the
completion of nephrogenesis. Numerous studies have shown that
preterm birth can lead to a high incidence of renal dysfunction in the
neonate and under severe circumstances this can lead to renal failure
[24,25]. The incidence of renal impairment in preterm infants is
difficult to clearly define given that the kidneys are very immature at
the time of birth. Hence, renal function is quite different in the
preterm infant when compared to the term infant and many of these
differences are due to immaturity rather than an underlying
impairment. Certainly, both glomerular and tubular function are
influenced by gestational age at birth and hence, it is difficult to
establish whether the differences in renal function in preterm infants
compared to term infants are solely due to underdevelopment of the
nephrons or the result of injury in an immature kidney. During the
first week after birth, glomerular filtration rate (GFR) is significantly
lower in preterm infants compared to term infants [26-28] and it is
positively correlated with gestational age at birth and postnatal age
[29-31]. Likewise, creatinine clearance, one of the most commonly
used markers of renal function, is positively correlated with both
gestational age and postnatal age [20,21,29-39]. In addition, preterm
neonates excrete high amounts of sodium in the early neonatal period
compared to term neonates, with the fractional excretion of sodium
inversely correlated with gestational age and postnatal age [29,39-43].

The presence of high levels of protein in the urine is indicative of
pathological proteinuria (urine total protein ≥ 500 mg/l) and can be
glomerular and/or tubular in origin. Specifically, the presence of
proteins with a high molecular weight (albumin) in the urine, is
indicative of a disruption in the integrity of the glomerular filtration
barrier [44]. Alternatively, high levels of low molecular weight proteins
(such as β2-microglobulin) are indicative of reduced reuptake by the

proximal tubule cells [45,46]. The occurrence of proteinuria in
neonates is strongly linked to gestational age at birth with studies in
preterm infants reporting significantly greater albumin and β2-
microglobulin concentrations over the first month of life in infants
born <32 weeks gestation, compared to neonates born >32 weeks
gestation [39,47]. To date, it remains unclear whether the observed
proteinuria in preterm infants is a result of their renal immaturity or
due to postnatal renal injury.

Acute kidney injury (previously defined as acute renal failure) is
reported to occur in 8% to 24% of preterm infants admitted to
neonatal intensive care units [24,48]. The mortality amongst these
infants that are born <32 weeks gestation has been reported to be as
high as 30-60% [49]. Acute kidney injury is defined as a sustained
extreme decline in creatinine clearance; the initial clinical symptoms
are a marked increase in serum creatinine and/or a sustained very low
urine output [50,51]. The major risk factors for acute kidney injury are
very low gestational age and low birth weight [52]. Other factors that
have been linked to acute kidney injury are: hypotention, hypoxia,
sepsis, maternal and neonatal drug administration (NSAIDs,
indomethacin, antibiotics and vasopressor), a low apgar score,
intraventricular haemorrhage (grade III and IV), necrotising
enterocolitis, patent ductus arteriosus, respiratory distress syndrome,
clinical interventions (intubation at birth),catheterization,
phototherapy, and mechanical ventilation [24,52,53]. Of concern,
mortality rates were reported to be significantly higher in neonates
with renal dysfunction/renal failure [52].

In addition, to the short-term effects in the kidney, preterm birth is
reported to influence long-term renal function [54-56]. For example,
Rodriguez et al. [57], found GFR to be significantly lower in children
ranging in age between 6.1 and 12.4 years who were born preterm,
with evidence of renal injury (defects in tubular transport of
phosphate) [57]. Iacobelli et al. [56], found that microalbuminaria was
present in 8.3% of children examined that were born premature,
ranging from 6-8 years of age. Similar findings were reported in a
study of young adults; a lower GFR, higher serum creatinine and
microalbuminaria was reported at 19 years of age in subjects born at
<32 weeks gestation (and also small for gestational age) [54].
Furthermore, there is strong epidemiological evidence to link
premature birth with the development of hypertension [58-63] and
increased cardiovascular risk during adulthood [64,65]. This ‘risk’ may
be further exacerbated in the presence of impaired renal function,
possibly leading to hypertension, and the possible development of
cardiovascular disease in later life [66].

Nephrogenesis
The nephrons are the functional units of the kidney and

importantly, nephrogenesis (the formation of nephrons) is usually not
completed until late in gestation (approximately 32 to 36 weeks
gestation) [67]. Hence, the majority of preterm infants are born at a
time when nephrogenesis is still ongoing. Over the past decade there
have been a number of studies looking at the effect of preterm birth on
nephrogenesis in the kidney. In the first of these studies, Rodriguez et
al. [16] reported a reduced number of glomerular generations (thus
implying reduced nephron endowment) in autopsied kidneys from
babies that were born preterm compared to those born at term.
However, in that study many of the preterm infants were also IUGR;
hence, in that study interpretation of the findings is difficult, because it
is well known that IUGR leads to reduced nephron endowment (see
later section). Likewise, in another autopsy study the number of
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glomerular generations was significantly reduced in preterm kidneys
compared to terms [68]. Concomitant with these studies, we have also
conducted a number of studies looking at the effect of premature birth
in immature preterm kidneys, both in a non-human primate model of
preterm birth and in autopsied kidneys of preterm infants. Our studies
have convincingly shown that when nephrogenesis is ongoing in
preterm infants at the time of birth, that nephrogenesis continues after
birth; new nephrons are formed in the extra-uterine environment
[17,19]. In our baboon studies, where the timing of nephrogenesis is
similar to the human, we have shown that the kidneys are significantly
larger in the preterm neonates, with a concomitant decrease in
glomerular density, but nephron number was in the normal range
(thus implying changes in tubular growth) [17]. Of concern, however,
there was a high proportion of abnormal glomeruli (up to 18% in some
kidneys) in the outer renal cortex in some of the preterm neonates.
The abnormal glomeruli exhibited a shrunken immature glomerulus
and an enlarged cystic Bowman’s space. Similarly, in studies
conducted in autopsied kidneys from infants born preterm [19], there
was also an increase in kidney weight relative to body weight (probably
due to the increased postnatal functional demands) and importantly
new glomerular generations were formed after birth. However, there
was a reduced nephrogenic zone width and a reduction in the
proportion of glomeruli in the most immature stages (vesicle, comma-
shaped, S-shaped and capillary loop stages), when compared to
gestational age-matched controls, suggesting that cessation of
nephrogenesis may be accelerated, and nephrogenic potential
adversely impacted upon. To date, there have been no studies that
have looked at exactly when nephrogenesis ceases in the preterm
infant relative to gestational age-matched infants.

Alarmingly, as seen in the preterm baboon kidneys, there was a
high proportion of abnormal glomeruli (with shrunken glomerular
tufts and an enlarged cystic Bowman’s space) in the outer renal cortex
(up to 13% of glomeruli) in some of the preterm human kidneys [19].
A representative example of an abnormal glomerulus in the preterm
human kidney is shown in Figure 1. Given the severity of these
glomerular abnormalities it is unlikely that these glomeruli will ever be
functional. Hence, our findings suggest that in these preterm infants
the endowment of functional nephrons is adversely impacted upon by
preterm birth, thereby affecting renal function both in the early
postnatal period and later in life. To date, the causes of the glomerular
abnormalities in the preterm kidneys are unknown. Given that not all
preterm kidneys exhibit abnormal glomeruli, it is likely that it may be
factors in the intrauterine environment (that lead to preterm delivery)
that have adversely impacted upon the developing glomeruli or
alternatively, it may be factors in the extra-uterine environment
(haemodynamic and in the postnatal care) that have led to these
glomerular abnormalities (Figure 2). In addition, there may be
intrauterine factors and/or extra-uterine factors that adversely impact
on nephrogenesis without inflicting glomerular pathologies. In the
next sections, factors in the intrauterine environment (linked to the
induction of preterm birth) and in the extra-uterine environment that
could potentially adversely impact on the developing kidney are
discussed.

Figure 1: Representative photomicrograph of a preterm human
kidney, exhibiting an abnormal glomerulus with an enlarged
Bowman’s space and shrunken immature glomerular cells. These
abnormal glomeruli were only found in the outer renal cortex of
the preterm human kidney, suggesting that they were formed in the
extra-uterine environment. Scale bar 20 µm, stained with
Haematoxylin and Eosin.

Figure 2: Flow diagram showing the factors associated with the
etiology of premature delivery and factors in neonatal care that can
potentially adversely impact upon the developing kidney. This in
turn, can lead to impaired nephrogenesis and/or glomerular/
tubular injury in the preterm neonate, and subsequent reduction in
the number of functional nephrons at the beginning of life, leading
to long-term vulnerability to renal disease.

Factors that can Potentially Impact on the
Development of the Immature Kidney

Intrauterine factors
It is now well recognised that the in utero environment can directly

influence organ structure and development. Hence, it is likely that the
factors that lead to the induction of preterm delivery (spontaneous or
assisted) can potentially impact on nephrogenesis and/or render the
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kidneys vulnerable to premature delivery and subsequent pathology.
In the next sections we describe some of the common factors/
conditions associated with preterm birth and how these factors can
adversely impact on the development of the fetal kidney.

Intrauterine infection and inflammation (chorioamnionitis)
Intrauterine infection (in particular, chorioamnionitis) is widely

acknowledged as a major contributor to premature delivery [13,69],
especially in births prior to 32 weeks gestation [69,70]. A recent study
by Ogge et al. [71], found that chronic chorioamnionitis was involved
in 34% of the premature deliveries relating to preterm labour with
intact membranes and 39% of preterm labour with membrane rupture.
Chorioamnionitis is defined as inflammation of the chorion and
amnion, caused by a bacterial infection which typically ascends from
the vagina [3]. Importantly, chorioamnionitis can lead to fetal
inflammatory response syndrome (FIRS) [72], and this has been
shown to adversely influence neonatal organ development. The effect
of exposure to inflammation in utero on the fetal kidney has recently
been examined in fetal sheep [73,74]. In the study by Galinsky et al.
[73] , there was a 20% reduction in nephron number, without any
effect on body weight, when chorioamnionitis was induced in late
gestation, using an acute intra-amniotic bolus dose of
lipopolysaccharide (LPS, which initiates an inflammatory response
similar to that observed with chorioamnionitis). Interestingly,
however, when fetal lambs were exposed to a lower dose of LPS over a
chronic period, during the period in gestation when nephrogenesis is
rapidly ongoing, there were no observable detrimental effects on
nephrogenesis [74]. Hence, it appears that with chronic low dose
exposure that the kidney may be able to adapt, to prevent adverse
effects on nephron formation. The contrasting findings from these two
studiesdemonstrate that the timing, duration and extent of infection/
inflammation are important factors when assessing the impact of
chorioamnionitis on the developing kidney.

Maternal diabetes
Exposure to intrauterine maternal diabetes can significantly

influence fetal growth throughout gestation and lead to an early onset
to preterm birth; this is of concern given the recent rise in Type 1 and
type 2 and/or gestational diabetes [75,76]. A common consequence of
intrauterine exposure to maternal diabetes is macrosomia, in
particular asymmetric macrosomia [77]. Macrosomia oftenleads to
exaggerated fetal growth, whereby the baby is born with a birth weight
that is high for gestational age [78]. This increase in body weight is a
result of excessive amounts of glucose and other nutrients crossing the
placenta leading to an increase in fetal body growth. In contrast, when
maternal diabetes (both Type 1 and Type 2) is severe, this can lead to
IUGR in the infant [76,79]; the impacts of IUGR on the kidney are
described later. With the increased prevalence of maternal diabetes
there have been a number of recent studies looking at the effects on
the fetal kidney. In a study conducted in preterm and term babies born
to Pima Indian mother, exposure to maternal diabetes (Type 2
diabetes) during pregnancy led to a higher excretion of albumin (3.8
times higher) when compared to infants of pre-diabetic and non-
diabetic mothers; thus indicative of renal injury in offspring exposed
to diabetes in utero [80].

Animal studies, have reported an increased incidence of renal
malformations in offspring born to diabetic mothers (Type 1 diabetes)
[81,82]. In particular it has been shown that exposure to maternal
diabetes can adversely impact nephrogenesis, with the offspring of

diabetic mothers reported to have significantly smaller kidney and
glomerular size, accompanied with a 40% reduction in nephron
endowment [82]. The offspring of the diabetic mothers were
significantly smaller in body weight, but there was no difference in
kidney weight adjusted for body weight, compared to offspring of non-
diabetic mothers [82]. Of concern, exposure to diabetes in utero led to
greater glomerular and tubular apoptosis, compared to offspring not
exposed to diabetes with the level of hyperglycaemiaa strong
determinant of the severity of the adverse effects observed in the
kidneys [82].

It is important to note, that although many of the animal studies
relate to induction of type 1 diabetes in the mothers, the findings in
relation to fetal development are likely to be also relevant to maternal
type 2 and gestational diabetes, where the developing infant in all cases
of maternal diabetes is exposed to hyperglycemia.

Antenatal medications
In general, administration of medications during pregnancy is

avoided wherever possible, due to potential adverse effects on the
developing fetus. However, it is important to note that there are some
medications which are specifically administered to women ‘at risk’ of
delivering prematurely, and although these medications are
considered safe, they have the potential to adversely impact on the
developing fetal kidney. In this section, we describe what is currently
known in relation to these routinely prescribed medications.

Glucocorticoids
When it is considered likely that a woman will deliver prematurely,

she is routinely administered glucocorticoids, usually betamethasone
or dexamethasone. These medications have been shown to accelerate
the maturation of the fetal lungs and thus, enhance the survival of the
infant at preterm delivery [83,84]. In addition to the effects in the
newborn’s lungs, the administration of glucocorticoids has also been
observed to increase mean arterial blood pressure, renal blood flow
and glomerular filtration rate [85-87] this in turn, has the potential to
affect renal function.

The effect of glucocorticoids on the developing kidney has been
studied in animal models including: the rat [88-90], sheep [91-93] and
baboon [17,94]. The findings suggest that exposure to glucocorticoids
can affect nephron endowment and renal maturation. In sheep studies,
administration of glucocorticoids during pregnancy (over 26 -28 days
gestation) has been shown to significantly reduce nephron endowment
in the exposed offspring [95] and in the neonatal rat, a reduction in
glomerular density was observed when dexamethasone was
administered at a time of ongoing postnatal nephrogenesis [96]. In our
laboratory, we have looked at the effects of administration of antenatal
glucocorticoids in a preterm baboon model [17]. Encouragingly,
administration of antenatal glucocorticoids did not appear to have any
direct adverse effects on the developing kidney and nephron
endowment was within the normal range [17]. However, there was a
9% increase in developed glomeruli in the renal cortex in the
betamethasone-exposed neonates, and a reduction in the width of the
nephrogenic zone when compared to age-matched gestational
controls. This suggests that there is accelerated renal maturation in
response to glucocorticoid exposure and this is in accordance with
other studies that show accelerated organ maturation as a result of
glucocorticoid exposure [94,97].
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Antibiotics
Infants that deliver preterm are often pre-exposed to antibiotics in

utero, with antibiotics often prescribed to pregnant women with
chorioamnionitis. Importantly, in this regard, antibiotics such as the
aminoglycosides can readily cross the placenta [98] and there have
been a number of experimental studies linking antibiotics with
impairment of nephrogenesis [99-102]. For instance, it has been
shown that incubation of metanephroi in culture with gentamicin
leads to decreased branching morphogenesis of the ureteric tree and
thus reduced nephron formation [99]. In addition, administration of
antibiotics to guinea pig and rat dams has been shown to lead to
oligonephronia in the offspring [103].

Indomethacin
Another routinely administered medication to women ‘at risk’ of

preterm birth is indomethacin. Indomethacin is a tocolytic drug,
which functions to reduce prostaglandin synthesis; it is thereby highly
effective at prolonging pregnancy [104]. Of concern, however, in
rodent studies in utero exposure to indomethacin has been reported to
reduce nephron endowment and reduce glomerular filtration
[105,106].

Oligohydramnios
Oligohydramnios is characterised by reduced levels of amniotic

fluid during pregnancy. It can manifest as a result of fetal renal injury,
such as decreased renal blood flow and/or reduced renal perfusion,
which ultimately leads to a reduction in the amount of fetal urine
excretion and consequently, the amount of amniotic fluid [107]. Other
renal causes that attribute to a reduction in amniotic fluid include
congenital anomalies such as: renal agenesis, polycystic kidneys,
multicystic dysplastic kidneys and uteral or urtheral obstruction
rupture of membranes [108]. It is also suggested that oligohydramnios
can also result from bacterial infection within the amniotic cavity
(such as chorioamnionitis), causing redistribution of blood flow
within the developing fetus. A reduction in amniotic fluid at birth is
often indicative of renal insufficiency in the neonate [109]. In utero
detection of oligohydramnios often leads to the assisted induction of
preterm labour as oligohydramnios has been linked to a number of
inauspicious pregnancy outcomes such as perinatal death, fetal distress
labour, low birth weight and poor infant health at birth [110].

Intrauterine Growth Restriction (IUGR)
IUGR is defined as body growth below the 10th percentile for

gestational age. IUGR is multifactorial in origin with maternal race,
economic status, diet and lifestyle (which can be interlinked) and
complications of pregnancy all associated with induction of IUGR
(Figure 2). IUGR is often a co-morbidity of preterm birth and it is
linked both to spontaneous and assisted premature deliveries. In many
pregnancies, it is difficult to ascertain whether it is the underlying
cause of the IUGR, or the poor in utero growth of the fetus that is the
stimulus for spontaneous preterm delivery. Likewise, the developing
kidney can be directly impacted upon by the factors leading to IUGR,
or alternatively, it can be a direct corollary of the IUGR. Certainly, the
general consensus of the findings from the literature would support
the latter with IUGR (regardless of the underlying causes) linked to
poor organ development in the fetus and concomitant impairment of
kidney development [111,112]. In the next sections some of the

common factors associated with IUGR are described, including their
links with preterm delivery.

Maternal ethnicity/socio-economic status
Maternal race has been linked with premature delivery and IUGR

[3,113,114]. For example in the USA, African and African American
women have been shown to have a four times higher chance of
delivering a premature newborn compared to other racial groups [3].
In addition, women from South Asia and the Indian subcontinent
have very high rates of IUGR and low birth weight [3], whereas,
women from East Asia and Hispanic regions have been shown to have
lower rates of premature delivery. In Australia, Indigenous Australians
have a much higher frequency of IUGR and preterm delivery
(approximately twice that of non-indigenous Australians) [6,115]. It is
important to note, that in many of these populations (where there is a
high incidence of IUGR) there is also a low socioeconomic status.
Hence, the underlying cause of the IUGR may be due to poor maternal
nutrition, lifestyle insults and poor maternal health (all described
below), rather than their ethnicity per se.

Maternal diet
Malnutrition is a common cause of IUGR in underdeveloped

countries [116]. It can result by under nutrition (inadequate food
intake) and/or restriction of specific key nutrients in the diet. For
example, data from the Dutch famine during World War 2 found that
children born to mothers that had limited food available (less than
1000 calories per day) over the majority of their pregnancy gave birth
to babies that were small for gestational age [117]. In another large
study conducted in 538 women who delivered term, it was shown that
a reduced protein diet during pregnancy leads to low birth weight in
the neonate [118]. Similarly, in rat studies, IUGR is consistently
reported when rat dams are fed a low protein diet during pregnancy
[119-122].

Maternal lifestyle
Maternal behaviours such as smoking, high alcohol consumption,

and ingesting illicit drugs have all been recognised as contributors to
the risk of IUGR and premature birth [123-127]. Cigarette smoking
has been reported to increase the risk of premature rupture of the
membranes, pregnancy bleeding and pre-term labour. In addition,
maternal smoking has been identified as a major cause of IUGR in
developed countries, contributing to as high as 40% of all cases of
IUGR [116]. Smoking causes vascular changes in the mother that can
lead to placental insufficiency and hypoxia in the fetus [128]. It has
also been associated with the down-regulation of important miRNAs
of the placenta, leading to newborns that are small for gestational age
[128]. Furthermore, nicotine found in cigarettes has been shown to
pass the placenta, thus exerting a direct negative effect on the growth
of the fetus [128]. Importantly, Dejmek et al. [129] also showed that
reduced birth weight in newborns of smoking mothers was dose-
dependent (that is number of cigarettes smoked per day).

Consumption of alcohol and use of illicit drugs during pregnancy is
also linked to increased risk of preterm birth. In a cohort of 3000
African American women, alcohol and cocaine use was found to be
associated with extreme preterm birth [125]. Of particular concern, a
study by O’Leary et al. [127], found that moderate ingestion of alcohol
consumption (only during the first trimester of pregnancy) was
associated with pre-term birth In Australia, the high rate of preterm
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birth in the Indigenous community is thought to be attributed to high
rates of tobacco, alcohol and drug use in pregnant women [130].

Placental insufficiency/abruption
The placenta is a vital organ that develops specifically during

pregnancy to support the growth of the developing fetus. The role of
the placenta is to supply the fetus with an adequate amount of
nutrients and oxygen for normal fetal growth. In developed countries
the most common cause of IUGR is placental insufficiency [131,132]
and it is also strongly linked with preterm birth [133]. Placental
insufficiency occurs when the placenta does not develop normally and
thus it is unable to adequately support the developing baby. It is
usually caused by reduced uterine artery blood flow (uteroplacental
insufficiency) [131].

Placental abruption occurs in late gestation and is a serious
condition where the placenta partially, or completely, separates from
the lining of the uterus; the effects on the developing fetus depend on
the severity [134]. The full separation of the placenta from the uterus
lining can lead to in utero death and subsequent stillbirth, if the fetus
is not delivered at the time of abruption. When there is partial
placental separation the fetus is growth restricted and preterm birth
will often ensue (spontaneous or assisted).

Pre-eclampsia
Pre-eclampsia is pregnancy-associated hypertension [135]; it is a

multi-system disorder which affects approximately 8% of pregnancies
[136]. It occurs when placentation is abnormal, which can cause the
mother to experience intravascular coagulation, bleeding and organ
failure (hepatic and renal) following poor perfusion. These
complications subside with the delivery of the fetus. Severe pre-
eclampsia can lead to maternal death and thus, it is a major cause of
assisted preterm birth [137]. In addition, pre-eclampsia during
pregnancy is a major risk factor for IUGR [138,139] as it usually
results in placental insufficiency. Higher rates of pre-eclampsia are
seen amongst women with pre-existing hypertension, diabetes mellitus
or previous history of pre-eclampsia [140]. Of concern, there has been
an increased incidence of pre-eclampsia in developing countries over
recent years [141].

Multiple births
Pregnancies with multiple fetuses exhibit a higher risk of placental

dysfunction and placental insufficiency. This is associated with the
slowed growth rate of twins during late gestation when compared to
the singleton growth rate [142]. The incidence of multiple births is
increasing and this is largely attributed to the increase in availability of
infertility treatment, such as ovulation induction [143,144].
Monochorionic twins (identical twins that share one placenta) have a
much greater chance of being born IUGR than dichorionic twins
(twins that do not share the same placenta) [145,146]. Discordant
growth, results from unequal distribution of uteroplacental blood flow
to the fetuses [147].

IUGR adversely Impacts on Nephron Endowment at Birth
It is now well established that IUGR, regardless of the etiological

origins (many of these described above), can adversely impact on the
number of nephrons formed within the developing kidney. Indeed
there are many experimental studies that have shown that when IUGR

is induced by maternal dietary manipulations, or by induction of
placental insufficiency, that nephron number is reduced in the
offspring [148-152]. In general, nephron endowment at birth is
directly proportional to kidney size [17,153,154], so in the case of the
IUGR infant the reduction in body size at birth is accompanied by a
decrease in kidney size and in the number of nephrons. In support of
this concept, in autopsied human kidneys there was a linear
relationship between the number of glomeruli (and therefore
nephrons) and birth weight in full term neonates[155]; neonates below
the 10th percentile of birth weight had 30% fewer glomeruli than the
neonates with birth weights above the 10th percentile[155].

However, it is important to note that the timing of the growth insult
during gestation is important. If the growth restriction occurs late in
gestation, when nephrogenesis is already complete, or close to
completion, the number of nephrons formed within the kidney will
not be affected by the IUGR, yet birth weight will be significantly
reduced. For example, in a study performed in our laboratory [151],
placental insufficiency was experimentally induced in fetal lambs late
in gestation (from 120-140 days gestation; term is 147 days) at a time
when nephrogenesis was nearing completion. This study revealed a
significant decrease in body weight and kidney weight in response to
IUGR compared to appropriately grown lambs. However, nephron
endowment in the IUGR lambs was not different to the control lambs.
In contrast, IUGR caused by twinning led to a significant reduction in
nephron endowment [151].

Extra-uterine (Postnatal) factors
There are a number of factors in the postnatal environment

(haemodynamic and factors associated with postnatal care), that can
potentially adversely impact on the immature kidneys of the preterm
infant. Some of the major ones are described below.

Change in haemodynamics
There is a major hemodynamic transition at the time of birth, when

the circulatory dependence on the placenta is terminated and the in
utero configuration of circulation is changed to the ex utero
configuration [156]. In the immediate period following birth the
kidneys need to rapidly adapt to the extra-uterine environment
whereby they are now required to independently control fluid and
electrolyte levels [20]. Following birth, there is also a significant
increase in mean arterial pressure and cardiac output and a reduced
renal vascular resistance facilitates an increase in renal blood flow [33].
Since resistance of the afferent and efferent arterioles is a determinant
of glomerular capillary pressure the glomerular filtration rate also
increases at birth and sodium reabsorption subsequently increases
[157]. Hence, the immature kidneys of preterm infants are exposed to
a marked increase in renal blood flow and blood pressure in the
immediate neonatal period and this has the potential to lead to renal
injury. To date, there is little information as to how changes in renal
blood flow and pressure directly impact on nephrogenesis and on the
recently formed immature nephrons in the preterm kidney. It is
conceivable that increases in blood flow and blood pressure could lead
to renal vascular injury and to the glomerular injury observed in
preterm infants. In this regard, in future studies it will be important to
look at the role of renal endothelial function in relation to prematurity.
Certainly, endothelial dysfunction has been described in other organs
following preterm birth and IUGR. Low birth weight and premature
birth has been previously reported to cause endothelial dysfunction in
the intestines, skin, retinal vessels and peripheral arteries [158]. Hence,
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it is plausible to suggest that preterm birth and low birth weight could
also affect developing arteries and capillaries in the immature kidney.
It is imperative in future studies to address this.

Hyperoxia and ventilation
In utero, the fetus normally develops in a relatively hypoxic

environment (5% oxygen) and this facilitates both vascular and
tubular development in the kidney [159-161]. At birth, the neonate is
exposed to an abrupt increase in oxygen from ~5% to 21% [161]. The
blood oxygen saturation levels (SpO2) rise from 45-55% in the fetus
[162] to 80-90% in the first five minutes after birth [163]. Hence, when
a baby is born preterm, the immature kidney is no longer growing in
an hypoxic environment and hence, it is likely that this will lead to
deleterious effects on the growth of the renal vasculature and the
tubules. This is an important area for future research and to our
knowledge this has not been investigated.

In addition, in the preterm neonate the lungs are very immature at
the time of birth; therefore, the neonate requires resuscitation and
ongoing ventilation [164]. Exposure to supplemental oxygen therapies,
such as ventilation, can lead to exposure to very high concentrations of
O2 (up to 100%), in an attempt to normalise blood oxygen levels
[165,166]. However, during this process the infant can experience high
blood oxygen levels (often only transitory) until the blood oxygen
levels become normalised. Of concern, hyperoxia can lead to oxidative
stress of the neonate, which has been shown to subsequently cause
cellular injury and cell death in response to accumulation of free
radicals and thereby exhaustion of antioxidants[167,168].
Consequently, this can lead to a number of common morbidities of
prematurity such as, retinopathy of prematurity, necrotizing
enterocolitis and bronchopulmonary dysplasia [169]. In the kidney of
the human neonate, oxidative stress has been reported to cause tubular
injury [170] and it has been linked to impairment of nephrogenesis in
animal studies [171]. In the rat model (where nephrogenesis is
ongoing in the first two weeks after birth), a significant reduction of
nephrons (25%) was reported in adulthood (25-35 weeks of age) [171]
following exposure to 80% oxygen during the early postnatal period.
In contrast, however, in a more recent study [172], exposure to 65%
oxygen levels for seven days of postnatal life, did not appear to have
any deleterious effects on nephrogenesis. However, in that study, the
kidneys of the hyperoxia-exposed mice did exhibit glomerular
hypertrophy in adulthood (postnatal day 56), suggestive of possible
reduced renal functional capacity.

Neonatal medications
Preterm infants are administered many medications in the

immediate period following birth; the treatment regime varies from
infant to infant and is ultimately dependent on the clinical sequelae of
each infant. Many of the medications administered to the infants are
known to be toxic to the kidneys but their benefits to the infant
outweigh the potential adverse effects on the kidneys. Some of the
commonly administered drugs are: non-steroidal anti-inflammatory
drugs (NSAIDs) such as indomethacin and ibuprofen and
aminoglycoside antibiotics (such as gentamicin). There are a number
of experimental studies which demonstrate that treatment with these
medications can have adverse effects on renal function in the postnatal
period and lead to renal injury [173-176]

NSAIDS
In the preterm neonate, exposure to indomethacin after birth has

been shown to lead to a significant increase in the concentration of
podocytes in the urine, as well as increased urine albumin excretion
[177], suggestive of renal injury. Treatment with NSAIDs is also linked
to impaired renal function. A recent study of renal function in preterm
babies indicated that NSAIDs administered to the preterm infant
significantly reduced neonatal renal drug clearance, likely associated
with a reduced GFR [178]. In the rodent model, postnatal
administration of NSAIDs and/or gentamicin during the period of
postnatal nephrogenesis is associated with a number of structural
changes in immature rodent kidneys [102]. These changes include
proximal tubule vacuolization, interstitial oedema, and podocyte foot
process effacement; the most severe effects were observed in animals
that received combined NSAID and gentamicin treatment. In these
studies early administration of indomethacin caused a significant
reduction in nephron endowment at 14 days postnatal age in rats,
however, these effects were not observed in the kidney when exposed
to ibuprofen. In the mouse model, postnatal exposure to NSAIDs
caused a significant reduction in glomerular density and glomerular
and tubular volumes in the kidneys [179]. Importantly, in preterm
baboons (born at a time, equivalent to ~27 week gestation in the
human), administration of ibuprofen during the postnatal period
caused a significant reduction in nephrogenic zone width [180]. This
suggests that prostaglandin inhibition may result in the early cessation
of nephrogenesis.

Antibiotics
It is known that antibiotics, such as the aminoglycosides, can be

nephrotoxic in the newborn (with the preterm infant most vulnerable)
[101] and they are also linked with impairment of nephrogenesis
[103,173]. Administration of gentamicin in neonates has been shown
to primarily result in renal tubular necrosis [100], which consequently
leads to increased sodium excretion, proteinuria, and a significant
reduction in GFR [101,181,182].

Preterm infants are often exposed to antibiotics in utero (see earlier
section) and/or in the postnatal period when there is evidence of
infection. In this regard, in a study of preterm human infants, using a
multivariate logistic analysis, it was found that mothers of infants with
acute renal failure received more drugs during pregnancy and delivery
(mainly antibiotics and non-steroidal anti-inflammatory drugs) [183].
Moreover, in the first few days of life and before diagnosis of acute
renal failure, the preterm infants that developed renal failure received
more drugs (antibiotics, NSAIDs and diuretics) and for a longer
period [183].

Postnatal Nutrition
Recent studies highlight the importance of postnatal nutrition on

the growth and function of the kidney in IUGR and preterm infants.
Certainly, when nephrogenesis is ongoing there are usually strong
linear correlations between nephron number and kidney size [155].
Impaired growth after birth (extra-uterine growth restriction; EUGR)
often occurs during the postnatal period in preterm infants [181];
hence, it is likely that impaired body growth in the immediate period
after birth will adversely affect kidney growth and nephron
endowment in the preterm infant. Therefore, there is the potential for
improved postnatal nutrition to positively impact on the number of
nephrons formed. In support of this idea, in a recent study of preterm

Citation: Ryan D, Black MJ (2015) Preterm Birth and/or Factors that Lead to Preterm Delivery: Effects on the Neonatal Kidney. J Neonatal Biol 4:
168. doi:10.4172/2167-0897.1000168

Page 7 of 12

J Neonatal Biol
ISSN:2167-0897 JNB, an open access journal

Volume 4 • Issue 1 • 1000168



children (born <30 weeks gestation) [182] glomerular filtration rate
was significantly decreased (suggestive of reduced nephron
endowment) at 7 years of age, in those that were either intra or extra-
uterine growth restricted. Importantly, the extra-uterine growth
restricted children were found to have significantly lower protein-
energy intake during their first week of life when compared to IUGR
or appropriately grown children. In addition, Schmidt et al. [183]
observed that consuming protein-rich formula, compared to just
breast milk, during the early postnatal period caused a significant
increase in kidney size.

Conclusion
This review highlights the many factors associated with the etiology

of preterm birth and in the postnatal environment that can potentially
impact on the immature kidney of the preterm infant. In order to
improve long-term renal health in subjects born preterm, it is now
important in future studies, to develop interventional strategies that
mitigate the adverse impact of the intrauterine and extra-uterine
environment on the immature kidney. At this stage, there is no clear
indicator of the causes of the glomerular abnormalities associated with
preterm birth. Carefully controlled animal studies can help to
elucidate the causes of the glomerular abnormalities and this is an
important area of future research. In regards to renal injury, this
review highlights a number of medications, commonly used in the
neonatal intensive care unit that can lead to renal impairment. Hence,
it is the challenge for the neonatologist, when deciding to use these
medications, to ascertain whether the benefits outweigh the risks.
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