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Abstract

Poultry manure (PM) was decomposed under high and

low aeration-agitations and the digestates were supplemented

in mixotrophic cultivation of microalga Chlorella vulgaris.

High aerobic decomposition was recommended for faster

mineralization. The study was conducted to find out the

effect of poultry manure digestate (PMD) on cell biomass

and lipid yield in C. vulagris. The cultivation were con-

ducted ‘with’ (single and two-stage feeding strategy) and

‘without’ PMD feeding. Cultivation ‘without’ PMD at 120

h, dry cell weight (DCW) of 8.2g/L was reached, by 180 h,

lipid yield of 2.1 g/L (45%) was reached. In single-stage of

adding varied PMD, at 120 h, DCWs of 8.48, 9.39 and

10.45 g/L were achieved for PMD of 20, 30 and 40 ml/L,

respectively. By 180 h, lipid contents were 45, 43 and 40%

giving yields of 2.4, 2 and 1.8 g/L, respectively. In two-

stage feeding (0-120 h and 120-180 h), at 120 h, DCWs

were similar to single-stage but improved when supplement-

ing with 2 g/L glucose reaching DCW of 12.6, 13.14 and

14 g/L achieving lipid yields of 2.9, 3.8 and 4.9 g/L, re-

spectively, after 180 h. The addition of glucose seems to

assist nitrogen depletion which in turn resulted in rapid in-

crease in cellular lipid. It was obvious that addition of glu-

cose at stationary phase maybe a novel method to improve

lipid yields. The algal biomass PMD dependent accumula-

tion showed that PM is an attractive waste which means

that PM is potential waste for algae biofuels.
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Introduction

Poultry manure (PM) is rich in nutrients especially the much

needed nitrogen and phosphorus, and even cells growth promoter

like glycine is released from PM on decomposition (Schefferle,

1965). According to the study by Magid et al. (1995), some

common nutrients in PM by composition included (g/Kg)

potassium 37.5, phosphate 25.5 and nitrogen 55.7. Nitrogen is

normally in the form of uric acid (Nahm, 2003) and about 66%

can be available on decomposition (Ruiz Diaz et al., 2008. In

addition, studies indicated that other trace elements, such as

magnesium, calcium, iron, copper, zinc, nickel, lead and

chromium existed in digested PM (Bao et al., 2008; Ortiz Escobar

and Hue 2008; Faridullah et al., 2009; Vu et al., 2009). In brief,

PM has been a traditional organic fertilizer and is an attractive

source eve today from which much needed nutrients can be

retrieved and reutilized.

The use of nutrients-rich PM can be extended to algal

cultivation provided the conducive conditions (light intensity,

pH, temperature, equipments) to enhance algal biomass

production. This approach of using PM maybe novel if it

enhances high cell density which in turn can increase more

biofixation of carbon dioxide (Jacob-Lopes et al., 2008; Jacob-

Lopes et al., 2009) under an autotrophic or mixotrophic culture

condition. The later mode of cultivation (mixotrophic)

comparably had shown a proven feasibility in production of high

yields of algal biomass according (Liang et al., 2009).

Algae biomass as one of the suitable feedstock for biofuel

production is not new given the recent studies, researches and

soaring developments which are primarily due to energy crisis,

climate change and environmental. As the focus on algae as the

fuel of the future increases, the need to make algae biofuel more

sustainable falls into a handful of categories from economic

assessment to engineering. One such category is converting waste

(industrial and housewhole ‘liability’) to microalgae biomass,

converting housewhole or industrial waste being a ‘liability; to

profit center is an attractive method to promote algae biofuel at

large. PM is one such waste and the focus of this study was

using PM to see if microalga Chlorella vulgaris currently used

in algae biofuel can enhance algae biomass, that is cell

concentration and cellular lipid yields. The PM, an organic

matter (form) needs biodigestion to release absorbable nutrients

that can be fed to the algae in culture cultivation. Simple aerated

biodigestion (decomposition) can be engaged to produce PMD

after filtration (aqueous).

Accordingly, the aim of the study was to investigate effects of

PMD supplementation photosynthetic microalga Chlorella

vulgaris currently used in algal biofuel to see if can enhance

algal biomass, which is cell concentration and cellular lipids

cultivation under mixotrophic condition. The study seeks to

broaden the application of PM in algal biofuels.

Materials and Methods

Microorganism, culture media and PM

Microalga Chlorella vulgaris was obtained from Charles

University (Prague, Czech Republic). Fresh PM (from Galus
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domesticus) was collected from nearby poultry farm, Jiangnan

University, China. The PM was from a meat producing chicken

facility, the collected sample was observed to have fallen on the

floor and was held in collecting pit until such time for removal

and cleaning. The feces had been mixed with beddings, feed

particles and feathers which have been considered as part of

PM.

Bold’s basal media (Watanabe, 1960) component used were

(grams per litre): NaNO
3 
0.5, CaCl

2
⋅2H

2
O 0.05, MgSO

4
⋅7H

2
O

0.15, K
2
HPO

4
⋅3H

2
O 0.15, KH

2
PO

4
 0.35, NaCl 0.05, glycine 0.1,

yeast extract 0.1 and glucose 10. PM supplementations were

applied according to PM nitrogen replacing BBM nitrogen by
percentage. Seed culture was prepared in a 500 ml flask

containing 200 ml medium for 180 h. Flask culture experiments

were performed in 500 ml flasks each containing 200 ml medium

after inoculating with 10% (v/v) of seed culture (Xu et al., 2006).

Temperature, agitation, and growth period were fixed at 27°C,

150 rpm and 180 h, respectively. It was continuously cultured

and kept in shaker with in-built fluorescence irradiance at 35

µmol photon m-2s-1. Air flow rate in all fermenter cultivations

were kept constant at 5 L air/min.

PM decomposition

Water was added twice to the mass of PM (by volume) and
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uniformly mixed, digestion was done in 7 L fermenters

(Bioengineering, AG, Wald, Switzerland) the same used for

mixotrophic algal cultivation with 3 L working volume. Two

varied aerated digestions (repeated twice) were done in following

manner as shown,

Low aeration-agitation: Air aeration of 4L/min and agitation

of 50 rpm

High aeration-agitation: Air aeration of 6 L/min and agitation

of 100 rpm

Decompositions were aborted when pH and temperature were

constant indicating the end of decomposition. The samples were

decanted and centrifuged at 8000 rpm for 10 min, and then

sterilized in bottles for 15 min at 121°C and stored at 4°C for

later use.

Analytical procedures

PM analysis for N, P and K: Each sample of PM was analyzed

for total potassium (K) and total phosphorus (P) concentrations

by microwave digestion.

For the analysis of potassium, a sample of 2.0 ml was added

to 3.0 ml HNO
3
 and cold digested for 1.0 h. The solution was

transferred to a 50 ml volumetric flask and distilled water added

Table 1: Average contents of the major nutrients in PM from two repeated digestions of a 650 g PM sample for each set investigated.

Table 2: N mineralization (NO
3
 and NH

4
) in low (50 rpm) and high (100 rpm) aeration-agitation decomposition of two varied quantities (500 and 1000 g) of PM. N

mineralization was monitored during 72 hours into decomposition.

Table 3: Autotrophic cultivation (without glucose supplementation): Algal biomass optimization using table 1 result, simultaneous (daily) addition of PMD (20 ml/L/d)

and CO
2
 addition by air aeration (assuming CO

2
 in air at 0.03 % concentration. Light intensity initially steadied at 150 then increased to 200 µmolphotons m-2s-1 after 48

h under standard condition (temperature, agitation) and maintained until day seven (168 h).

 

rpm  

NO3-N (mg/L) 

 

NH4-N (mg/L) 

Time 

(h) 

 

rpm  

NO3
- 

mg/L 

 

NH4
+ 

mg/L 

Time 

(h) 

 

500g 1000g 50 

4.6 

5.1 

5.7 

47 

51 

58 

24 

48 

72 

50  

1.2 

2.2 

2.8 

19 

21 

25 

24 

48 

72 

500g 1000g 100 

 
5.9 

6.8 

7.28 

57 

59 

61 

24 

48 

72 

100 

8 

9.8 

10 

55 

59 

68 

24 

48 

72 

 

Time (h) CO2 addition (ml) pH Absorbance PM addition (ml) Biomass (g/L) 

0 0.09 6.98 0.308 20 0.01 

24 0.09 6.96 0.249 40 0.036 

48 0.12 6.76 0.288 60 0.072 

72 0.12 6.78 0.339 80 1.12 

96 0.12 6.82 0.757 100 1.09 

120 0.15 6.88 1.015 120 1.27 

144 0.15 6.88 1.753 140 1.38 

168 0.18 6.43 2.055 160 1.67 

Shaking speed 
Major nutrients (g/L) 

 

Total carbon 

(mg/L) 
Total solids (mg/L) 

N in solid 

residue 

(mg/L) 

pH 

 

N      P      K 

  

50 rpm (in 4L/min air) 1.1967 0.57 2.89 34 

 

64 

 

 

55 

 

 

4.5 

 

100 rpm (in 6L/min air) 
0.462 0.625 2.98 

23 47 38 5.1 
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to the calibration. Potassium concentration was obtained by

calibration curves using Spectr 220 atomic absorption

spectrometer, Varian American at wavelength of 766.5 nm. For

the analysis of phosphorus, 2 ml sample was microwave digested

and diluted to 50 ml. 4.0 ml of the solution was taken and added

to equal amount of 2.5 ml ammonium molybdate and sulfuric

acid. Using 2-3 drops of stannous chloride and glycerol as

indicators and the absorbance was read at 380 nm.

Total nitrogen and carbon in the aqueous PMD were

determined by diluting 10 ml aqueous PMD to 100 ml distill

water. The sample was analyzed using High Temperature TOC/

TNb Analyzer LiquiTOC II (Elementar Analysensysteme GmBH,

Hanau,Germany). Nitrogen in solid digestates were determined

by Kjeldahl method (Spanjers et al., 2006). NH
4

+-N, and NO
3

--

N were determined according to standard procedures (MAFF,

1986). Total solids in the digestates were measured directly by

placing a measured quantity (by weight) of sample into a beaker

and drying it in an oven at 115 °C to a constant weight.

Culture growth: The optimized conditions for maximum

biomass such as light, pH, and temperature were adopted from

studies by Xu and Soletto (Xu et al., 2006; Soletto et al., 2008).

Seed culture of 10% by volume was inoculated in working volume

of 3 L fermenter for all fermentations. Cell growth was measured

by optical density at 540 nm using UV visible spectrometer. For

all cultivations, initial light intensity was maintained at 150

µmolphotonsm-2s-1 then increased to 250 µmolphotonsm-2s-1 at

exponential growth phase (Jacob-Lopes et al., 2008) as measured

by light meter TES 1332A for all sets.

Glucose was monitored by SBA-40C biosensor analyzer (Ding

and Tan, 2006). The growth performance were monitored by

using the regression equation according to method by Xu et al.

(2006). Dry cell weight (DCW) was determined according to

Chen and Johns (1991). Culture broths were centrifuged at 8000

rpm for 10 min and cells were washed twice with distilled water

and freeze dried (Xu et al., 2006). Total lipids was extracted by

soxhlet extraction method (Saydut et al., 2008) after pulverizing.

All values are average of double trials in the experiments.

Results and Discussion

PM decomposition

Two repeated batches of PM mineralization were investigated.

The two sets of decomposition were applied under low (50 rpm

in 4 L/min air) and high (100 rpm in 6 L/min air) aeration-

agitation as shown in Table 1. The results showed that with low

aeration-agitation, total nitrogen, phosphorus and potassium

levels reached 1.19, 0.57 and 2.89 g/L, respectively. In

comparison, the high aeration-agitation achieved 0.46, 0.62 and

2.98 g/L, respectively.

Clearly, differences in amounts can be seen of total nitrogen,

phosphorus, and potassium which were due to varied treatments

(high and low aeration-agitation) in decomposition. Firstly, the

difference in nitrogen can be due to ammonia volatility (Hansen,

2004) and mechanics of uric acid decomposition (Faridullah et

al., 2009), while the increase or decrease of levels of phosphorus

and potassium indicates that mineralization had progressed.

Noticeably, the differences in the total carbon (34 mg/L in 50

rpm comparing to 23 mg/L in 100 rpm) and total solids (64 mg/

L in 50 rpm and 47 mg/L in 100 rpm) further confirm that

Journal of Microbial & Biochemical Technology  - Open Access
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aeration and agitation were governing factors in the yields of

nutrients.

Two varied quantities of PM (500 and 1000 g) were digested

(see Table 2) with daily observations of the N-mineralization

from 24-72 h. The N-mineralization values (as indicated by levels

of NO  and NH   ) show the direct influence of volume and

oxygen distribution. The ratio of dilution in both remained the

same (as described in the Method section), but volume increased

– indicating that the concentration and availability of oxygen

may govern efficiency of digestion and mineralization. This

would mean that the volume of the substrate requires sufficient

aeration and agitation to achieve improved levels of NO
3

-and

NH
4

+ during PM digestion. Variations in the levels of NO
3

-and

NH
4

+ were observed (Table 2) which can be seen as corresponding

to the varied aeration-agitation that governed microbial activity.

For example during the 24-72 h decomposition, NO
3

- remained

steady in 500 g of 50 rpm (low volume) aeration-agitation (4.6,

5.1 and 5.7 mg/L) and 100 rpm aeration-agitation (5.7, 6.8 and

7.28 mg/L). Comparing these to NH
4

+ levels in 50 rpm (47, 51

and 58 mg/L) and 100 rpm (57, 59 and 61 mg/L) showed a

similarly sluggish mineralization.

Even though the levels of NO
3

- and NH
4

+ varied (which may

due to nature of substrates and initial microbial load), the trend

of mineralization agreed with the Table 1 results that aeration

and agitation facilitated PM mineralization.

This finding can be supported by a comparison (Table 2) of

the N-mineralization values (NO
3

- and NH
4

+) such as the PM

1000 g sample (increased in volume). Nitrate levels (NO
3

-) were

lower (1.2, 2.2, 2.8 mg/L) in 50 rpm aeration-agitation but

showed significant increase (8, 9.8 and 10 mg/L) in 100 rpm

aeration-agitation. As expected, the NH
4

+ also improved from

(19, 21 and 25 mg/L) in 50 rpm aeration-agitation to (55, 59

and 68 mg/L) also in 1000 rpm aeration-agitation.

It is clear from the results that aeration and agitation must be

sufficiently controlled based on the volume of substrates in order

to facilitate sufficient and rapid mineralization in the production

of PMD.

The following work will discuss the study using the filtrated

PMD in mixotrophic cultivation of microalga Chlorella vulgaris.

PMD and atmospheric carbon dioxide in autotrophic culture

The initial investigations of PMD in supplemental feeding

were performed in autotrophic cultures (CO
2
 and nutrients only)

to support conclusions in the mixotrophic cultivation

(atmospheric CO
2
 supplied and glucose). PMD of 20 ml/L/day

was daily added and carbon dioxide fed was increased by altering

inlet aeration inlet to get the values indicated (see Table 3)

assuming atmospheric CO2 at 0.3% concentration was steady.

According to the result, the cell accumulations linearly related

to the PMD addition, the resultant algal biomass showed

noticeable increment as a result of the previous addition. Even

though the data was not statistically evaluated, the raw data

showed a general trend of growth curve was depicted showing

growth phases (lag, exponential, if graphed).

As noted, the array of data (cell biomass, CO
2
, PMD) showed

that biomass accumulation was governed by PMD addions under

the steady favorable condition (light intensity, temperature,

3 4

+
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feeding, aeration and agitation). Further study and statistical

analysis will be needed to measure the significance of PMD on

the algae growth and to what level of extends. Our repeated

cultivations of the autotrophic microalga in PM supplemental

feed bring us to an assumption that PMD processed under

described method can be potential for algae cultivation and that

was the prerequisite of the following strategic mixotrophic mode

of cultivation.

Cultivation of microalga ‘with’ and ‘without’ PMD

Under the culture condition prescribed (light, temperature
agitation), at 120 h, algal cultivation ‘without’ PMD
supplementation indicated residual glucose and DCW of 1 and
8.2 g/L, respectively, lipid content then raised to 2.1 g/L at 180
h (Figure 1a). The levels of nitrogen depletion (Fig 1b) showed
the relation between cell growth and the lipid yield.

However, upon adding single-feed of varied PMD in volumes,
glucose depleted at varied rate resulting in varied biomass as
shown in Figure 1c. The following were observed at 120 h;
cultivations with 20, 30, 40 and 50 ml/L digestates (represented

as PMD20, PMD30, PMD40, and PMD50) achieved DCW of
8.48, 9.39, 10.45 and 10.72 g/L, respectively. After 180 h, DCWs
had reached 9, 10.5, 12.5 and 13.52 g/L, respectively. The lipid
contents were 45, 43, 40, 37% and (not shown) giving lipid
yields of 2.4, 2, 1.8 and 1.5 g/L, respectively, as shown in Figure
1d.

However, the cultivation PM60 (60 ml/L digestate addition)
achieved DCW of 10.5 g/L (lowest in comparison) with lipid
yield less than 1 g/L (Figure1c and Figure 1d) indicating that
increasing further PMD addition was not applicable under the
parameters investigated meaning other conditions must be
addressed . Moreover, PM50 indicated higher DCW but lower
in lipid yield, possibly due to higher nitrogen levels.

In brief, there is a clear difference in DCWs and lipid yields
between the ‘with’ and ‘without’ PMD supplementations.
Increasing PMD addition between 20-40 ml/L clearly increased
the biomass yield considerably (comparing ‘with’ and ‘without’
PMD which is 8.2 g/L) and maintained lipid content within

40% (not shown) after 180 h.

Concisely, PMD is feasibly potential for application in both
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Figure 1: (a) Cultivation ‘Without’ supplementation showing glucose depletion (•), DCW(?) and lipid yield (), (b) Nitrogen levels () depletion, (c) single feeding
of digestate from PMD20, 30, 40, 50 and 60 ml/L (indicated as PMD) and (d) respective lipid yields (corresponding to colors).
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cell growth and lipid content in appropriate feeding

concentrations. The following work further investigated the

discussed methods to improve cell concentration and lipid yield

in two-stage feeding strategy.

Two-stage PMD feeding to enhance biomass

Based on the single-stage feeding cultivations (‘with’ and

‘without’ PMD assessed in section 3.3), in this method we studied

two-stage feeding. These method of feeding was based on the

growth model of ‘without’ PMD (using standard media)

discussed in figure 1a knowing the initial, exponential and

stationary growth phases (not detailed in this study) of the

microalga under this condition. For the first 5 days during the

initial-exponential phase (0-120 h) in three separate fermenters,

we added the following (added daily) PMD of 20, 30 and 40 ml/

L (based on enhanced biomass in figure 1c and d), respectively,

then reduced (PMD) in feeding by one fifth (1/5) respectively,

for each cultivation at stationary phase (120-180 h).

The following results were achieved as shown in figure 2a, at
120 h; DCWs of 8.7, 9.8 and 10.8 g/L were reached by 20, 30

Journal of Microbial & Biochemical Technology  - Open Access
www.omicsonline.org                    JMBT/Vol.2 Issue 2

Figure 2: (a) Showing DCW (?), from 0-120 h only relating to PMD feedings (b) respective DCW and, lipid yield (�) from 120-180 h which are initial-exponential (a)

and stationary phases (b), respectively.

and 40 ml/L (shown as PMD20, PMD30 and PMD40),
respectively. By 180 h, DCWs of 12.6, 13.4 and14 g/L (Figure
2a) and lipid yields of 1.9, 2.9, and 3.6 g/L (Figure 2b) were
achieved, respectively. In comparison to ‘without’ PMD
supplementation (that achieved 8.2 g/L at 180 h), the single
(that achieved 13.52 g/L) and two-stage (that achieved 14 g/L)
feedings showed the direct influence of the PMD on the lipid
content (Fig.3a). It is clearly seen that high lipid yield was
achieved in single and two-stage feeding (‘with’ PMD) in
comparison to ‘without’ PMD which showed high lipid content
yet its yield was lower.

The low lipid content in single and two-stage feedings is direct
result of the levels of nitrogen that affect lipid biosynthesis.
However, lipid yields increased at stationary phase showing that
PMD had impact on cells (comparing Figure 2a- Figure 2b).
There are two reasons; firstly as a cell growth enhancer
(comparing the lag times of ‘with’ and ‘without’ PMD, not
detailed in this study) and as noted at stationary phases where
nitrogen being readily used, cells increased in lipid yield (as
seen with Figure 2b). Secondly, the promoting of the residual
glucose to storage metabolites (residual glucose and lipid yield

Figure 3: Comparative lipid contents in cultivation ‘with’ (single and two-stage) and ‘without’ PM digestate feeding.
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changes in levels), therefore, the residual glucose analyzed at

stationary phase (120-180 h) was seen decreasing as lipid

increased in yield. More significantly, this increase was enhanced

by adding one fifth (1/5) of the digestate volume (of the previously

used from 0-120 h). Adding PMD (1/5) and the raise of lipid

yield do not agree knowing the fact that nitrogen will suppress

cellular lipid production (Widjaja et al. 2009), the level of residual

glucose (during stationary phase) depleting with significant lipid

yield increase is a phenomena that prompted the next

investigation. Clearly, adding adequate amount (1/5) of PMD

seems to reasonably assist biosynthesis of lipid that soared

(during stationary phase). Considering the glucose levels, it

seemed that appropriate that residual glucose depletion increased

lipid levels which meant nitrogen was lowered as it was utilized,

thus lipid soared. Accordingly, in the following, we supplemented

glucose at stationary phase to see if it can increases lipid at

quicker pace.

Enhancement of algal lipid for with PMD and glucose

Cellular lipid content can be increased by nutrient limitation

(Yan and Quin, 2005; Yanqun and Lan, 2008; Meng et al., 2009)

of which nitrogen deprivation is widely used. However, more

nitrogen level will increase cell concentration but less in lipid

content (Widjaja et al., 2009). Moreover, cells are known to

convert available carbon sources such as glucose to generate

lipid as storage metabolites (Livne and Sukenik, 1992). In

addition, based on our study that lipid increased during stationary

phase, the following work was to find out if a combination of

PMD and glucose addition at stationary phase (120-180 h) would

improve lipid yield for the production of algal biodiesel.

The method applied for Figure 2 was replicated, but only
during the stationary phase (120-180 h) instead of feeding only
a fifth (1/5) of the PMD, we also incorporated 2 g/L glucose
supplementation and feed together daily during the stationary
phase (120-180 h).

The results obtained are as shown in Figure 4; at 120 h, the
cultivation PM20, PM30 and PM40 achieved DCWs similar to
results of Figure 2a, therefore, 8.8, 9.8 and 10.9 g/L, respectively.
However, after 180 h, DCWs (Figure 4a) improved to 13.14,

13.4 and 15.5 g/L reaching lipid yields (Figure 4b) of 2.9, 3.8

and 4.9 g/L, respectively.

Figure 4: DCW (?) and lipid yield (O) in two-stage feeding methods indicating the relating to ‘size’ of the key for PMD 20, 30 and 40 ml/L (corresponding sizes of

DCWs in ‘a’ to lipid yields in ‘b’, respectively).

Based on these figures, it can be considered that appropriate

quantities of digestate supplementation directly governed lipid

yield output. In addition, it has just demonstrated that an

increased glucose dosage and would require increased PMD but

appropriate amount to improve final lipid yields.

Given the daily supply of the digestate supplemented with

glucose, the sudden raising of lipid yields based on the result

can be again concluded that PMD not only enhance algal cell

growth and concentration but also support in lipid enhancement

by utilizing residual glucose to generate more cellular lipid in

quantity. This observation would agree with study by Livne and

Sukenik (1992) whose study indicated converting metabolites

and cellular residues to storage metabolites (such as lipids). The

additional glucose supplementation during stationary phase (120-

180 h) is more likely to support lipid yield. This is because as

glucose was made available(at stationary phase), any nitrogen

residue in the medium was quickly used, culture medium being

depleted in nitrogen, cellular lipid content was increased.

The results of the study strongly convinced that PMD being

sufficiently digested if correctly utilized in algal cultivation can

enhance algal biomass and that is attractive not only for algae

biofuel but also for the poultry farmers as PM waste is resourceful.

Study by Natarajan and Varghese (2003) indicated that PM

waste used in plankton production had achieved highest yield

against other livestock waste, moreover, recent study by

Chinnasamy et al. (2010) in a similar fashion strongly pointed

that wastewater, municipal waste and other related waste are

potential to promote and commercialize algae biofuels.

Based on these studies, our present work agreed with these

studies that PM would broaden its application in algal biofuel.

This is not only to enhance algal cell density but also to improve

lipid yields of microalgae and to promote algae biofuel

sustainability.

Conclusion

The potential of PM as biofertilizer normally used in plant

cultivation unmistakably demonstrated a potential for algal

biodiesel by two-stage feeding strategy under mixotrophic

Citation: Iyovo GD, Du G, Chen J (2010) Poultry Manure Digestate Enhancement of Chlorella Vulgaris Biomass Under Mixotrophic

Condition for Biofuel Production. J Microbial Biochem Technol 2: 051-057. doi:10.4172/1948-5948.1000023

0 30 60 90 120 150 180 210
0

2

4

6

8

10

12

14

16

18
 PMD30
 PMD20
 PMD40

D
C

W
 (
g
/L

)

Time (h)

(a)

 

0 30 60 90 120 150 180 210
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5

 PMD40
 PMD30
 PMD20

L
ip

id
 c

o
n
ce

n
tr

at
io

n
  
(g

/L
)

Time (h)

(b)

http://dx.doi.org/10.4172/1948-5948.1000023


J Microbial Biochem Technol                                                                                            Volume 2(2) : 051-057 (2010) - 057

 ISSN:1948-5948 JMBT, an open access journal

condition. High nitrogen and phosphorus content would enhance

and promote sustainable, waste to bioenergy opportunities with

algae. Application of PMD can promote high cell density culture,

addition of carbon source such as glucose at stationary phase

can promote higher lipid yield. Adding carbon source (glucose)

seem a way to get rid of nitrogen at stationary phase that in turn

can cause cells to synthesis more lipid content increasing lipid

yield.
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