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Abstract
Objective: Stem cell-based therapy seems to be a promising option to support regeneration after organ failure 

and tissue injury. The transplantation of MSCs requires cells with a maximum regenerative capacity. Therefore, the 
research on new strategies to improve the release of regenerative factors of MSCs is urgently needed.

Methods: Human adipose-derived stromal/stem cells (ASC) were isolated from lipoaspirates, characterized, 
and cultured. Cells were either cultured under standard conditions or preconditioned by incubation in a hypoxic 
environment (0.5% O2) or in normoxia in the presence of recombinant human tumor necrosis factor-α (TNFα) or 
recombinant human epidermal growth factor (EGF) for 48 hours. First, seven selected regeneration promoting factors 
were evaluated by qPCR analysis. Afterwards the secretome of ASCs was estimated using a commercially available 
protein array for 507 proteins. 

Results: PCR analysis showed a differential induction of ASCs` gene expression by the three pretreatments. 
Whereas ASCs in hypoxia showed a significant mRNA induction of VEGF, FGF-7, and IGF-II, the other pretreatments 
induced no significant change in VEGF expression. The gene expression of HB-EGF and M-CSF was significantly 
induced in hypoxia and by incubation with TNFα, but not EGF. Angiopoietin-like 1 mRNA was not significantly induced 
by all three preconditioning regimens. Evaluation by the protein array revealed that from the 507 proteins investigated 
21.9% were found to be more than five-fold increased after incubation in hypoxia (111 of 507 proteins). Preincubation 
with EGF resulted in an upregulation of 32.3% (164/507), whereas TNFα upregulated 28.8% of all proteins evaluated 
(146/507). 

Conclusion: The findings indicate that all three preconditioning regimens induced a wide variety of proteins. 
However, short-term pretreatment with EGF induced the highest quantity of proteins, and, therefore, appears to be 
the best preconditioning regime for cell therapeutic approaches.
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Introduction
Stem cell-based therapy seems to be a promising option to 

support regeneration after organ failure and tissue injury. The organ-
protective effects of mesenchymal stromal/stem cells (MSCs) and 
their conditioned medium (CM) have been investigated in the last 
decade, demonstrating that either transplanted cells or their CM 
promote regeneration after several organ- and tissue injuries. The 
transplantation of MSCs requires cells with a maximum regenerative 
capacity. Therefore, the development of new strategies to improve the 
release of regenerative factors of MSCs is urgently needed. In vitro 
pretreatment regimens able to optimize the regenerative capacity of 
stem cells should be in the focus of further studies aiming to enhance 
the regeneration process. During the last years, optimization of the 
beneficial effects of cell therapy has been investigated, seeking to 

enhance survival, engraftment, and paracrine properties of MSCs [1]. 
In this case, various in vitro pretreatment strategies (“preconditioning”) 
have been recently applied to enhance the regenerative capacity of 
MSCs [2-4]. MSC pretreatment may include exposure of cells to 
physiological stimuli such as cytokines, growth factors, biophysical 
stimuli, heat shock, pharmacological agents, cell-cell-contacts, or 
hypoxia [1-4]. Preconditioning by hypoxia has been shown to initiate 
the secretion of regenerative factors and to enhance cell survival [5,6]. 
Findings of others suggest that hypoxic preincubation of MSCs for two 
days induces metabolic changes that yield higher in vivo cell retention 
after transplantation [6]. Therefore, choosing appropriate pretreatment 
regimens may provide a simple but effective way of promoting survival 
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and migration to the site of injury, enhancing regenerative properties, 
and boosting the regenerative capability of transplanted stem cells in 
cell therapy approaches [1].

In general, MSCs have been identified throughout the whole 
body as immature cells. Classically they were isolated from the bone-
marrow, but also from nearly all adult tissues (e.g. adipose tissue) and 
solid organs (e.g. liver, kidney) [7-9]. MSCs represent a rare population 
(or populations) in the perivascular niche (or are derived from 
perivascular cells or pericytes [10]) within fully specialized tissues. 
MSCs release a number of regeneration promoting, pro-angiogenic, 
anti-inflammatory and immune-modulatory factors that improve 
regeneration in injured organs or tissue [11]. Although numerous 
studies using MSCs (or their CM) as potential therapeutic agents have 
been published, our understanding is incomplete regarding how this 
regenerative activity is governed by interactions with resident cells, 
growth factors and cytokines. 

The present study investigates the potential of different 
preconditioning regimens to enhance the release of factors, and, 
therefore, the regenerative potential of human adipose-derived 
MSCs (ASCs). We firstly evaluated the effects of three different 
preconditioning regimens on seven selected regeneration promoting 
factors by quantitative real-time polymerase chain reaction (qPCR) 
analysis. Afterwards we identified the release of 507 proteins into the 
cell culture medium using a commercially available protein array. 

Methods
Cell isolation and culture 

Human adipose-derived adult mesenchymal stromal/stem cells 
(ASC) were isolated from lipoaspirates from seven female donors 
undergoing cosmetic liposuction in accordance to the local ethical 
committee. Aspirated tissue was digested at 37°C with 0.075% 
collagenase I (Biochrom, Berlin, Germany) under continuous 
agitation for 45 minutes. The stromal-vascular fraction was separated 
from the remaining fibrous material and the floating adipocytes by 
centrifugation at 300 g. The sedimented cells were washed with PBS 
and filtered through a 100 µm pore filter (Millipore, Schwalbach, 
Germany). Erythrocyte contamination was reduced by density 
gradient centrifugation with Bicoll (Biochrom, Berlin, Germany). 
Finally, cells were plated for initial cell culture, and cultured at 37°C 
in an atmosphere of 5% CO2 in humid air. Primary cell isolates and 
cultured cells were fully characterized, as described previously [12,13]. 

Dulbecco’s modified Eagle’s medium (DMEM; Sigma, Taufkirchen, 
Germany) was used with a physiologic glucose concentration (100 
mg/dl) supplemented with 10% fetal calf serum (FCS; PAA, Cölbe, 
Germany) as the culture medium. The medium was replaced every 
three days. Subconfluent cells (85-90% confluency) were passaged by 
trypsinization. The 1st – 4th passage of ASC from 7 different female 
donors was used for the experiments. Cell morphology was examined 
by phase contrast microscopy. Expression of characteristic markers 
was proven by immunofluorescence staining for CD90 expression and 
flow cytometric analysis of CD73, CD90, and CD105 expression, as 
described previously [13,14]. Tri-lineage differentiation potential of 
cultured ASC was proven by specific media, as described previously 
[14,15].

Preconditioning regimen and conditioned medium 

Cells were either cultured under standard conditions (controls in 

normoxia (21% O2)) or preconditioned by incubation in a hypoxic 
environment (0.5% O2) or in normoxia supplemented with recombinant 
human tumor necrosis factor-α (TNFα Immunotools, Friesoythe, 
Germany No. 11343015) or recombinant human epidermal growth 
factor (EGF, Immunotools, Friesoythe, Germany No. 11343406). All 
treatments were performed for 48 h in serum-free low-glucose DMEM. 
For this purpose, cells were grown to subconfluency and washed twice 
with PBS. Then, TNFα or EGF was added to fresh serum-free DMEM 
in a final concentration of 10 ng/ml. Cells treated with hypoxia received 
fresh serum-free DMEM without supplements and were placed in an 
in vivo O2 400 (Baker and Baker Ruskinn, Sanford, USA) at 0.5 % 
oxygen. After 48 hours, the medium was removed, centrifuged at 1,000 
g for 10 min and processed as described below or stored at -80°C for 
further processing. Furthermore, cell viability after preconditioning 
was determined by a photometric assay using 2,3-Bis-(2-Methoxy-
4-Nitro-5-Sulfophenyl)-2H-Tetrazolium-5-Carboxanilide (XTT), as 
described previously [16]. In brief, subconfluent cells in 96-well plates 
were preconditioned for 48 hours as described above. Afterwards, 
XTT reagent was added to wells as described by the manufacturer 
(Applichem, Darmstadt, Germany) and incubated at 37°C. Absorbance 
was measured in a microplate reader at 490 nm vs. 650 nm. 

Quantitative Real Time PCR (qPCR)

Total cellular RNA was isolated immediately after preconditioning. 
RNA extraction was performed using the single-step RNA isolation 
from cultured cells by a modified protocol of Chomczynski and Sacchi 
[17]. After RNA extraction and synthesis of cDNA, quantitative PCR 
was carried out using a SYBR Green Rox Mix with the following 
conditions: 15 min at 95°C for enzyme activation and 35 cycles of 15 
s at 95°C for denaturation, 30 s at 63°C for annealing, 30 s at 72°C for 
elongation, and 4°C for 5 min. Reactions were carried out in duplicate 
in 96 well plates. Quantification of the PCR fragment was carried out 
using the Eppendorf realplex2 Mastercycler ep gradient S (Eppendorf, 
Hamburg, Germany). Melting curve analysis was performed and the 
mean cycle threshold (Ct) values were used to calculate gene expression 
levels. Relative quantification was estimated by the ∆∆CT method [18] 
with normal ization to β-actin. The relative mRNA expression of the 
target gene was calculated by using 2-∆∆CT. PCR products were verified 
on an agarose gel electrophoresis. Primer pairs were synthesized by 
Invitrogen (Karlsruhe, Germany) and are listed in Table 1. 

Protein array 

We used a commercially available protein array (Tebu-Bio, 
Offenbach, Germany, Human Antibody Array No. AAH-BLG-1-4) 
for the simultaneous detection of the relative expression of 507 
human proteins in the supernatant. In brief, all supernatants were 
collected and centrifuged for 10 min at 1,000 g. Then, the protein 
content of the supernatants was determined by a routine assay using 
bicinchoninic acid (BCA). Supernatants were concentrated using a 3 
kDa molecular weight cut-off Amicon Ultra-4 filter (No. UFC800324, 
Merck Millipore, Darmstadt, Deutschland) for 24 min at 3,060 g. The 
protein content of the supernatants was again determined by the BCA 
assay. Finally, the protein array was exactly processed according to the 
manufacturer’s protocol. The readily prepared array was then sent to 
the manufacturer, which performed the measurement of the slides and 
normalization of the measured data (positive control normalization 
without background).

Statistical analysis 

The data were expressed as mean ± SD. The comparison between 
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groups was performed by one-way analysis of variance (ANOVA) and 
Bonferroni post-hoc test using Prism 5 software (GraphPad). p values 
< 0.05 were considered significant. 

Results 
Characterization of human adipose-derived mesenchymal 
stromal/stem cells (ASCs) 

Cell morphology was evaluated by phase contrast microscopy. The 
cells displayed a spindle-shaped fibroblastoid morphology in culture 
(Figure 1A). Expression of characteristic markers for mesenchymal 
stromal/stem cells (CD73, CD90, CD105) was shown by flow 
cytometric analysis (Figure 1B). A comprehensive characterization of 
ASCs has been shown earlier [13]. In addition, expression of CD90 was 
shown by immunofluorescence staining (Figure 1C).

Effect of preconditioning regimens on cell viability

Cell viability after the preconditioning regimens was determined 
by XTT assay. The XTT assay is a colorimetric assay used to determine 
cell viability as a function of cell number based on metabolic activity of 

the cultured cells. We detected no significant differences in cell viability 
after the pretreatments compared to the control (Figure 2).

Evaluation of preconditioning by qPCR 

We investigated the potency of three different preconditioning 
regimens on the gene expression of ASCs. Therefore, we analysed the 
mRNA of seven selected potential regeneration promoting factors 
(VEGF, FGF-7, HB-EGF, IGF-II, Angiopoietin-like 1, MIP-1 (CCL3), 
M-CSF) by qPCR analysis (Figure 3). The qPCR results highlight 
the differential induction of ASCs` gene expression by thosee three 
pretreatments. Whereas the Hyp treated ASCs showed a significant 
VEGF mRNA induction, the other preincubation regimens induced 
no significant changes in the VEGF mRNA expression. Also FGF-7 
and IGF-II mRNA were only induced by the Hyp. Angiopoietin-like 
1 mRNA was not significantly induced by all three preconditioning 
regimens. The gene expression of the other two factors (HB-EGF, 
M-CSF) was significantly induced by incubation with TNFα or by a 
Hyp. Interestingly, none of the evaluated mRNAs was induced after 
incubation with EGF at the chosen endpoint (48 h). Nevertheless, in 
regard of the results of the protein array it should be mentioned that 

(A) Characteristic phase contrast microscopy of human adipose-derived MSCs (ASCs) cultured in standard cell culture (bar: 100 µm). (B) Representative flow 
cytometric histograms of the expression of characteristic markers CD73, CD90, and CD105. Line shows discrimination of negative cells (isotype controls). (C) 
Characteristic immunofluorescence staining of CD90 expression (Nuclei were stained with DAPI).

Figure 1: Cell characterization.

Gene Primer forward Primer reverse Product length NCBI Reference
VEGF CTGTCTAATGCCCTGGAG TATCGATCGTTCTGTATCAGT 268 bp NM_001025366

HB-EGF AAGAGGGACCCATGTCTTCG GATTTTCCACTGGGAGGCTCA 148 bp NM_001945
IGF-II GATTAATTACACGCTTTCTGT CTGTTGTATCAAGGATAGAGG 165 bp NM_000612

Angiopoietin-like 1 GTTATTCAGAAAAGAACAGACG TTTTATCACTCCAGTCTTCTAAT 175 bp NM_004673
MIP-1α TCAGACTTCAGAAGGACAC TAGTCAGCTATGAAATTCTGTG 243 bp NM_002983
FGF-7 CCCTGAGCGACACACAAGAA TTCCACCCCTTTGATTGCCA 199 bp NM_002009
M-CSF GCAGCTGCAGGAACTCTCTT TGGTCACCACATCTTGGCTG 227 bp NM_000757
β-Actin ACTGGAACGGTGAAGGTGAC AGAGAAGTGGGGTGGCTTTT 169 bp NM_001101

Table 1: Primers used for PCR.



Citation: Baer PC, Overath JM, Urbschat A, Schubert R, Geiger H (2016) Preconditioning of Human Adipose-derived Stromal/Stem Cells: Evaluation of 
Short-term Preincubation Regimens to Enhance their Regenerative Potential. J Stem Cell Res Ther 6: 331. doi:10.4172/2157-7633.1000331

Page 4 of 7

Volume 6 • Issue 3 • 1000331
J Stem Cell Res Ther
ISSN: 2157-7633 JSCRT, an open access journal 

in comparison to ASCs cultured under standard conditions (control). 
The data from this array were evaluated, whereas only values (arbitrary 
units) which increased more than five-fold compared to the control 
were regarded as induced (Figure 4). Furthermore, we did not use 
stimulation values < 500. From the 507 proteins in the assay, 21.9 % 
were found to be more than five-fold increased after incubation in a Hyp 
(111 of 507 proteins) (Figure 4). Preincubation with EGF resulted in 
an upregulation of 32.3% (164/507), whereas TNFα upregulated 28.8% 
of all proteins evaluated (146/507) (Figure 4). Complete results from 
all 507 proteins and the internal controls are shown in a supplemental 
online table (Table S1). 

Compared to the seven selected regeneration promoting factors 
evaluated by PCR analysis, the results of the protein array are not 
completely consistent. Interestingly, the amount of protein release 
of all seven factors was induced by each pretreatment regimen, 
whereas qPCR analysis revealed a differential induction of the mRNA 
expression. For example the amount of Angiopoietin-like 1 protein in 
the cell supernatant exhibits a more than five-fold induction by each 
preincubation regimen, whereas no significant induction of the mRNA 
expression could be detected. On the other hand, HB-EGF protein was 
significantly enhanced in the supernatant by all treatments similarly 
to the mRNA expression (Hyp and TNFα significant, EGF by trend). 
It should also be mentioned that similar to the mRNA none of the 
proteins was de novo induced by the preincubation methods. All seven 
proteins were constitutively expressed in non-pretreated ASCs, as 
proven by the protein array (Supplemental Table S1).

Discussion 
Adult adipose-derived stromal/stem cells are multipotent cells with 

strong paracrine activities based on the release of various regeneration 
promoting factors [19]. Therefore, ASCs are promising cells for 
regenerative medicine and cell therapy. In this regard, studies have 
demonstrated that transplantation of MSCs exerts beneficial effects, 

ASCs from three donors were cultured in 96 well plates (each in quintuplicate) 
and preconditioned for 48 hours (as indicated). Then, the XTT assay was 
performed and optical density (OD) was measured in a microplate reader at 
490 nm vs. 650 nm. Results are shown as arbitrary units (mean ± SD). No 
significant effects on the cell viability could be detected.

Figure 2: Viability assay. 

Expression was measured in total RNA from ASCs after preconditioning regimens. The expression levels in each experiment were normalized to a housekeeping 
gene (β-actin) and are expressed relative to the control (2-∆∆CT). * p<0.05 versus control, n = 5 – 7. 

Figure 3: Effect of preconditioning on gene expression of selected factors.

none of the seven factors was de novo induced by the preincubation 
methods. All factors were constitutively expressed by ASCs – as proven 
by the Ct value and the melting curve analysis of the qPCR data (data 
not shown). 

Evaluation of preconditioning by protein array

Based on the hypothesis that factors released from ASCs represent 
a key mechanism to enhance organ and tissue regeneration after 
injury, we evaluated whether the preconditioning regimens increase 
the release of proteins into the culture supernatant. Herefore, we used 
a commercially available protein array for the simultaneous detection 
of 507 human proteins in the supernatant of the preconditioned ASCs 
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Cells were either cultured under standard conditions (Ctrl) or preconditioned by incubation in a hypoxic environment (Hyp; 0.5% O2), in the presence of EGF (10 ng/
ml) or TNFα (10 ng/ml) for 48 h. Hereafter, expression of 507 proteins was measured in the cell supernatant by a commercially available protein array. Heatmap 
displays proteins enhanced at least >5-fold versus control and arbitrary unit of stimulation>500.

Figure 4: Heat map of differentially expressed proteins after preconditioning.
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e.g. in acute kidney injury [20] or cardiovascular diseases [2]. Herein, 
paracrine factors secreted by transplanted MSCs have been reported to 
be largely responsible for neovascularization and tissue regeneration 
[21]. Their ability to express and release these factors has been analysed 
in many in vitro studies, including various in vitro pretreatments [5,6,9]. 
Cell therapy heavily relies on the strong capability of the transplanted 
cells to deliver regeneration promoting factors to promote angiogenesis, 
wound repair, and tissue regeneration. It is also well known that 
pretreated MSCs hold an improvement for organ engraftment and 
for enhanced in vivo cell retention after transplantation compared to 
untreated cells.

Several strategies have been explored how to enhance the secretion 
of paracrine factors and, therefore, the regenerative potential of MSCs 
(or their CM) before cell transplantation, including gene modification 
[22], preincubation with drugs [23] or low-dose lipopolysaccharide 
[24], growth factors [3,4], cytokines [21], cell-cell-interactions [25], 
or culture in hypoxia [5,6]. Nevertheless, the secretome of ASCs after 
different preconditioning regimens has yet not been investigated 
in a comprehensive manner. Thus, further studies in vitro and in 
vivo are required to fully unfold ASCs’ paracrine secretome and to 
optimize the cells as an effective tool for cell therapeutical approaches. 
Advances in high-throughput technologies, protein microarrays, and 
bioinformatics have already facilitated analysis of the secretome and 
will continue to aid in identification of soluble factors released by stem 
cells under different conditions [9].

In this study we focussed on the comparison of different 
preconditioning regimens on cultures of ASCs. First, we analysed 
gene expression levels of seven factors treated with three different 
preconditioning regimens. Hereafter, we then completed the analysis 
with a commercially available human protein array. Our investigation 
illustrates that the release of factors into the supernatant can effectively 
be enhanced by all three regimens, although we achieved an individual 
pattern of secreted growth factors and cytokines (Figure 4 and Table 
S1). Interestingly, we could show that the short-term preconditioning 
with EGF yielded the strongest release of proteins, whereas all three 
regimens induced an increase of many factors. In contrast, mRNA 
expression of the seven investigated genes remained relatively 
unchanged via preconditioning with EGF in comparison the control. 

Several recently published studies have shown that preconditioning 
by hypoxia strongly enhances the regenerative potential of MSCs 
[4,26,27]. Preconditioning by hypoxia was described to stimulate 
the secretion of growth factors, cytokines and other proteins and the 
release of microvesicles with mRNA/miRNA from MSCs (and ASCs) 
[28]. It was shown that hypoxic preconditioning is likewise able to 
enhance the angiogenic potential of human ASCs [23] and to improve 
cell survival in both in vitro and in vivo studies [5,6]. The positive 
effect of hypoxic preconditioned transplanted human ASCs has also 
been shown in a rat model of ischemic acute kidney injury [26]. In 
this study, vascularization, apoptosis, histological injury and levels of 
serum creatinine and blood urea nitrogen were significantly improved 
in the preconditioned transplanted group compared with the control 
groups [26].

In addition to hypoxia, several other factors can stimulate ASCs 
in culture. To date, however, methods for in vitro pretreatment or 
preconditioning, eventually by a combination of factors, have not been 
fully optimized to improve ASC- or their conditioned medium-based 
therapies. Indeed, also the growth factor EGF and the proinflammatory 
mediator TNFα have been shown to enhance paracrine and autocrine 
functions of MSCs [29-32]. EGF was shown to facilitate in vitro 

expansion of MSCs without altering the multipotency of the cells 
[31,32]. 

Understanding the mechanisms by which ASCs secrete growth 
factors and cytokines could be an important step to further enhance 
their regeneration promoting effects [33]. Whereas EGF and TNFα 
bind to specific receptors, the effects of hypoxia are mainly mediated 
through a reduced hydroxylation of hypoxia-inducible transcription 
factors (HIF) resulting in stabilization of the factors and translocation 
to the nucleus [27]. Nevertheless, hypoxic incubation has also been 
shown to induce phosphorylation of surface receptors and, therefore, 
induce several intracellular signaling pathways [27]. On the other hand, 
also the downstream signaling mechanisms following EGF or TNFα 
receptor binding initiate several signal transduction cascades (e.g. 
ERK, p38, and JNK MAP Kinases, IP3, AKT) resulting in proliferation, 
transcription and protein synthesis. Due to the involvement of these 
various signaling pathways in all of the three pretreatment regimens 
further studies are needed to determine the mechanisms ultimately 
responsible for ASCs enhanced secretion of proteins.

Data from Tamama et al. also suggest that the molecular machinery 
underlying MSCs’ strong paracrine capability lies downstream of EGF 
receptor (EGFR) signaling. The expression of a functional EGFR and 
the signal transduction of ASCs have been shown by previous data from 
our group [34]. Whereas the influence of EGF on MSCs proliferation, 
multipotency, and cell motility and migration are well described 
[31,32,34], no comprehensive study investigating the effect of EGF on 
the release of factors has been published. The effect of EGF has only 
been shown to enhance the release of factors like VEGF, hepatocyte 
growth factor, HB-EGF, and interleukin-6 and -11 [35]. These data 
strongly suggest that EGF can be used for in vitro MSC expansion and 
for the enhancement of ASCs` paracrine capability. 

TNFα-pretreated ASCs have been shown to release various 
proteins, including cytokines, extracellular matrix, proteases, and 
protease inhibitors [24]. For example, treatment with TNFα has been 
reported to stimulate VEGF secretion in ASCs up to 1.5 fold [30]. Lee 
and coworkers identified 118 enhanced secreted proteins (mainly 
cytokines, chemokines, and proteases) by liquid chromatography 
coupled with tandem mass spectrometry in ASC-conditioned media 
upon TNFα pretreatment [24]. In addition, conditioned medium 
derived from TNFα pretreated ASCs has been shown to accelerate 
wound healing and angiogenesis in vivo [29].

The present study clearly showed that ASCs` release of soluble 
factors can be largely enhanced by different preconditioning regimens. 
Nevertheless, results from qPCR analysis were not congruent to results 
of the protein array, maybe due to the chosen endpoint analysis after 
48 hours for both assays. It is possible that mRNA is already degraded 
at this time point and additional experiments at an earlier time point 
are needed. 

In conclusion, all three different preconditioning regimens 
induced a wide variety of proteins, yet short-term pretreatment with 
EGF induced the highest quantity of proteins, and, therefore, appears 
to be the best preconditioning regime for cell therapeutic approaches.
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