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Abstract

Potentiometric determination of moxifloxacin (Moxi) by ion selective electrode based on ZnO nanorods
incorporation with HPβ-CD as sensing ionophore and (KTFPB) potassium tetrakis- (3,5(triflouromethyl) phenyl
borate ion as anionic site (additive) in polyvinyl chloride (PVC) membrane, without inner reference solution was
developed. The sensor shows nearly nernstian response over a concentration range ( 5 × 10-8 M to 1 × 10-2 M) with
a slope of 21.9 ± 0.16 mv decade-1 of concentration with a limit of detection (LOD) 0.127 μM. The electrode exhibits
a fast dynamic response of 2 s for a period of 6 months without significant change in its characteristics with excellent
stability and sensitivity toward inorganic species. The method is accurate and precise as indicated by the mean
recoveries 99.5% with RSD less than 2%. The proposed method was successfully applied for the determination of
Moxi in pure form and its pharmaceutical formulations.

Keywords: Potentiometric; Ion selective electrode; ZnO nanorode;
Moxi

Introduction
Moxifloxacin (Moxi) chemically is 1-cyclopropyl-7-(2,8-

diazobicyclo[4.3.0]nonane)-6-fluoro-8-methoxy-1,4-dihydro-4-oxo-3-
quinoline carboxylic acid Figure 1, is a synthetic fourth generation
fluoroquinolone (fluorinated derivative of the quinolone). Moxi is
active against broad spectrum of antibacterial agent, encompassing
Gram-negative, Gram-positive bacteria and also antibiotic resistant
streptococcus pneumonia [1,2]. The bactericidal action of Moxi results
from trapping of enzymes on DNA and lethal release of double-
stranded breaks, thereby inhibiting of cell replication [3].

Figure 1: Chemical structure of Moxifloxacin hydrochloride.

Various analytical methods have been cited in literature for Moxi
determinations including spectrophotometry, spectrofluorimetry,
atomic absorption  spectrometry,  conductometry, voltammetry [4-10],
high performance liquid chromatography-ultraviolet (HPLC-UV),

HPLC-fluorescence(HPLC-Fl), capillary electrophoresis(CE), and
HPLC-mass spectrometry (HPLC-MS) [4-17].

Potentiometric sensors are easy to miniaturize and provides a large
dynamic range. In conventional ion selective electrodes, polyvinyl
chloride (PVC) is the most commonly used matrix as the selective
membrane. The ion-selective membrane exhibits the selectivity with
which the sensing material responds to the analyte and an
electrochemical equilibrium is reached. The resulting potential
difference, formed between the phases, will then be governed by the
activity of this specific ion in the two solution phases [17-19].

Different potentiometric methods using ion selective electrodes for
determination of Moxi were reported [20-23]. Hefnawy et al.
developed PVC membrane sensors for analysis of Moxi. The sensing
membranes incorporate ion association complexes of Moxi-cation and
sodium tetraphenyl borate (NaTPB), phosphomolybdic acid (PMA)
and phosphotungstic acid (PTA) as electroactive materials [21]. The
sensors showed good discrimination of Moxi from several inorganic
and organic compounds. Elghobashy et al. Constructed Moxi selective
electrodes with 2-nitrophenyl octyl ether as a plasticizer in a polymeric
matrix of PVC. The Sensors were fabricated using tetrakis (4-
chlorophenyl) borate (TpClPB) as an anionic exchanger with and
without incorporation of an ionophore [22]. The proposed sensors
were successfully applied for the determination of Moxi in bulk
powder, pharmaceutical formulation, and biological fluids.

ZnO nanowires, nanorods and nanotubes have gained much
attraction due to their high surface-to-volume ratio which makes them
extremely sensitive to minute surface changes; also they have excellent
chemical stability [24]. Moreover, one-dimensional ZnO
nanostructures are promising for bio and chemical sensing due to their
ease to grow vertically on almost any substrate there high sensitivity,
low cost, simplicity and low power consumption [24,25].
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In this study potentiometric ZnO nanorods based ion selective
electrode without inner reference solution for a simple, sensitive, and
rapid determination of Moxi in pharmaceutical formulations is
illustrated. Ion selective electrode consisted of PVC, dibutyl phthalate,
2-Hydroxypropyl)-β-cyclodextrin (HPβ-CD) and potassium tetrakis
(3,5 (triflouro methyl)phenyl)borate (KTFPB) as matrix, plasticizer,
sensing ionophore and anionic additive, respectively were used.

Materials and Methods

Chemicals and reagent
Moxifloxacin hydrochloride was obtained from (98%, Bayer AG,

Leverkusen Germany), HPβCD (ionophore), tetrakis (3,5(triflouro
methyl)phenyl) borate (KTFPB) (additive), PVC (high molecular
weight), dibutyl phthalate (a plasticizer), zinc acetate (ZnAc),
Hexamethylenetetramine (HMTA) ware purchased from sigma
Aldrich (St. Louis, USA), silver wire ( 0.3 mm diameter), Na2HPO4,
H3PO4, KOH, acetone, isopropanol, tetrahydrofuran (THF), methanol,
(all solvent with HPLC grade), Avelox tablet ( Bayer Schering pharma)
TRT06R7 labeled to contain 400 mg Moxi per tablet were purchased
from local market, Deionized water.

Instrument and apparatus
pH/mv meter (PHS-3E) (China), Ag/AgCl reference electrode (Ω

metrohm. Autolab, inner and outer filling by KCl 3M. (Netherlands),
sensitive balance, magnetic hot plate, thermometer, oven, SEM (Zeiss
Evo LS 10, Germany).

Seed and growth ZnO nanorods
ZnO nanorods was grown by low temperature aqueous chemical

method [25]. A silver wire (0.3 mm) was cut in the length of 5 cm and
cleaned by acetone and isopropanol for 2 min in each solution
followed by rinsing with deionized water and left to dry at room
temperature. The silver wire was immersed three times in a seed

solution prepared by mixing alcoholic solutions of KOH added drop
wise to heated, stirred 0.03 M of zinc acetate the resulting solution was
kept under stirring for 2 hours at 60°C prior dipping, the wires was left
to dry at room temperature. The ZnO was grown by suspending the
pre-coated Ag wire in aqueous solutions contains 0.025 M ZnAc with
equimolar concentration of HMTA. The beaker was placed in
preheated oven at 70°C to 5 hours. The wires were cooled down,
washed by deionized water and left to dry overnight. The ZnO
nanorods was characterized by SEM (Zeiss Evo LS 10, Germany)
Figure 2.

Figure 2: A, B) SEM at different magnifications and view of the
ZnO nanorodes grown on Ag wire hydrothermal aqueous chemical
method.

Coating ZnO nanorods with ion selective membrane
ZnO nanorods were coated by ion selective membrane by mixing

33% PVC, 66% DBP plasticizer, 1.2% HPβ-CD (ionophore), 0.4%
KTFPB (ionic additive) in 5 ml THF. The ZnO coated wires was dipped
twice into a prepared solution, after each dip the electrode was left to
dry at room temperature, then the electrode was conditioned into 1 ×
10-3 M of Moxi standard solution for 24 hour prior to use. The
membrane was characterized by SEM (Zeiss Evo LS 10, Germany)
Figure 3.

Figure 3: Presents ion selective membrane with KTFPB additive with different magnification.

Standard drug solutions
Stock standard solutions 0.01 M Moxi.HCl (Mw=437.89 g/mol ) was

prepared by dissolving accurate weight in deionized water, this
solution was kept in the dark at 4°C and it was found that it was stable

for several weeks. Working solutions ranging 0.001-10000 μM were
prepared by serial dilution of the stock solution by deionized water.
The testing series was prepared by adding adequate amount of (0.2 M)
phosphate buffer (H3PO4/Na2HPO4) [pH=2; 0.2 M] and desired
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volume of drug stock solution and the volume completed to mark by
deionized water.

Electrochemical measurements
In a complete potentiometric cell, the Moxi-ZnO-selective electrode

was used in conjunction with Ag/AgCl reference electrode (inner and
outer filling by KCl 3M). The electrochemical potential between the
Moxi-ZnO- selective electrode as cathode and Ag/AgCl reference
electrode (Ω metrohm. Autolab, inner and outer filling by KCl 3M) as
anode was measured with pH/mv meter (PHS-3E).

Moxi.TFPB - PVC || Test solution || Ag/AgCl (3M KCl)

The measured potential was plotted against the logarithm of drug
concentration. The electrode was washed with deionized water blotted
with tissue paper between measurements.

Results and Discussions

Optimization conditions

Effect of pH: The effect of pH on the potential response of the Moxi-
ZnO-ISE was investigated using 1 × 10-4 M solutions in pH range of
2.0-11.0 using Na2HPO4/H3PO4 (0.2 M) as a buffer solution. The
potential readings corresponding to different pH values were recorded
and plotted using the proposed electrode. Increasing in electrode
potential was observed in pH range from 2 to 3 and decreased from
pH 4 to 11, Figure 4. These result suggested that the inclusion complex
of Moxi and HPβ-CD was suitable in acidic media because Moxi
contains secondary amine that capable to bind with protons presents
in acidic media resulting positively charged Moxi ion, which therefore
can attracted by anionic tetraphenyl borate group present in the
additive (KTFPB) and hence facilities the inclusion between Moxi and
HPβ-CD [21,22].

Figure 4: Optimization of pH for Moxi-TFPB- HPβ-CD, Moxi 1 ×
10-4 M, at room temperature, time 2 sec.

Effect of volume of buffer: The effect of volume of buffer on the
potential response of the Moxi-ZnO-ISE was studied using 1 × 10-4 M

Figure 5: Optimization of buffer volume for Moxi-TFPB- HPβ-CD,
Moxi 1 × 10-4 M, at room temperature, time, 2 sec, pH 2.

Effect of temperature: The effect of temperature on the potential
response of the Moxi-ZnO-ISE was studied using 1 × 10-4 M solutions
at the range of temperature (10-80°C) using thermometer presented in
Figure 6. It reveals that the potential increased with increasing
temperature of drug solution this could be attributed to potentiometric
measurements is equilibrium controlled [26], thus increasing solution
temperature is resulting faster equilibrium between the electrode
surface and Moxi solution.

Figure 6: Optimization of temperature for Moxi-TFPB- HPβ-CD,
Moxi 1 × 10-4 M, time 2 sec and 5 mL pH 2.

Response time: The response time of potential of the Moxi-ZnO-ISE
was studied using 1 × 10-4 M solutions in a period from 0 to 15 second.
The potential readings corresponding to time were recorded and
plotted using the proposed electrode in Figure 7. The sensor display
very fast and stable response within 2 second.
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solutions in the range of (0-10) mL using Na2HPO4/H3PO4 [pH 2; 0.2
M]. It was found that the potential increased when buffer adding to
Moxi solution without buffer and the potential remains constant with
adding extra volume of buffer as shown in Figure 5.



Figure 7: Optimization of response time for Moxi-TFPB- HPβ-CD,
Moxi 1 × 10-4 M, at room temperature, 5 mL pH 2.

Electrode composition
The electrode shows linear nernestian response over a wide range of

concentration 0.05-10000 μM, stable, sensitive and very fast response.
This attributed to electrode compositions. The ZnO nanorods
increased the surface area for distribution of the membrane compared
if it directly attached to silver wire, thus increased the sensitivity of the
electrode and decreases the response time. HPβ-CD is used as sensing
ionophore, the most important property of CDs is their ability to form
supramolecular inclusion complexes with many appropriately sized
organic ions and molecules in aqueous, non-aqueous and mixed media
[27,28]. The driving forces for the complexation are non-covalent,
including vanderWaals forces and directed hydrogen bonding. Water
molecules in CD cavity are displaced by more hydrophobic guest
molecules present in the solution to attain a non-polar/non-polar
association and decrease of CD ring strain resulting in a more stable
lower energy state [29]. On constructing an ISE, the amount of the
sensing ionophore in the electrode matrix should be sufficient to
obtain reasonable complexation at the electrode surface that is
responsible for the electrode potential [30,31].

The function of KTFPB as lipophilic ionic additives is to promote
the interfacial ion exchange kinetics and decrease the electrode
resistance through enhancing the ionic mobility in the electrode
matrix. The response of ISEs containing ionic sites can be
distinguished whether the incorporated ionophore acts as an
electrically charged or uncharged carrier [32,33].

Statistical data
The analytical methods were validated with respect to linearity, limit

of detection (LOD), limit of quantification (LOQ) and precision
according to ICH [34].

Calibration curve and statistical data for Moxi: The measuring range
of a potentiometric sensor was the linear part of the calibration curve
as shown in Figure 8. The critical response of the sensor was
determined and the results were summarized in Table 1. LOD and
LOQ were determined using the formula LOD or LOQ=K.SDa/b,
where K=3.3 for LOD and 10 for LOQ, SDa is the standard deviation
of the intercept, and b is the slope. The values of LOD and LOQ were
found to be 0.127 and 0.3836 μM respectively. The sensor show nearly
nernestian response over the concentration range 0.05-10000 μM for
Moxi standard solution. Calibration curve slope for electrode were 21.9

mV decade-1. The electrode exhibited a fast dynamic response of 2 s for
a period for more than 6 months without significant change in the
electrodes parameters.

Figure 8: Calibration curve of Moxi-TFPB-HPβCD, Moxi 1 × 10-4

M, at room temperature, time 2 sec, 5 mL pH 2.

Parameter Value

Slope, mv decade-1 21.9 ± 0.16

Intercept, mv decade-1 125.24 ± 0.84

Linear Correlation coefficient ( R2 ) 0.9995

Linear range, μM 0.05-10000 μM

LOD, μM 0.127

LOQ, μM 0.3836

Response time, second >5 s

Life time, month 6 month

*PDL, μm 0.001 μM

*PDL= practical detection limit

Table 1: Parameter for Moxi potentiometric method.

Accuracy and precision of the potentiometric method: The accuracy
and precision of the proposed method was determined at three
concentration levels of Moxi by apply three replicate samples of each
concentration. The standard deviations for the results did not exceed
2% are listed in Table 2, indicating high reproducibility of the results
and precision of the method. This good level of precision was suitable
for quality control analysis of Moxi and in the pharmaceutical
formulations.

Concentration Taken (-log c) Found (-log c) Recovery % ± RSD*

5 × 10-4 M 3.3 3.46 104.8 ± 0.97

1 × 10-5 M 5 5.08 101.6 ± 0.67

1 × 10-7 M 7 6.98 99.7 ± 0.49

*values are mean of three determinations

Table 2: Precision of the potentiometric method for Moxi
determination.
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Sample content M Standard added M p C Found log c Recovery (% ± RSD)*

1 × 10-4 1 × 10-4 3.7 3.61 97.3 ± 0.28

1 × 10-4 2 × 10-4 3.5 3.41 97.16 ± 0.50

1 × 10-4 3 × 10-4 3.4 3.26 95.88 ± 0.29

1 × 10-4 4 × 10-4 3.3 3.14 95.2 ± 0.52

1 × 10-4 5 × 10-4 3.2 3.06 95.6 ± 0.30

Table 4: Recovery of the potentiometric method of Moxi.

The sensitivity: The sensitivity was tested by adding some inorganic
salts and diluted acids and bases, it was found that the electrode shows
excellent sensitivity toward testing species with RSD less than 2%.

Reproducibility: The electrode response shows excellent
repeatability during analysis and very stable response with intraday
RSD did not exceeded 2%, and interday analysis with RSD less than
5%.

Conclusion
It can be concluded that Moxi-ZnO-ISE offers a viable technique for

the direct determination of Moxi in pharmaceutical preparations. The
sensor allows simple, rapid, and reproducible determination over a
wide linear range of concentration with the same sensitivity without
the need of complex sample manipulations. The sensor exhibits a good
selectivity towards the drug in the presence of various pharmaceutical
recipients, long life time and time- labor saving.

The procedure avoid the usual pretreatment steps necessary for
Moxi assays and presents some general advantages over common
chromatographic and spectroscopic procedure, it makes use of less
sophisticated equipments (there for being easier to operate and
providing lower cost of analysis ) and surpasses color and turbidity
problems associated with suspensions and colloids.

Sensor accomplished LOD and LOQ of 0.127 μM, 0.3836 μM,
respectively with a fast response time of less than 5 seconds.
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