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ABSTRACT

Naturally Fermented Milk (NFM) products are popular food delicacies in Indian states of Sikkim and Arunachal 
Pradesh. Bacterial communities in these NFM products of India were previously analysed by high-throughput 
sequence method. However, predictive gene functionality of NFM products of India has not been studied. In this 
study, raw sequences of NFM products of Sikkim and Arunachal Pradesh were accessed from MG-RAST/NCBI 
database server. PICRUSt2 and Piphillin tools were applied to study microbial functional gene prediction. MUSiCC-
normalized KOs and mapped KEGG pathways from both PICRUSt2 and Piphillin resulted in higher percentage 
of the former in comparison to the latter. Though, functional features were compared from both the pipelines, 
however, there were significant differences between the predictions. Therefore, a consolidated presentation of both 
the algorithms presented an overall outlook into the predictive functional profiles associated with the microbiota of 
the NFM products of India.

Keywords: Metagenome gene prediction; PICRUSt2; Piphillin; Naturally fermented milk products; Lactic acid 
bacteria

INTRODUCTION

Naturally Fermented Milk (NFM) products are popular food items 
in daily diets of ethnic people of Arunachal Pradesh and Sikkim in 
India, which include dahi, mohi, gheu, soft-chhurpi, hard-chhurpi, dudh-
chhurpi, chhu, somar, maa, philu, shyow, mar, chhurpi/churapi, churkam 
and churtang/chhurpupu [1,2]. Previously, taxonomic analysis 
using High-Throughput Sequencing (HTS) of NFM products 
of Arunachal Pradesh and Sikkim viz. chhurpi, churkam mar/gheu 
and dahi, have been studied [3]. We have recorded the abundance 
of phylum Firmicutes with predominated species of Lactic Acid 
Bacteria (LAB) viz. Lactococcus lactis (19.7%) and Lactobacillus 
helveticus (9.6%) and Leuconostoc mesenteroides (4.5%) and Acetic 
Acid Bacteria (AAB): Acetobacter lovaniensis (5.8%), Acetobacter 
pasteurianus (5.7%), Gluconobacter oxydans (5.3%), and Acetobacter 
syzygii (4.8%) [3]. Application of shotgun metagenomics is one of 
the commonly used methods for understanding the microbial-
associated gene functional characteristics [4]. However, alternately 
functional profiles of a microbial community can also be inferred 
indirectly by marker-gene surveys such as 16S rRNA gene [5,6]. 
Bioinformatics pipelines such as Phylogenetic Investigation of 
Communities by Reconstruction of Unobserved States version2 
(PICRUSt2) [7] and Piphillin [8] among others are some of the 
well-known tools for microbial predictive functionality studies from 
various NGS-related metagenomic data [5,6]. These pipelines have 
also been applied in fermented milk products to infer the functional 

gene predictions [9-11]. Microbiota present in NFM products 
harbour probiotic properties and impart several health-promoting 
benefits to consumers [12,13,14]. Predictive gene functionality in 
NFM products of India has not been analysed yet. Hence, the 
present study is aimed to predict the microbial functional contents 
of 16S rRNA gene sequencing data of NFM products of India, 
previously analysed by high-throughput sequencing method [3], 
using PICRUSt2 and Piphillin pipelines.

MATERIAL AND METHODS

Pre-analysis prior to predictive functionality analysis

Raw sequences of NFM products of Arunachal Pradesh and 
Sikkim in India analysed by HTS method [3] were accessed 
from MG-RAST/NCBI database server and were used in this 
study. Raw reads were processed using QIIME2-2020.6 (https://
docs.qiime2.org/2020.6/) [15]. After importing into QIIME2 
environment, Q-score based filtering and denoising was performed 
using Divisive Amplicon Denoising Algorithm (DADA2) [16] via 
qiime dada2 denoise-paired plugin. Quality-filtered sequences were 
then clustered against SILVA v132 [17] database and followed by 
taxonomic assignment using q2-vsearch-cluster-features-closed-
reference [18]. Taxonomic assigned of the ASVs was acheived 
using SILVA v132 [17] database and relative abundance of the 
predominant genera was calculated (Table 1).
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Predictive functionality analysis

PICRUSt2 analysis (https://github.com/picrust/picrust2/wiki): 
PICRUSt2 is a pipeline for predicting functional abundances based 
only on marker gene sequences, 16S rRNA gene [7]. Here, the 
quality-filtered sequences were fed into PICRUSt2 algorithm with 
the default parameters. The representative sequences were first 
clustered in QIIME2 against SILVA v132 database [17]. Functional 
prediction in PICRUSt2 involves three main steps- phylogenetic 
placement of reads, hidden state prediction, pathway inference. 
Firstly, for phylogenetic placement of reads, multiple assignment of 
the Exact Sequence Variants (ESVs) was performed using HMMER 
(http://www.hmmer.org/); and placements of the ESVs in the 
reference tree was performed using Evolutionary Placement-ng 
(EPA-ng) [19] and Genesis Applications for Phylogenetic Placement 
Analyses (GAPPA) [20]. Secondly, hidden state prediction of the 
gene families was run by castor R package [21] with the default 
“maximum parsimony” algorithm. Lastly, for pathway inference, 
a modified version of MinPath packaged within PICRUSt2 is 
used and metagenome prediction was achieved using the default 
“metagenome_pipeline.py” script [22]. The output features were 
then mapped against KEGG (Kyoto Encyclopaedia of Genes and 
Genomes) database for systematic analysis of gene functions [23]. 
Furthermore, the KEGG pathway information was then collapsed 
into three different levels- Category (Level-1), Super Pathway 
(Level-2) and Pathways (Level-3).

Piphillin analysis (https://piphillin.secondgenome.com/): 
Alternatively, functional prediction was also performed using 
Piphillin software [8]. Piphillin is a straightforward independent 
algorithm which predicts gene functionality from the structural 
16S rRNA gene without the use of any proposed phylogenetic tree 
unlike PICRUSt or PICRUSt2 [24]. Most importantly, Piphillin 
is a web-based analysis software which is simplified, user-friendly 
and has been shown to have better accuracy in predicting genome 
function from 16S rRNA gene content [8]. Piphillin uses KEGG 
and BioCyc database as reference databases. Here, gene copy 
numbers within each genome were retrieved and formatted by KO. 
Inference of gene function or metagenomic content was achieved 
by simply matching each representative of OTU/ASVs directly to 
the nearest sequenced genome without placing the sequence on 
the phylogenetic tree [24]. The representative OTU abundance 
table is then transformed into genome abundance table by using 
USEARCH with global alignment (Edgar 2010) and the resulting 
closest matched genome to the 16S rRNA gene copy of each 
representative OTUs/ASVs above identity threshold is considered 
as the inferred genome for each OTU/ASV (Iwai et al. 2016). In 
Piphillin analysis, DADA2-clustered representative sequences 
(.fasta) and ASV abundance frequency table (.csv) were required 
to upload to the Piphillin server (https://piphillin.secondgenome.
com/) via a web-browser. Inferred metagenomic content output 
was then collapsed into three different levels- Category (Level-1), 
Super Pathway (Level-2) and Pathways (Level-3).

Statistical analysis and data visualization

Unnormalized Kyoto Encyclopaedia of Genes and Genomes 
(KEGG) ortholog (KO) profiles of PICRUSt2 and Piphillin 
predictive were normalized using Metagenomic Universal Single-
Copy Correction (MUSiCC), a normalization paradigm which 
combines universal single-copy genes with machine learning tools 
to correct biases and to obtain accurate biological measure of gene 
abundance in metagenomic studies [25]. The output features were 

then mapped to KEGG database for systematic analysis of gene 
functions [23]. Error-corrected functional abundance table was 
then used for downstream analysis and rleative abundances (%) was 
plotted in MS-Excel v365 as stacked bar-plot for both PICRUSt2 
and Piphillin predictive outputs. To check the significant 
differences between the functional content as predicted by both 
PICRSUt2 and Piphillin, White’s non-parametric with Benjamini-
Hochberg FDR (false discovery rate) was applied in STAMP-
statistical analysis of taxonomic and functional profiles [26] and 
visualized as extended error-bar chart with alpha significance of 
0.05 (q-value) for all the functional levels – category (level-1), super 
pathway (level-2) and pathway (level-3). Furthermore, relationship 
between bacteria (lactic acid bacteria, LAB; acetic acid bacteria, 
AAB; and non-LAB/AAB) and functionalities were analyzed using 
non-parametric Spearman’s correlation in Statistical Package for 
the Social Sciences (SPSS) v20 and the correlation matrix was 
visualized as heatmap using ClustVis [27]. Significant interaction 
between bacteria and function are denoted with “*” <0.05 and “**” 
<0.01.

RESULTS

Microbial predictive gene functionality

A total of 1109 error-corrected ESVs was obtained from DADA2 
analysis and about 268 SILVA-clustered sequences were used for 
the downstream predictive analysis. A total of 5995 MUSiCC-
normalized KOs and 181 mapped KEGG pathways was obtained 
from PICRUSt2 analysis. Similarly, a total of 5245 MUSiCC-
normalized KOs and 157 mapped KEGG pathways was obtained 
from Piphillin analysis. Overall, both PICRUSt2 and Piphillin 
pipelines showed a similar pattern (Figure 1), except in the 
metabolism category where the PICRUSt2 was significantly higher 
in comparison to that predicted by Piphillin pipeline (Figure 2). 
Additionally, at the super pathway level, PICRUSt2 prediction 
showed significantly high in amino acid metabolism, metabolism 
of cofactors and vitamins, energy metabolism, and biosynthesis 
of other secondary metabolites (Figure 2). On the other hand, 
predictive super pathways which included carbohydrate metabolism, 
xenobiotics biodegradation and metabolism, metabolism of other 
amino acids, lipid metabolism, metabolism of terpenoids and 
polyketides, glycan biosynthesis and metabolism, and nucleotide 
metabolism were significantly higher through Piphillin prediction 
(Figure 2). Significant metabolic-related pathways inferred by both 
PICRUSt2 and Piphillin tools were compared showing several 
functional features predicted by these two pipelines (Figure 3).

Non-parametric correlation of bacteria with predictive 
functionality

Non-parametric Spearman’s correlation analysis resulted in a 
complex bacterial-functions interaction. Lactococcus showed a 
significant negative correlation with glycerolipid metabolism 
and ubiquinone and other terpenoid-quinone biosynthesis. 
Lactobacillus showed significant negative correlation with 
tryptophan metabolism, galactose metabolism, and lipoic acid 
metabolism while it was observed to be positively significantly 
correlated with sulphur metabolism. On the other hand, valine, 
leucine and isoleucine degradation, arginine biosynthesis and 
ubiquinone and other terpenoid-quinone biosynthesis was 
positively correlated with Leuconostoc, and negatively correlated 
with galactose metabolism. Furthermore, a significant negative 
correlation was observed between Acetobacter with pathways- 
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tryptophan metabolism, valine, leucine and isoleucine biosynthesis, 
and lipoic acid metabolism. Gluconobacter also showed a significant 
negative correlation with phenylalanine metabolism, pentose and 
glucuronate interconversions, fructose and mannose metabolism, 
and nitrogen metabolism. Glycerolipid metabolism and ubiquinone 
and other terpenoid-quinone biosynthesis showed significant 
positive correlation with Staphylococcus, which significantly 
negatively correlated with propanoate metabolism. Pseudomonas 
showed significant negative correlation with fructose and mannose 

metabolism and significant positive correlation with tyrosine 
metabolism, valine, leucine and isoleucine degradation, arginine 
and proline metabolism, galactose metabolism, ubiquinone 
and other terpenoid-quinone biosynthesis and glutathione 
metabolism. Additionally, a significant positive correlation was 
observed between Acinetobacter with phenylalanine metabolism, 
streptomycin biosynthesis, ascorbate and aldarate metabolism, 
propanoate metabolism, nitrogen metabolism, and biosynthesis of 
ansamycins (Figure 4).

Figure 2: Extended error bar chart representation of the significant predictive functionalities as inferred by both PICRUSt2 and Piphillin. (a) 
Overall, metabolism is significantly higher in PICRUSt2 analysis as compared to that of Piphillin, however, (b) a shared difference was observed 
at the super-pathway level. Significance (q-value>0.05) was calculated using White’s non-parametric test with Benjamini-Hochberg FDR (false 
discovery rate) in STAMP. Note: (     ) PICRUSt2; (     ) Piphillin.

Figure 1: An overall categorical representation of the MUSiCC-normalized predictive microbial functions as inferred by (a) PICRUSt2 and (b) 
Piphillin. Note: (a) PICRUSt2;  KEGG Pathways Relative abundance; (    ) Metabolism (86.96%); (    ) Human Diseases (4.75%); (    ) Environmental 
Information Processing (3.19%); (    ) Cellular Processes (2.53%); (    ) Genetic Information Processing (1.89%); (    ) Organismal Systems (0.68%); (b) 
Piphillin; KEGG Pathways  Relative abundance; (    ) Metabolism (84.62%); (    ) Environmental Information Processing (5.75%); (    ) Human Diseases 
(5.01%); (    ) Cellular Processes (2.47%); (    ) Organismal Systems (1.18%); (    ) Genetic Information Processing (0.97%).
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Figure 3: An overall comparison of the significant metabolic pathways as inferred by PICRUSt2 and Piphillin depicting a significant number 
of functional features predicted by these two pipelines. Significance (q-value>0.05) was calculated using White’s non-parametric test with 
Benjamini-Hochberg FDR (false discovery rate) in STAMP. Note: (     ) PICRUSt2; (     ) Piphillin.

Figure 4: Non-parametric Spearman’s correlation of the ASV-associated predominant bacterial genera of the NFM products with a consolidated 
functional feature as inferred by both PICRUSt2 and Piphillin. Here, calculation was carried out using Statistical Package for the Social Sciences 
(SPSS) v20 and heatmap was generated using ClustVis. All significant correlation pairs are denoted by * (*<0.05 and **<0.01). LAB-lactic acid 
bacteria; AAB-acetic acid bacteria. Note: (    ) 1; (    ) 0; (    ) -1.



6

Shangpliang HNJ, et al.

J Data Mining Genomics Proteomics, Vol. 13 Iss. 1 No: 1000244

DISSCUSSION 

In this study, microbial predictive gene functional analysis from 
targetted-16S rRNA gene was explored using PICRUSt2 and 
Piphillin pipelines. Inference of predictive functionality using 
these two said pipelines showed a high metabolism rate, since 
most of these products are consortia of many metabolically active 
microbiota [3]. These findings are similar to recent studies reported 
from fermented dairy products [9-11]. The association of various 
metabolic pathways such as amino acid metabolism, carbohydrate 
metabolism, energy metabolism, lipid metabolism, metabolism 
of cofactors and vitamins, and other secondary metabolites with 
the bacterial genera indicated an active interaction of bacteria-
function complexity. LAB are predominant microbiota in many 
ethnic fermented milk products of India followed by few AAB [28-
32] Spearman’s correlation of the predominant bacterial genera 
with the predictive functionality resulted in a complex microbial-
functions interaction in NFM products of Sikkim and Arunachal 
Pradesh. Metabolic activity such as amino acid metabolism is 
important in dairy products as they contribute to development of 
flavour [33]. Similarly, carbohydrate metabolism does also play a 
major role in flavour and aroma development in milk fermentation 
[34]. The abundance of functional pathways related to metabolism 
of amino acids, lipid, energy, and carbohydrates were earlier 
reported in fermented milk and milk products [35,9,36,10]. A 
high correlation of functional properties and LAB have also been 
reported in cheeses [37] since LAB are the most predominant 
microorganisms in fermented milk products [38,10]. We observed 
a positive correlation of Staphylococcus with the predictive metabolic 
features of these NFM products, and interestingly, Staphylococcus is 
metabolically active in dairy products playing functional activities 
such as amino acid metabolism, carbohydrate metabolism, lipid 
metabolism and nitrogen metabolism [39]. We also observed the 
presence of significant correlation of bacteria with cofactors and 
vitamins metabolism such as ubiquinone and other terpenoid-
quinone biosynthesis and lipoic acid metabolism, which are 
essential for other microbial metabolism [40]. Apart from LAB, 
AAB have also contributed to many functional features in NFM 
products; AAB involve in protein metabolism, production of 
secondary metabolites and volatile compounds [41,42].

Functional profiles from both PICRUSt2 and Piphillin were 
normalized using MUSiCC [25], which is a marker gene-based 
method which uses universal single-copy genes for biasness 
correction of gene abundances [43]. Normalization using MUSiCC 
have proven necessary for gene functional studies [44], rescaling the 
abundant predicted KOs to the actual average gene copy number, 
correcting several known biases [45]. Piphillin is usually applied 
in human clinical samples (Iwai et al. 2016); whereas PICRUSt2 
is widely used for environmental samples [7]. However, these 
pipelines have also been widely used in dairy products [11].

From our present analysis, PICRUSt2 analysis generated more 
predicted KOs and KEGG pathways in comparison to that of 
Piphillin. Though, significant differences were observed, however, 
there are functions which were predicted only from PICRUSt2 
and missing in Piphillin and vice versa. Therefore, consolidated 
predictive functions from both these pipelines are necessary for a 
comprehensive outlook into the potential of bacteria associated 
with NFM products. Though predictive functionality study of 
the microbiota associated with NFM products at present is only 
speculations using bioinformatics tools, a general outlook into 
the potentiality of functions may be studied and compared. 

Nonetheless, in the absence of shotgun metagenomics data, using 
PICRUSt2 and Piphillin serves to be the reliable analysis for 
microbial predictive gene function.

CONCLUSION

Bacterial community in NFM products showed many functional 
features with many important health benefits to consumers. We 
applied PICRUSt2 and Piphillin tools to infer the predictive 
functional features of microbiota associated with the ethnic 
fermented milk products of India. The use of bioinformatics tools 
is cost-effective and straightforward where potential functional 
features can be mined using only structural gene, in this case, 16S 
rRNA gene, in the absence of shotgun metagenomics. Therefore, 
such studies may be used for future comparison with detailed gene 
functionality studies of other fermented foods elsewhere.
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