
Potential Building Blocks for the Creation of Generic Swarm Intelligence
Ontologies

Colin Chibaya*

Department of Computer Science and Information Technology, Sol Plaatje University, Kimberley, South Africa

ABSTRACT
Swarm Intelligence Ontology (SIO) captures concepts, policies, rules, and processes within a specific swarm

intelligence domain. It sets the relationships between the concepts, policies, rules, and the processes of a swarm

intelligence model to visualize interconnections. To create a generic SIO, a deep understanding of probable building

blocks from various inspiring swarm control models is required. Precisely, meticulous comprehension of how swarms

of robotic devices are designed, configured, and  coordinated is apparently required. Two arms of prospective building

blocks for creating generic SIOs are identified in the literature.

On the one hand, non-interactive swarm control models are prevalent, consisting of mathematics-based, physics-

inspired, and elitist robotic devices. On the other hand, interactive swarm control models dominate, commonly built

on natural colonies. This review describes the likely building blocks for creating generic SIOs inspired by these two

categories of swarm control systems.

Keywords: Swarm Intelligence Ontology (SIO); Robotic device; Swarm control model; Non-interactive swarm control

models; Interactive swarm control models; Emergent behavior

INTRODUCTION
Understanding the different ways in which robotic devices in
swarms are designed, configured, and coordinated towards
emergent behaviour is an epic task [1]. In this context, emergent
behaviour is the degree to which we see features at swarm level,
emanating from the individual actions of the members of the
swarm [2,3]. It defines the synergy of the robotic devices in a
swarm [4-7]. Grasping the concepts, policies, rules, and processes
which cause emergent behavior in different swarm intelligence
systems is the main recipe for proposing Swarm Intelligence
Ontologies (SIOs). This review seeks to establish the actions of
robotic devices in different swarms which contribute to
emergent behaviour at swarm level towards prescribing generic
SIOs.

SIOs capture the concepts, policies, rules, and processes of a
swarm and establish the relationships between them while also
visualizing how they are connected. Building a generic SIO
requires an understanding of the domain in which the SIO will

serve. A proper SIO can emanate from a comprehensive review
of different swarm control models. Identification of the basis of
emergent behaviour in different swarm contexts and
understanding the discrete actions of robotic devices in the
swarms, which caused emergent behaviour in different scenarios
[8], as well as pinpointing how those actions were interpreted
into useful robotic device cues, pose challenges. The goal is to
isolate discrete aspects of swarms that cause emergent behaviour
in different scenarios and use those as prospective building
blocks for creating generic SIOs.

Two classes of inspiring swarm control models are distinguished.
On the one hand, non-interactive swarm control systems
comprised of mathematics-based, physics-based, and elitist
robotic devices are prevalent. On the other hand, interactive
swarm control systems commonly built on natural colonies [1]
are dominant. In swotting each category, we emphasize the
control mechanism inferred, the underpinning theory, and all
the communication considerations embraced. Commonalities
are pinpointed with the hope of, in the end, prescribing a
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general concise methodology for characterizing Swarm
Intelligence Principles (SIO).

Section 2 describes non-interactive swarm control models, while
section 3 dwells on interactive swarm control systems.
Conclusions are drawn in section 4, highlighting the key
prospective components of the proposed SIO, the contributions
of the review, as well as pinpointing the potential direction for
future work.

PROSPECTIVE BUILDING BLOCKS OF
SIOS INSPIRED BY NON-INTERACTIVE
ROBOTIC DEVICES
Non-interactive swarm control systems are commonly modelled
using mathematics and the physics laws of motion. The
movement trajectories of robotic devices in this category are
commonly defined using equations, vectors, and matrices. The
robotic devices thereof are characterized by large storage
capacities to keep positions of objects vectors and information
about the landmarks in the environment [9-14].

There are three types of non-interactive robotic devices noted in
this study. The first group comprises mathematically driven
robotic devices. Another set uses physics-based principles. The
last chunk fall under the elitist category. Each type possesses
unique control rules, pertinent communication policies,
particular orientation methods, and exclusive movement cues.

Mathematically driven robotic devices

Robotic devices in this group rely on rigorous mathematical
computations to function. Mathematical formulae are used to
define orientation and movement policies [9]. Two branches of
mathematics (geometry and calculus) are used for this purpose.

Geometry-inspired robotic devices neither require direct nor
indirect interactions among themselves. Rather, each robotic
device's positional preferences are based on the Cartesian
geometry of its location in the environment [15]. These robotic
devices have computational abilities to self-localize relative to the
positions of specific objects in the environment. They perform
independent calculations out of which they can orientate,
measure their distances to targets, and estimate the angles to
turn relative to specific objects in the environment [9]. Motion is
handled using velocity profiles and collision avoidance schemes.
The main causes of emergent behaviour are the robotic devices’
memories, their individual abilities, and the mathematics laws
used in the geometry theory [9].

Many disadvantages are noted in geometry-inspired robotic
devices. First, the requirement to be computationally savvy,
abilities to generate local coordinate systems in which to self-
localize, and the demand for large memory purport
sophisticated robotic devices. In addition, the environmental
features that steer robotic device actions, as well as the need for
robotic devices to be able to calculate velocities, distances,
orientation angles, and define movement and collision
avoidance profiles are too complicated and sophisticated for
inclusion in the design of practical SIOs.

Calculus-inspired robotic devices, on the other hand, can
calculate movement trajectories based on the relative positions
of globally perceived objects in the environment [16]. The main
activity of every robotic device in this group is to self-localize.
Jacobian matrices have also been successfully utilized to achieve
self-localization in swarms [17]. However, that demand for extra
abilities to solve equations and calibrate mathematical functions
into directional information is heft for inclusion in the design
of generic SIOs. In fact, these robotic devices lack the desired
flexibility and autonomy to emulate nature.

Physics bases robotic devices

Physics-inspired robotic devices use laws of motion to orientate.
Three sub-classes of robotic devices are noted in this  category,
namely, forces-based, mechanical-based, and hybrid robotic
devices.

Forces-based robotic devices can respond to in-built virtual
forces for sensing their proximity to others [18,19]. These robotic
devices can attract or repel others depending on their distances
apart [20,21]. Movement speed and orientation are regulated
using the push and pull effects from the virtual forces exerted
between the neighbours [22,23], thus defining positional and
the directional preferences of each robotic device [24,25].
Typical examples of forces-based robotic devices are connoted in
[26-28], where it is shown how robotic devices can self-organize
into mobile hexagonal lattices moving towards some target. The
main causes of emergent behaviour, in this case, are the sensory
skills of robotic devices.

Precisely, the potential fields of energy that develop around
robotic device are the key contributors to subsequent swarm
actions. However, robotic devices in this class lack autonomy.
Their behaviour relies on the density of the attractive and
repulsive counterparts [29]. Worse still, these robotic devices
should have sensory devices mounted onto them. These
requirements are unattractive for the design of generic SIOs.

Mechanically inspired robotic devices, on the other hand, are
commonly propelled using electric motors physically mounted
onto each. Orientation and subsequent movement trajectories
are pre-defined in the motion firmware routines.

The electric motors are often built with enough energy to run
for the duration of the task [30]. However, swarms in this
category prevalently create pre-programmed outcomes rather
than emergent behaviour. Besides, robotic devices in this class
should be deployed in specific densities, where each robotic
device has a well-defined schedule of tasks to accomplish [30,31].
These properties are also unrealistic for envisioned generic SIOs.

Hybrid robotic devices possess a combination of the features of
forces-driven and mechanically inspired robotic devices. Typical
hybrid robotic devices are inferred in [32] where, both, virtual
forces and geometric rules are put together to trigger robotic
device navigation. In their case, displacement equations are used
when the robotic devices' sensory abilities detect obstacles.
However, integration of different robotic device skills does not
take away the complexities associated with the use of each model
separately. Rather, more special cases are added to the robotic
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devices’ motion schemes [32]. Specificities of that nature are also
unattractive to the design of the envisioned generic SIOs.

Elitist robotic devices

Elitist robotic devices give rise to the third type of non-
interactive robotic devices. They are designed with sufficient
memories to recall previous experiences, and then use the
recalled information to infer appropriate future actions. Two
groups of elitist robotic devices are noted and differentiated by
considering the kind of information robotic devices keep. One
group can recall the entire path maps previously followed
[10,33]. The other group relies on landmarks and beacons to
recall the actions to take [14].

Path recalling robotic devices selectively choose the control
mechanism to employ at a given time. Sometimes, they may
recall the landmarks and beacons around, and use these to steer
orientation [11]. In other cases, they may adopt a “memory” of
what to do from the behaviour of the neighbouring
counterparts [11]. However, when isolated, the same robotic
devices may even make use of the direction and angle of the sun
to guide their orientation [34]. A similar elitist model has been
verified in [35], where robotic devices successfully used the
behaviours of the neighbours to navigate with neither internal
state access nor sharing of any experiences. A key parameter of
emergence in these robotic devices is the mechanism in which
path records are kept. Commonly, sequence generation
techniques [33], and search strategies [36] are employed.

There are models whose robotic devices recall other robotic
devices' identities [37], thereby steering one-on-one cooperation.
As such, robotic device activities at individual levels, and the
degree of success at swarm levels, are dependent on the quality
of the information shared [38,39]. However, building blocks that
require the use of large memory capacities are not popularly
recommended in the creation of globally useful SIOs.

Landmarks and beacons-driven robotic devices also require
unlimited memory to keep the properties of the landmarks and
beacons [14]. Although the recalled landmarks provide direction
vectors and orientation information that steer movements
towards the desired directions, and though these landmarks are
used to estimate Euclidean distances between the robotic devices
and their targets [13], the implicit computational demands are
undesirable. Desert ants have been simulated to exhibit such
characteristics [40], achieving emergent behaviour without
neither direct nor indirect interactions. Nonetheless, stigmergic
interactions were shown to be completely impossible because the
levels of the pheromone used dissipated well before they were
useful to other robotic devices due to the harsh conditions in
the desert. In other cases, robotic devices possess selective
abilities to decide how to orientate based on the location of
landmarks. Isolated robotic devices may realign by using sensory
hints [41-43]. Once they are back in formation, they can follow
specific vectors triggered by the information held in landmarks
or other robotic devices [44]. Thus, the knowledge held by elitist
robotic devices is frequently updated until deterministic
emergent behaviour arises [45]. However, elitism eliminates
robotic device autonomy.

INTERACTIVE MODELS
Interactive robotic devices are predominantly nature inspired.
Most of them are modelled on the behaviours of living
organisms such as cells [46], birds [19], DNA [47], bees [19], or
ants [48]. Robotic devices in this branch depend on one another
to complete individual-level tasks. Interactions, whether direct
or indirect, are local. Two classes of interactive robotic devices
are noted, namely, those in which interactions are one-on-one
(direct), and those in which interactions are indirectly mediated
      the environment.

Robotic devices in which interactions are one-on-
one

Robotic devices in this cluster are commonly modelled with the
ability to exchange information one-on-one. The information
shared is often in the form of memory blocks that hold
directional data [49], path histories [49], or positions of objects
in the environment [12]. In some cases, robotic devices share
explicit calls made in a specific robotic device communication
language [50-52].

Important considerations in all robotic devices in this class
pertain to the requirement to know what information should be
transmitted between robotic devices, how the information is
transmitted, and when it is appropriate for such information to
be transmitted [53,54]. Consequently, three types of robotic
devices in this group are distinguished from one another.

The first group of these robotic devices can explicitly share path
histories. In these, message blocks that hold path histories in the
form of stacks are hopped from one robotic device to another
[55]. These stacks usually record the coordinates of the paths
previously followed by robotic devices [49] or information
relating to the best tours made thus far [56]. Other tuples that
are shared record the entire environmental maps, including
pointers to promising locations in the environment [12].
Usually, a learning framework arises [57] in which robotic
devices learn the experiences of other robotic devices by
explicitly referencing their stacks. Learning robotic devices can
create their own roadmaps to pursue based on the experiences
of their neighbours [58].

Although the notion of information sharing is nature-inspired
[59], three disadvantages emanate in this category of robotic
devices. First, these robotic devices should possess large memory
capacities to hold the shared message blocks.

Also, these robotic devices' memory structures must be
compatible with the message blocks shared. Thus, all robotic
devices should be structurally similar [60]. More so, important
information held in the memories of less successful robotic
devices may be lost when the path histories of relatively
successful robotic devices are preferred and inherited. That
alone expediates information loss at swarm level.

Robotic devices that can share geometric vectors are more
promising. These robotic devices do not require relatively
excessive memory capacities since they would only keep a record
of specific vector components [49]. There are cases  where the
vectors shared interpreted the levels of pheromone on the
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environment [61]. In other cases, these vectors interpreted the
geometries of specific objects in the environment [49]. Although
the features purported in these robotic devices may be
considered in the design of generic SIOs, the need for
substantial memory capacities is perturbing.

Robotic devices in which some form of a communication
language is used have been reported as well. Most robotic device
communication languages are developed with full syntax,
vocabulary, and semantics only understood by those robotic
devices [50]. Popular in this category are robotic device
communication languages based on the growing point and
origami shape theories [51]. In particular, the work of [62] is
more inspiring, where a growing point language has been used
to implicitly enhance pheromone dissipation in ant-like robotic
devices. In other communication languages, high-level
descriptions of functions and relationships among robotic
devices are required upfront [63]. Such communication
languages incorporate processes and properties to coordinate
the behaviour of individual robotic devices for the duration of
their functionality [64]. In most cases, sets of pre-programmed
coordination laws and primitive behaviours are incorporated in
the system upfront [65], together with the vocabulary for robotic
devices to use [66]. Other robotic device languages support call
protocols explicitly developed into robotic device verbs such as
move, respond, avoid, recruit, or hello [67]. However, these calls
are often broadcast to the entire swarm, compromising privacy
and autonomy in the robotic  devices.

A robotic device communication language based on geometric
primitives and homeostasis maintenance has also been
successfully used as an amorphous medium language [68,69]. In
these works, the language was used to describe robotic  device
behaviour in terms of the spatial regions of the amorphous
media [52], where neighbours only communicated utilizing a
shared memory region [70].

Investigations aimed at identifying the primitive behaviours of
ant-like robotic devices with abilities to communicate using
specific communication languages have also been concluded.
However, the proposed language is currently very limited in
vocabulary [50]. As such, only a limited domain of emergent
behaviour can be achieved. Attempts to propose robotic devices
that can use sentence messages in progress [71]. However, the
results presented so far lack in that the roles of receiver robotic
devices are made consequences of the desires of sender robotic
devices [72]. In other words, the independence of the receiver
robotic devices is grossly compromised. Nonetheless, these
debates are bringing us closer to the identification of explicit
building blocks for the design of desired generic SIOs.

Robotic devices in which interactions are
indirectly mediated

Swarm control models where robotic device interactions are
indirectly mediated are predominantly adopted from chemical
or biological operations. Virtual chemicals are usually placed in
the environment, creating shared memories for the robotic
devices in the swarms. These virtual chemicals are, often, placed
into the environment in two ways, either by the objects within

the environment [73], or by the robotic devices themselves
[74,75]. We refer to the robotic devices in the former group as
optimized, and those in the latter set as stigmergic.

Optimized robotic devices support chemical markers placed into
the environment by the objects within that environment [73].
For example, chemical plume gradients have been created at
specific points in the environment, which guided robotic devices
to those plume sources [45,73]. What stands out in optimized
robotic devices is the requirement to self-localize relative to the
chemical sources [76,77]. In other words, local coordinate
systems arise in which robotic devices can determine the
direction to follow relative to the quality and position of
particular chemicals around them [78].

In most cases, the chemicals define unidirectional paths [44]. As
a result, elitist mechanisms would be required in situations
where bi-directional paths are needed [7,34]. A common form of
elitism involves robotic devices that can conveniently switch
between different interaction strategies when it becomes
necessary [12]. At times, robotic devices may use sensory cues
together with chemical gradients [14]. In other cases, they may
use some form of limited vision to augment chemical tracing
[79]. However, the bulk of optimized robotic devices supplement
chemical tracing with extra memories to recall previous
experiences [80,81]. Further studies towards the identification of
the primitive behaviours of optimized robotic devices are outside
the scope of this review because elitism is not recommended in
the design of generic SIOs [82,]. Basically, elitism takes away
robotic devices’ autonomy [18].

Stigmergic robotic devices, on the contrary, can excrete specific
levels of pheromones [74-76]. These robotic devices make use of
a  non-symbolic  form of  communication  mediated through the
environment [82,83]. The term stigmergy was first used  in 1959
by Grassé [84-86]. It is formed from the Greek words stigma,
which means signs, and ergon which means actions. The term
thus captures the notion that robotic devices' activities would
leave signs in the environment, signs which determine robotic
devices' subsequent actions [87].

We distinguish between two types of stigmergic robotic devices
[88,89]. One group comprises sematectonic stigmergic robotic
devices [87] with abilities to change the physical characteristics
of the environment. Some examples of sematectonic stigmergic
robotic devices were depicted in the hole making problem [36],
pit construction problem [90], and nest building problem
[91-95].

The second group comprises sign-based stigmergic robotic
devices in which pheromone signs are dropped and marked on
the environment. Although these pheromone signs may not
have direct relevance to the tasks being undertaken by the
robotic devices at the time, they indirectly influence subsequent
robotic device actions and behaviours, including those
behaviours which may be task related.

In sign-based stigmergic robotic devices, mobility is probabilistic
[48]. Path selection decisions are based on the levels of
pheromones held in the environment [96]. Sign-based stigmergic
robotic devices are further classified into three types, namely:
those that rely on a single form of pheromone, those that use
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two types of pheromones, and robotic devices that can use
multiple levels of pheromone.

The first group of robotic devices can excrete and perceive one
and only one form of pheromone. All robotic devices in this
category are sensitive to that single level of pheromone
regardless of the task at hand. The source of the single level of
pheromone is, often, the robotic devices within the swarm itself
[75]. However, there are cases where search targets have been
designed with abilities to excrete this single level of pheromone
[41]. However, in such cases, undesired elitism arises [97].

Among the most popular examples of single-pheromone models
is the double bridge scenario [74]. In this experiment,  ant-like
robotic devices excrete one level of pheromone regardless of the
direction in which they are traveling across the bridge. Food
sources and the nest are situated on different ends of the two-
way bridge. The task of each ant-like robotic device is to travel
across the bridge in search of food, and upon finding the food
source, pick up the resource, and return to the starting point
[33,74,98]. These trips are repeated for the duration of the
simulation. Trodden paths emerge along the shorter bridge,
penalizing longer routes.

In most cases, single pheromone trails are unidirectional.
Gradients emerge in which robotic devices move from low to
high chemical concentration. However, again, elitist strategies
are required when bi-directional robotic device movements are
sought [34]. That requirement for elitism deems these robotic
devices unsuitable for most practical applications.

Scenarios where robotic devices rely on two forms of pheromone
minimize the need for elitism. Related robotic devices are
prevalently sensitive to two different levels of pheromones that
can co-exist in the same environment [99]. Commonly, both
levels of pheromone are placed in the environment by the
robotic devices, where one level is excreted when robotic devices
travel from the starting point in search of the food resources,
and another level is dropped when robotic devices travel in
return trips [48]. However, there are cases where one or both
levels of pheromones originated from other objects within the
environment [100-102]. We envision SIOs that appreciate setups
in which both pheromones originate from the robotic devices
for potential generalizability of the SIO thereof.

Robotic devices that support multiple levels of pheromone are
also available. They are designed to remedy most flaws noted in
optimized, single pheromone, and two pheromone robotic
devices. These robotic devices are usually built on the notion
that every extra level of pheromone added would reduce elitism.
As a result, the swarm intelligence systems thereof are relatively
robust, fault-tolerant, flexible, and adaptive in supporting
robotic device autonomy [41].

Several examples of multiple pheromone robotic devices have
been simulated in medical scenarios. The work of [41] is atypical
example in which mobile cancer cells are simulated as operating
in human blood vessel-like environments. In their model, cancer
cells can excrete the first form of pheromone called cancer
pheromone, which is attractive to cancer attacking robotic
devices. Cancer-free cells excrete the second level of pheromone
called obstacle pheromone, which is repulsive to cancer

attacking robotic devices. This mechanism ensures that cancer-
attacking robotic devices do not waste time examining cancer-
free cells. Upon detecting a cancer cell, a robotic device excretes
the third level of pheromone called alarm pheromone, which is
attractive to cancer attacking robotic devices that are still in the
seeking mode. As a result, helper robotic devices can be
recruited around the cancer cell to destroy the tumor. This
model has inspired the development of other nanite-like robotic
device deployed in similar inside-the-body environments [42,43].

Closely related to the cancer treatment model [41], was the
wound detection system [97]. In this model, platelet-like robotic
devices were simulated as moving inside vessel-like
environments. These platelet-like robotic devices had the task to
identify wounds inside blood vessels. The wounds excreted a
wound pheromone which was attractive to the platelet-like
robotic devices. The platelet-like robotic devices would only stick
around a location if the concentration of wound pheromone
was high enough to connote the presence of a wound. Robotic
devices around a wound could excrete the alarm pheromone to
attract other platelet-like robotic devices. Clean surfaces in the
vessels were obstacle-like and excreted some repulsive levels of
pheromone to platelet-like robotic devices. This way, platelet-like
robotic devices' medical testing time is not wasted on clean
surfaces.

A major setback for most multiple pheromone models is that
the sources of these levels of pheromones are often other objects
in the environment, not the robotic devices themselves, defining
elitism. Robotic devices should thus be able to selectively
perceive these different levels of pheromone [103,104],
distinguishing between the different meanings of each level
[104-106].

Some stigmergic robotic devices combined the advantages of two
pheromone interaction systems with those of multiple
pheromone systems [1]. The study investigated robotic device
activities in scenarios where one level of pheromone was
excreted when robotic devices travelled in search of the targets,
and another level was excreted when robotic devices foraged
back to the nest-like starting point. Related environments
supported chemical markers which indicate the positions of the
key objects and targets, as well as directional pheromone levels.
The key advantages of robotic devices in this category are the
naivety of the robotic device and complete freedom from the
need to have large memory capacities. Key information is held
in the environment. As a result, errors at robotic device levels do
not affect the completion of  tasks at swarm levels, connoting
relatively robust and fault-tolerant solutions. Also, elitism is
reduced or eliminated. These are attractive considerations for
building generic SIOs.

DISCUSSION AND CONCLUSION
This review mainly distinguished between interactive and non-
interactive robotic devices. Robotic device designs Strategies that
are commonly connoted in the literature were discussed. In
discussing each category, we emphasized the important
characteristics of different robotic devices, splitting each
category based on the interaction techniques supported (direct
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or indirect). Different classes of robotic devices (path recalling,
geometric, language-based, optimized, stigmergic, calculus-based,
forces driven, mechanical, hybrid, or beacon and landmarks
based) were distinguished, highlighting commonly inferred
communication strategies (direct message passing, environment
mediated, sensor-based, vision, or hybrid mechanisms).

More so, this review also discussed the type of data that is
commonly shared in each class of robotic devices (stacks,
vectors, chemicals, forces, landmarks, or beacons). Robotic
device orientation strategies were summarized along these same
lines (vector-based, language-based, probabilistic, calculated
directions, forces based, or cues steered by landmarks).
Furthermore, we summarized the key robotic device activities at
individual levels (reading stacks,  interpreting language verbs,
detecting chemicals, self-localizing, motion planning, or
calculating directions), and indicated the key parameters of
emergence that characterize each class of robotic devices (robotic
device memory, verbs, elitism, robotic device abilities,
environment, laws of motion, or communication mechanisms).
We make the following four observations that may inspire the
creation of generic SIOs:

Generally, robotic devices interaction systems emphasize
orientation and movement as the key ingredients for machieving
swarm intelligence. Orientation is guided by some form of meta-
information such as robotic devices' sensory skills or robotic
device memories. On the other hand, movement is commonly
based on specific displacement factors such as attraction or
repulsion effects. This observation inspires possible
computational choices when system developers select primitive
behaviours with which robotic devices can achieve orientation
and movements. Robotic device orientation and movement are
apparent policies to consider in the development of ageneric
SIO.

Successful robotic device orientation relies on the availability of
locally perceived information around the robotic devices
(mathematical equations, geometry, forces, sensory factors,
chemicals, or other robotic devices). This information is updated
regularly to appropriately guide the swarm. The choices system
developers may make regarding information update rules such as
dropping levels of pheromones, pheromone evaporation or
diffusion, vector modulation policies such as message passing,
detecting targets, and normalizing vectors, can be inspired by
this observation leading to the building blocks for creating
generic SIOs.

We learn about the need to design robotic devices that possess
some basic memory for the storage of important information.
This observation inspires the architectural design of robotic
device memories and the internal states thereto. In generic
SIOs, robotic device state considerations and memory capacity
are apparent.

Although robotic devices remain autonomous, interactive
systems often create a learning framework-both at individual and
communal levels-in which robotic devices collectively engineer
solutions from the shared information. Related interactive
robotic devices are fascinating, not because they are intelligent as
individuals, but because they collectively achieve compelling

emergent behaviours as swarms. The choice to investigate the
actions of robotic devices can be inspired by the cooperative
nature of interactive robotic devices. We are also inspired by the
learning framework thereof, the dominance of interactive
systems in achieving stable solutions, as well as the simplicity
and naivety of related robotic devices regarding the memory
needs. Generic SIOs should consider all these factors.

The value of this review is further emphasized by the following
two contributions:

Categorization of robotic devices will form the basis of the
generic SIO. The generic SIO will likely capture the knowledge
of all these different classes of robotic devices. We believe that
the SIO may better inform swarm intelligence systems
developers in creating practical swarm intelligence models with a
wider scope.

The parameters of emergence connoted in each case are also
important components of the likely generic SIO. They may
potentially inspire the choices to be made regarding the
properties and quantifiers of emergency.

A few potential directions of future works emanate from the
survey presented in this review. However, three future directions
for research stand out.

The creation of the much-awaited generic SIO is overdue.

Another survey of the various approaches for quantifying
successful emergence arising from robotic device interactions
also apparent. Those pros and cons for using each specific
measure of emergence in different situations can be additional
meta-information in the creation of generic SIOs.

Practical applications in which deterministic emergent
behaviours are evaluated using the envisioned generic SIO are
also overdue. In these, specificity of the outcomes would be key.
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