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Abstract
In recent years, microwave heating has been increasingly popular all over the world, in particular for modern 

household food-processing applications, due to increased economic merits in many developing countries such 
as steady economic growth, high disposable income, etc. This trend also seems to be associated with increased 
awareness about the benefits of nutritious and healthy foods as well as functionalities of certain phytochemicals 
in diets, which may act as neutraceuticals. Microwave heating is known for its operational safety and nutrient 
retention capacity with minimal loss of heat-labile nutrients such as B and C vitamins, dietary antioxidant phenols 
and carotenoids. This review was aimed to provide a brief yet comprehensive update on prospects of microwave 
heating for food processing applications, with special emphasis on the benefits at household level and its impact on 
food quality in terms of microbial and nutritional value changes.
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Introduction
Microwaves are defined as a part of electromagnetic waves which 

have frequency range between 300 MHz and 300 GHz corresponding 
to wavelength from 1mm to 1m. Microwave frequencies of 915 MHz 
and 2.45 GHz can be utilized for industrial, scientific, and medical 
applications [1,2]. Microwaves have been applied in a broad range 
of food processing such as drying, tempering, blanching, cooking, 
pasteurization, sterilization, and baking. Microwave heating has 
considerable advantages over conventional heating methods, especially 
with regard to energy efficiency. Since heat is transferred from 
the surface of food to the interior by convection and conduction in 
conventional cooking method, it may result in a temperature gradient 
between outside and inside food [3]. In addition, it requires higher 
energy consumption and relatively long processing time [4]. In 
microwave heating, on the other hand, heat is generated (volumetric 
heating) inside the food in a short time when microwave penetrates 
through it [5]. Microwaves have greater penetration depth, and this 
property coupled with volumetric heating can lead to rapid heating rate 
with short processing time; and also contribute to the minimization 
of temperature difference between the surface and interior of food 
material [3,6]. 

As aforementioned, microwaves generate heat throughout the 
volume of food material rapidly because of the complete interaction 
between microwave, polar water molecules and charged ions in food. 
Microwave causes polar water molecules in food to constantly rotate 
and couple with electromagnetic field [7]. Molecular friction resulting 
from dipolar rotation of water molecule can generate heat. Water 
constitutes a major portion of most food products. Therefore, water 
is the primary component that interacts with microwaves due to its 
strong dipole rotation. Furthermore, heat can be generated through 
ionic migration that positive and negative ions of dissolved salts in 
food interact with the electric field by moving towards the oppositely 
charged regions of the electrical field and disrupt the hydrogen bonds 
with water [8,9]. 

Microwave heating rate can be varied depending on dielectric 
properties of food. Dielectric properties can be defined as:

' " δε ε ε ε −= − = jj e    (1)

where ε is the dielectric properties, ε’ the dielectric constant (real 
part), ε” the dielectric loss factor (imaginary part), and δ dielectric loss 
angle (tanδ=ε”/ε’). 

The dielectric constant (ε’) is associated to the material’s capability 
to store electric energy (for vacuum ε’=1), while the dielectric loss 
factor (ε”) is related to dissipation of electric energy due to different 
mechanisms. The dielectric properties describe the ability of a material 
to absorb, transmit, and reflect electromagnetic energy. Foods can 
be considered neither good electrical insulators nor good electrical 
conductors; thus can be categorized into ‘lossy dielectric materials’. 
Dielectric properties of foods have the ability to drive the influential 
interaction between the food components and electric field and can 
be influenced by many factors such as temperature, moisture content, 
salt content, frequency of the microwaves and other ingredients 
[10]. Microwave heating mechanism is very complex that depends 
on numerous factors i.e., propagation of microwaves governed by 
Maxwell’s equations for electromagnetic waves, the interactions 
between microwaves and dielectric properties of food, and the 
heat dissipation governed by heat and mass transfer. However, the 
magnetic part of electromagnetic waves does not have an interaction 
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with natural media; therefore, it is not linked to microwave heating 
for most chemical reaction [1]. However, the loss tangent (tanδ) in eq. 
(1) can be used to describe the capability of a compound to convert 
microwave radiation into thermal energy. The higher loss tangent at 
2.45 GHz indicates large susceptibility to microwave energy [1]. On the 
other hand, combination of ionic heating with dielectric heating of the 
contiguous solvent and the power (P) per total volume of a dielectric 
material in a microwave field can be written as follows: 

2
0 2 01 2ωε ε=P E                     (2)

Where ω is angular frequency (Hz), ε0 is the permittivity of vacuum 
(F/m), ε2 is the dielectric permittivity of medium, and E0 is the electric 
field intensity (V/m), according to Ayappa and Davis [11].

Microwave heating conduce to the reduction of come up time in the 
processing for food products and is insensitive to food heterogeneity 
[12]. In addition, microwave heating is effective to heat up the prepared 
(ready to eat, RTE) food [13]. Therefore, the microwave oven operated 
in the simple manner became an indispensable home appliance to cook 
RTE food. Western foods are often considered to be more suitable 
for microwave cooking and can be ascribed due to fact that those 
include a majority of baked food products and precooked meat patties 
that require preheating process, i.e. oven-roasting or baking before 
consumption. In recent years, however, even in the countries like 
India-where the traditional cooking methods are still popularly used, 
the application of microwave heating for cooking has been significantly 
increased. This transforming trend strongly suggests that microwave 
heating have been widely adopted for cooking various food types. 

This paper was aimed to evaluate the effectiveness and potentials of 
microwave heating technology for different food processing methods 
and to briefly present a synthesis of experimental approaches of 
microwave heating from recently published literatures. 

Applications of Microwave Heating in Food Processing
Microwave pasteurization and sterilization

Pasteurization is the most widely used technology for killing 
pathogenic and spoilage microorganisms in milk and fruit juices; 
however, it may largely destroy the organoleptic, nutritional value 
and physiochemical characteristics of food [14]. Safe and minimally 
processed foods with high quality attributes are essential to satisfy 
consumer needs, and those traits encourage those in the food and 
academic industries for finding innovative food processing techniques 
[15]. In earlier studies [16,17], pasteurization using 2450 MHz 
microwaves has been reported. However, even more uniform heating 
of foods (pasteurization) was achieved using 915 MHz microwave 
radiation, and it could be due to greater penetration depths of 915 MHz 
microwaves than 2450 MHz microwaves [18,19].

A number of studies show that either superior lethality or higher 

D-values can be observed using microwave treatment (Table 1) 
compared to conventional heating. This indicates the development of 
microbial thermal resistance against the conventional heat treatment, 
whereas the devastating effect of microwave treatment could be due 
to an explosion of internal pressure generated within the core [20,21]. 

Microwave sterilization process is a high-temperature-short-time 
(HTST) type; it is used not only to inactivate spoilage microorganisms 
in foods, but also to minimize the quality deterioration of foods [22]. 
Microwave sterilization process (128°C and 3 min processing time) 
produced products superior to those from conventional processes of 
canning (120°C retort temperature and 45 min processing time) and 
retorting foil pouches (125°C and 13 min cooking time) [23]. When 
microwave heating at 915MHz was used to sterilize pouches containing 
cooked macaroni and cheese, there was no significant change observed 
in the texture of product or loss of flavor [18]. 

Possible non-thermal effect on destruction of microorganisms 
under microwave heating has been reported; the polar and /or charged 
moieties of proteins (i.e., COO-, and NH4

+) can be affected by the 
electrical component of the microwaves [6]. And, the disruption of 
non-covalent bonds by microwaves is a more likely cause of speedy 
microbial death [24].

Microwave blanching

Blanching is a thermal pretreatment process, which is an essential 
step in several food processing techniques such as freezing, canning 
or drying, generally applied to inactivate enzymes that substantially 
affect to texture, color, flavor, and nutritive values of fruits and 
vegetables [26,27]. In general, hot water or steam blanching treatment 
is most commonly used in commercial sites for processing of food 
products. However, the conventional blanching method is closely 
associated with the serious loss of weight and nutritional values of 
food products. To retain nutritional quality of food products, several 
researchers suggested the use of microwave heating as an alternative 
to conventional blanching method for food products [27-30]. Since 
microwave blanching requires little or no water for efficient heat 
transfer in food, it can reduce the amount of nutrients lost by leaching 
as compared with hot water immersion [31]. Patricia and others [32] 
have observed a clear positive impact of microwave blanching on the 
nutritional quality of broccoli as summarized in Table 2. The amounts 
of protein, ashes, vitamin C, iron and phosphorus found in broccoli 
blanched by microwave were much higher than in the sample treated 
by hot water blanching, and were closer to that of fresh broccoli. 

The levels of vitamin C retained after microwave and hot water 
blanching treatments are presented in Table 2. Muftugil [33] compared 
both hot water and microwave blanching methods based on their effect 
on the retention of vitamin C in green beans. Microwave blanched 
samples showed better retention in vitamin C as compared with hot 
water blanched samples. Furthermore, superior retention of vitamin C 

Growth medium Treatment Microorganism D value References

Apple juice

D50,55 and 60°C (conventional heating at 50-70°C)
S. cerevisiae

58, 25 and 10 s

[21]
D52.5,55 and 67.5°C (microwave heating at 700 W, 2450 MHz) 4.8, 2.1 and 1.1 s

D55,60 and 70°C (conventional heating at 50-80°C)
L. plantarum

52, 22 and 8.4 s
D57.5.,60 and 62.5°C (microwave heating at 700 W, 2450 MHz) 14, 3.8 and 0.79 s

Glucose saline
D55,60 and 65°C (conventional heating)

E. coli K-12
73, 18 and 3.0 s.

 [24]
D55,60 and 65°C (microwave heating) 20, 8.3 and 2.0 s

Foods
D55°C (conventional heating) S. aureus 17.8, 2.4 and 3 min

[25]
D55°C (microwave heating) S. typhimurium and E. coli 11.6, 2.3 and 2.9 s

Table 1: Changes in viable counts of microorganisms in liquid foods after microwave and conventional heating.
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in microwave blanched frozen spinach over hot water blanched sample 
has been reported [30]. Such higher retention rates of vitamin C are 
more likely due to blanching in minimal water for a reduced time using 
microwaves. In addition, after blanching of 150g of green peas with 100 
ml water using microwave and water heating, total β-carotene retained 
better in microwave treated sample [34]. 

Straumite et al. [35] observed only a small difference in color, 
volatile aroma compounds, and sensory attributes between fresh dill 
and dried dill that was hot water blanched at 90°C temperature for 30 
s following microwave pretreatment at 900 W for 30 s. The positive 
outcome on overall quality would be because of the synergistic effect of 
hot water blanching assisted with microwave pretreatment.

Microwave cooking

Cooking with microwaves has recently become the most adaptable 
method all over the world. Microwave ovens are now used in about 
92% of homes in the US [17]. Microwave ovens are very popular home 
appliances for the food processing applications. Zhang and Hamauzu 
[36] reported that the physical and chemical properties of the most 
vegetables tend to be changed upon cooking by boiling in water or 
microwave. Moreover, the cooking process exerts some structural 
changes and reduction in dietary fiber components of various 
vegetables [37,38]. Compared to ordinary microwave cooking, a more 
pronounced reduction of dietary fiber components has been observed 
with pressure cooking of cabbage, carrots, cauliflower, eggplant, 
onions, peas, potatoes, radish, spinach and turnips [39].

Microwave oven is well suited for cooking the food in small 
quantities, especially for households [40], though not convenient for 
mass cooking. Daomukda et al. [41] studied the effect of different 
cooking methods on physicochemical properties of brown rice. They 
concluded that the protein, fat and ash contents in rice cooked by 
microwave are retained at higher levels (8.49%, 2.45% and 1.42%, 
respectively) than conventional boiling and steaming methods. 
Microwave irradiation normally does not induce the Maillard reaction 
because of the short cooking times and low temperatures [42].

Substantial reduction in the energy consumption was observed 
with controlled cooking (using microwave oven) of unsoaked rice (14-
24%) and presoaked rice (12-33%) compared with normal cooking 
[43].

Highly significant reduction in cooking time was observed with 
microwave cooking of legumes such as chickpeas and common beans. 
Microwave cooking with sealed vessels enabled a drastic reduction in 
cooking time, from 110 to 11 min for chickpeas and from 55 to 9 min 
for common beans, compared with conventional cooking [44].

In a study carried out by Arab et al. [45], differences in chemical 
composition of chickpea flour before and after cooking are significant 
using different cooking treatments, namely cooking on a hot plate for 
90 min, microwave cooking with power level 10 for 5 min, and frying 
in corn oil at 170°C for 1 min. The obtained data shows that the fat 
and ash contents in chickpea cooked by microwave were decreased by 
8.90 and 6.97%, respectively, compared with the traditional cooking 
practice (8.01 and 5.76%). Such decrease might be due to their diffusion 
into cooking water [46]. However, 51.89 and 40% increase in crude 
fiber content was observed with microwave and traditional cooking 
treatments, respectively. Table 3 summarizes the percentage of major 
minerals (K, Ca, Na and Mg) and minor elements (Cu, Fe, and Zn) 
observed in chickpea before and after different cooking treatments. The 
highest retention of minerals was detected with microwave cooking 
unlike fried cooking and traditional cooking methods, which recorded 
the lowest and moderate retentions, respectively. Parallel findings were 
observed by Alajaji and El-Adawy [46] with additional elements such 
as P and Mn. Bernhardt and Schlich [47] also reported that minerals 
content of fresh and frozen pepper were retained at high levels (0.43 
and 0.38 g/100g, respectively) in microwave cooking compared with 
cooking by boiling (0.35 and 0.22 g/100g, respectively). 

Alajaji and El-Adawy [46] also reported that cooking treatments 
can significantly affect the vitamin contents in chickpea seeds, and such 
negative impacts are probably due to the combined effects of leaching 
and chemical destruction. However, a mild reduction in vitamin levels 
was observed through microwave cooking. The retained concentrations 
of riboflavin, thiamin, niacin and pyridoxine in microwave cooked 
chickpea seeds were significantly higher than those obtained with 
boiling and autoclave cooking. These results are in agreement with the 
earlier reports [48]. Conventional cooking of broccoli for 30, 60, 90, 120 
and 300 s has been found to reduce total phenolic content by 31.6%, 
47.5%, 55.9%, 61.7% and 71.9% in florets and 13.3%, 22.2%, 26.7%, 
28.9% and 42.2% in stems and, there was no significant difference in 
the total phenolic content between microwave and conventionally 
cooked samples [46]. 

Because microwave oven is able to heat up foods using the energy 
of oscillating electromagnetic wave, it is possible to do selective and 
quick cooking. But the penetration depth of microwave is under about 
a few inches or below the surfaces of foods. So, if the sizes of foods are 
small and the shape of foods is flat, the uniform heating through overall 
volume is possible. It will lead less loss of moisture contents and the 
greatest energy savings, and the nutrition of foods will be preserved 
very well. But using conventional method, cooking of multiple foods 
containing particles of any shape and size together can be achieved 
through moist-heat method, but at the expense of moisture which 

Treatment Foodstuff Procedure Parameter (Nutrients) Quantities Reference

Blanching

Broccoli

Blanched by a traditional process (92°C for 
0.5 to 4 min)

Protein , Ashes (%db) 42.62 ± 4.88, 4.220 ± 0.99

[32]

Vitamin C (mg/100 gdry samples) 459.77 ± 0.77
Iron and Phosphorus (mg/100 g dry samples) 4.19 ± 0.15 and 516.79 ± 39.24

Blanching by microwave (2450 MHz with 
950 W for 3 min)

Protein , Ashes (%db) 44.34 ± 1.92, 9.11 ± 0.45
Vitamin C (mg/100 gdry samples)  565.56 ± 1.49
Iron and Phosphorus (mg/100 gdry samples) 6.34 ± 1.49 and 905.48 ± 46.95

Green beans
Boiling water (100°C for 2 min)

Vitamin C retention (%)
84.7

[33]Microwave blanching (Domestic 650 W, 
2450 MHz, for 60 s 88.5

Frozen spinach
Boiling water (90°C ± 2 for 3.5 min)

Vitamin C retention (%)
33.3

[30]Microwave blanching (pilot scale, 3990 W, 
2450 MHz, 90 s) 59.1

Table 2: Nutritive values of different food products after microwave and traditional blanching.
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keeps some of their nutrition. Therefore, new combination techniques, 
making the best use of the merits of microwave heating, should be 
studied.

Microwave baking

Baking is one of the thermal processes that significantly changes 
physicochemical properties of dough. Baking process includes three 
phases: expansion of dough and moisture loss initiates in the first 
phase; the second phase, in which expansion and the rate of moisture 
loss becomes maximal. The changes that continue to take place in the 
third phase of baking include rise in product height and decrease in 
rate of moisture loss because the structure of the air cells within the 
dough medium collapses as a result of increased vapor pressure [49,50]. 
Many studies have been undertaken to address various issues related to 
the microwave baking. These problems include texture, low volume, 
lack of color, and crust formation, more dehydration and rapid staling 
[51,52]. Goedeken et al. [53] suggested that the power of microwave 
oven should be controlled in order to avoid notable water loss. Seyhun 
et al. [54] reported that the amount of moisture content of microwave-
baked cake containing pregelatinized starch is not significantly different 
from conventionally backed cakes during baking and storage because 
the pregelatinized starches could bind a greater amount of water inside 
food [55]. Also, the most of starches, except amylomaize, were effective 
in reducing firmness during storage. Texture is one of the major quality 
characteristics of foods. Megahey et al. [50] observed the influences of 
different baking conditions on quality in terms of texture of cake using 
microwave oven at 250 W and convection oven at 200°C. Microwave-
baked cake was found to possess high springiness, moisture content 
and the low firmness as texture attributes compared with the cake that 
baked in convection method. Phenolic compounds, which are related 

with flavor, color and one of important factors, namely, healthy quality 
of foods, were studied using domestic microwave oven [56]. The 
quantitative analysis of phenolic compounds showed that microwave 
baking at the power of 500 W is a good level for retention of the 
compounds. Temperature distribution of food sample during baking 
could be changed depending on the characteristics of pan materials. In 
the case of glass, the temperatures at the center of the pan were smaller 
than the edge and surface of sample [57,58]. On the other hand, the 
reverse phenomenon was observed in a Teflon pan [59]. Unfortunately, 
microwaves do not have the ability to induce browning, which is more 
pronounced with the conventional baked products [60]. Durairaj et al. 
[61] found that ceramic layer is useful to enhance the power absorption 
and decrease the thermal runaway for discrete food samples layered 
with ceramic composites.

Over the past two decades, there has been an increasing interest 
in the use of combination of microwave with other heating systems to 
reduce processing time and increase the quality of products. When the 
microwave technique was applied for bread cooking for the first time, 
there were a few main issues that the inside of bread was firm, while 
the outside was tough, and the low moisture content was observed [62-
65]. To overcome these hurdles, two cycle microwave oven, of which 
the first cycle is an internal cooking using commercial methods and 
the second cycle is an overall cooking using microwave, was tested. It 
showed reduced duration time, energy saving effect and better quality 
[66,51]. Chemat et al. [67] reported a design of microwave (MW)-
ultraviolet (UV) combined reactor (a modified microwave oven), 
wherein high energy level of UV lamp and mechanism of microwave 
heat transfer can induce effective photo-thermal reactions, and the use 
of such ovens was also recommended for food sterilization purposes. 

Treatment Foodstuff Procedure Parameter (Nutrients) Quantities Reference

Cooking

Green peas
Boiling water (100°C for 12 min)

β-Carotene retention (%)
101.3

[34]Microwave blanching (domestic 700 W, 2450 MHz, 
6.5 min) 102.3

Rice

Microwave blanching (domestic 700 W, 2450 MHz, 
6.5 min) Protein, Fat and Ash (%) 6.83 ± 0.22, 2.12 ± 

0.18 and 1.37 ± 0.03

[35]Microwave cooking (Heated for 25 min and 
simmered for 5 min) Protein, Fat and Ash (%) 8.49 ± 1.26, 2.45 ± 

0.09 and 1.42 ± 0.01

Steaming (cooked for 30 min) Protein, Fat and Ash (%) 8.05 ± 0.28, 2.42 ± 
0.04 and 2.11 ± 0.29

Chickpea

Boiling (100°C for 90 min) Riboflavin, Thiamin, Niacin and Pyridoxine 
(%)

48.46, 33.82, 4.33 and 
57.19

[36]Microwave cooking (2450 MHz, for 15 min.) Riboflavin, Thiamin, Niacin and Pyridoxine 
(%)

58.46, 42.35, 13.94 
and 80.42

Autoclave cooking (121°C at 15 lb for 35 min) Riboflavin, Thiamin, Niacin and Pyridoxine 
(%)

52.12, 35.51, 5.14 and 
65.69

Chickpea

Traditional cooking (soaking, cooking on a hot-plate 
for 90 min) Fat, Ash and Fiber (%) 5.17 ± 0.75, 3.11 ± 

0.28 and 2.59 ± 0.12

[37]

Microwave cooking (2450 MHz with power 10 for 
5 min) Fat, Ash and Fiber (%) 5.12 ± 0.78, 3.07 ± 

0.22 and 2.81 ± 0.14

Traditional cooking
Major minerals (K, Ca. Na and Mg) 298.27, 109.20, 100.40 

and 145.31
Minor heavy metals (Cu, Fe and Zn) 
(mg/100 g) 0.64, 5.96 and 2.97

Microwave cooking
Major minerals (K, Ca, Na and Mg) 377.85, 114.58, 103.21 

and 151.31
Minor heavy metals (Cu, Fe and Zn) 
(mg/100 g) 0.82, 6.38 and 3.45

Pepper fresh
Cooking (Boiling) (100°C on a hot pot for 6 min)

Minerals (g/100 g)
0.35

[38]
Microwave cooking (450 to 850 W for 3 min) 0.43

Pepper frozen
Cooking (Boiling) (on a hot pot for 12 min)

Minerals (g/100 g)
0.22

Microwave cooking (450 to 850 W for 3 min) 0.38

Table 3: Nutritive values of different food products after microwave and traditional cooking.
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Halogen lamp-microwave combination heating is one of such 
technologies. Near-infrared radiation generated by halogen lamp has 
a high frequency and low penetration depth and it occupies the visible 
region in the electromagnetic spectrum [68]. It revealed the additional 
advantages such as browning and crisping effects by halogen lamp 
heating [41]. Also, microwave heating was found to be the dominant 
mechanism in halogen lamp-microwave combination baking in terms 
of affecting weight loss and texture development. Different studies have 
shown improvement in the quality of microwave-baked products when 
infrared is added to microwave heating [69,70]. Some of the relative 
benefits of microwave baking over conventional baking methods are 
listed in Table 4.

Microwave drying

One of the oldest methods for the preservation of vegetables is 
drying. Drying fruits and vegetables is of great technological interest 
to extend the shelf-life [71]. Drying is one of the thermal processes that 
intended to reduce the moisture content of fruits and vegetables, and it’s 
one of the time-and energy-consuming processes in the food industry. 
Consequently, new methods are aimed to decrease drying time and 
energy consumption with preservation of quality [72]. Microwave 
drying is a relatively newer addition to the family of conventional 
dehydration methods. In microwave drying, heat is generated directly 
in the interior the material, making possible higher heat transfer and 
thus a much faster temperature rise than in conventional heating. In 
conventional heating, thermal energy is transferred to the surface of 
material to be heated by conduction, convection, and/or radiation 
[73,74]. There are significant differences in the mechanisms of 
microwave and conventional drying processes; the temperature and 
moisture gradients are in the same direction in case of microwave 
heating unlike conventional heating, wherein significant moisture 
loss from the material against temperature gradient is pronounced. 
In addition, microwaves are able to penetrate dry food solids to reach 
unevaporated moisture [19,75].

Drying methods using microwave can be divided into four categories; 
Microwave Drying (MD), Microwave-Assisted Freezing Drying 
(MFD), Microwave-Assisted Vacuum Drying (MVD), Microwave-
Assisted Hot Air Drying (MHD) and Microwave-Enhanced Spouted 
Bed Drying (MSD). In the MD, the relationship between the constant 
microwave power and the ratio of moisture content was studied mainly 

[76-78]. After that, the methods to control the microwave power in real 
time were executed by applying various sensors [79-81]. Freeze drying 
can maintain the quality of dried product best to compare with other 
conventional techniques but it is a long time processing and brings high 
energy consumption issue. The MFD could be a one of alternatives to be 
able to avoid these weaknesses. It can produce the same quality as that 
of conventional freeze drying and can reduce the drying time effectively 
[82,83]. One problem is the possibility of corona or plasma discharge 
under high vacuum state and then, it induces the melting of ice formed 
inside foods during processing time [84]. In order to avoid corona 
discharge during MFD, the pressure of cavity should be within the 
range 50-100 Pa [85]. The characteristic of the MVD is that the changes 
of moisture ratio follow the exponential or empirical function, and 
have been described by using Lewis equation, Page’s model and Fick’s 
law. The effective moisture diffusivity was significantly increased when 
microwave drying was applied under vacuum condition, compared to 
hot air drying [86]. The MVD can create a more porous dehydrated 
product, which rehydrated more quickly and more completely than the 
air dried product [87-90]. The most common drying method is hot air 
drying (AD) process because it is a very simple method. But in the AD 
process, there are many disadvantages such as low energy efficiency and 
lengthy drying time. This is mainly caused by rapid reduction of surface 
moisture due to the low thermal conductivity and internal resistance to 
moisture transfer. Finally, such a phenomenon results in reducing the 
quality of food because of the shrinkage induced by the reduction of 
moisture content [91-94]. To overcome these drawbacks, microwave 
with the constant level of power during drying process was combined 
with hot air system and it brought significant advantages with regard 
to processing time and food quality [95,96]. Also, the effects of phase-
controlled and cycle-controlled input electrical power on drying 
characteristics were evaluated through combined microwave and hot 
air system [97,98]. In a recent study, the pineapple samples pre-treated 
by osmotic dehydration were dried quickly under variable microwave 
power conditions without significant charring [99]. Malafronte et al. 
[100] tried to simulate the combined convective-microwave assisted 
drying process under various conditions using mathematical model. 
They reaffirmed the key role of dielectric properties in the microwave 
assisted processes. Conventional fluidized bed dryer is one of the 
most suitable equipments for efficient drying of fine particle products. 
However, long drying time during the falling rate period and low 

Treatment Foodstuff Procedure Parameter Quantities Reference

Baking

Pound cake

Conventional oven-baked (commercial electric oven at 
180°C for 35 min.)

Volume (cm3), Weight loss (g/100 g) 88.4 ± 5.5, 9.8 ± 2.0

[39]

Luminosity (L), Weight (g) 82.8 ± 0.4, 40.6 ± 0.95
Moisture (g/100 g), Water activity and 
Density (g/cm3)

36.2 ± 0.3 and 0.93 ± 0.005, 
0.46 ± 0.02

Double-cycle microwave-baked (2450 MHz, with 1000 
W) and 10 power levels)

Volume (cm3), Weight loss (g/100 g) 98.3 ± 6.2, 19.3 ± 1.0
Luminosity (L), Weight (g) 84.5 ± 0.4, 36.3 ± 0.42
Moisture (g/100 g), Water activity and 
Density (g/cm3)

21.3 ± 0.67, 0.87 ± 0.004 and 
0.37 ± 0.02

Madeira cake
Convective-baked at (200 ± 1°C)

Springiness (%), Firmness (N) 42.7, 3.21

[40]
Moisture content (kg/kgdb) 0.315

Microwave-baked (domestic microwave at 2450 MHz 
with power 100 to 900 W)

Springiness (%), Firmness (N) 46.7, 2.52
Moisture content (kg/kgdb) 0.329

Bread

Conventional-baked (preheating to the set 
temperatures (175, 200 and 225°C for 12, 13 and 14 
min)

Weight loss%, Specific 4.06, 1.60

[41]

Volume (ml/g)
Firmness (N), color change (∆E) 0.67, 47.7

Microwave baked 50% power for 2 min and 100% 
power for 1 min)

Weight loss%, Specific 10.80, 2.04
Volume (ml/g)
Firmness (N), color change (∆E) 2.88, 3.0

Table 4: Physical properties of different food products after microwave and traditional baking.
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energy efficiency are the major disadvantages [101]. Conventional 
fluidized bed drying with microwave heating assistance has resulted 
in energy saving and short drying time and increased quality of foods 
[102-107]. The air blower provides a pneumatic agitation so that the 
non-uniform heating problems could be overcome [108]. Nowadays, 
the combined method was expanded by using freeze drying, multi-state 
heat pump, vacuum drying and so on [109-111].

Soysal et al. [112] reported that color demonstrates the chemical 
changes in food material during drying; in addition, it plays a crucial 
role in improving the attractiveness of a food product. Alibas [113] 
demonstrated the color characteristics of pumpkin slices dried 
using air drying, microwave drying and combined microwave-air 
drying methods; higher color values were obtained during combined 
microwave-air drying and was followed by microwave drying, and 
air drying. Combined microwave-air drying has shorter drying time 
compared with other drying methods. Kathirvel et al. [114] found that 
the color values of coriander leaves dried using a 90 Wg-1 microwave 
power density level was almost similar to that of the fresh coriander 
leaves. Furthermore, exceptionally high brightness, redness and 
yellowness values were obtained after microwave drying at the power 
levels of 500 and 750 W. The color values L (brightness) and a (redness) 
achieved through microwave drying at the power levels 750,650 and 
500W were close to the color of samples before drying [77].

Table 5 lists the average values of specific energy consumption 
for seedless grape drying using different methods. Kassem et al. [72] 
concluded that the lowest energy consumption of about 320.6 MJ/kgwater 

evaporated was observed with microwave-drying among three different 
methods used. On the other hand, the value of energy consumption 
during grapes drying by hot air cabinet stood at 564.5 MJ/kgwater 

evaporated, with long drying times unlike microwave drying, wherein the 
heating period is relatively short. Alibas [113] evaluated the energy 
consumption for drying of pumpkin slices using microwave, air and 
combined microwave-air-drying treatments. He concluded that high 
energy consumption was observed for air oven drying compared to 
combined microwave-air-drying treatment and, the lowest energy 
consumption among treatments was observed during microwave 
drying.

However, there is one key problem with the above-mentioned 
techniques. Because of non-uniform heating, the uneven distribution 
of microwave field can occur. In addition, the overheating and quality 
deterioration can take place [115,116]. To overcome these problems, 
the microwave drying technique has been combined with various 
other methods. The Microwave Freeze Drying (MFD) and Microwave 
Vacuum Drying (MVD) are good examples, wherein drying is assisted 
by microwaves to produce high quality foods. Especially, conventional 

fluidized bed dryer combined with microwave heating is good choice 
for drying products containing fine particles. In the future, various 
hybrid methods will emerge.

Conclusion
The successful applications of microwave heating technology for 

processing of various foods have been discussed in the present review. 
The microwave heating technology for pasteurization and sterilization 
contributed to effectively destroy pathogenic microorganisms and 
significantly reduce processing time without serious damage in 
overall quality of liquid food as compared to traditional methods. The 
use of microwave heating for food processing applications such as 
blanching, cooking, and baking has a great effect on the preservation 
of nutritional quality of food. Furthermore, microwave heating could 
significantly require less energy consumption for dehydrating food 
than conventional method. In these days, the potential of continuous 
flow microwave heating at commercial scale and the combination 
heating methods supplemented with conventional thermal treatment 
for uniform heating of particulate foods has been widely investigated 
due to inherent advantages of microwave heating. Although microwave 
heating technology for a variety of food processing applications provide 
significant advantages with respect to lethal effect on pathogens, 
processing time, and energy consumption, several other quality aspects 
of food products processed using conventional methods are still better 
than microwave in terms of color, texture, and other organoleptic 
properties of food products. Therefore, the investigation of parameters 
which can influence the workability of microwave heating such as 
dielectric, physical, and chemical properties of food products should 
be carried out.
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