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Abstract

Alteplase (recombinant tissue plasminogen activator) is the only licensed drug for acute ischemic stroke (AIS)
treatment, but only 3–5% of patients with AIS receive thrombolytic treatment using alteplase. Further breakthroughs
are needed for thrombolysis in AIS because thrombolytic therapy does not benefit all patients equally. Alteplase
administration can induce intracerebral hemorrhage or a low rate of recanalization for occlusion of major cerebral
arteries (e.g., internal carotid artery). Recently, the effect of alteplase–uric acid (UA) combination therapy was
demonstrated in a clinical trial of AIS patients. UA administration resulted in a significant improvement in functional
outcome in patients with hyperglycemia, female patients, and patients who had suffered a moderate stroke.
Oxidative stress and antioxidant properties would be differ in each AIS patients after reperfusion. Therefore, the
optimal dose of UA may vary according to sex, age, body weight, ethnicity and medical history (e.g., diabetes
mellitus). Hence, various study arms may be needed in future, large clinical trials. In the future, if levels of oxidative
stress or antioxidant properties can be determined rapidly in AIS patients before treatment, the optimal dose of
antioxidant may be ascertained.
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Short Communication
Stroke is a major cause of morbidity and disability. It is predicted

that the overall cost of stroke care will account for 6.2% of the total
burden of illness in industrialized countries by 2020 [1]. Therefore, a
new standard therapy for early critical care in patients with acute
stroke that restores their function is needed.

Alteplase (recombinant tissue plasminogen activator) is the only
licensed drug for acute ischemic stroke (AIS). Tissue plasminogen
activator catalyzes plasminogen to plasmin if alteplase is administered
via the intravenous route <4.5 h from the onset of AIS symptoms,
which promotes endogenous fibrinolysis and vessel recanalization
[2-6]. However, only 3–5% of AIS patients receive thrombolytic
treatment using alteplase, mainly due to delays in reaching hospital [7].

The efficacy of alteplase may be limited by its toxicity and by
reperfusion injury. Thrombolytic therapy does not benefit all patients
equally because alteplase administration can induce intracerebral
hemorrhage (ICH) or a low rate of recanalization after occlusion of
major cerebral arteries (e.g., internal carotid artery, proximal middle
cerebral artery) [5]. Therefore, many patients continue to suffer
substantial disability after receiving thrombolytic therapy with
alteplase [8]. Thus, new methods to enhance the thrombolytic effect of
alteplase and to reduce ICH for AIS patients are needed.

Oxidative stress is a major contributor to brain damage in AIS
patients, particularly if ischemia is followed by reperfusion [9]. Co-
administration of neuroprotective antioxidants could augment the
value of thrombolytic therapy, but neuroprotective antioxidants that
are approved worldwide are lacking [3-5,10-17].

Uric acid (UA; C5H4N4O3) is an endogenous product derived from
the metabolism of purines. UA is responsible for 60% of the total
antioxidant capacity of humans [18]. The antioxidant property of UA
includes scavenging of hydroxyl radicals, hydrogen peroxide, and
peroxynitrite. UA suppresses the Fenton reaction, chelates transition
metals, and prevents lipid peroxidation [19]. The neuroprotective effect
of UA has been shown in some experimental models of brain ischemia
[20-22]. In a rat model of thromboembolic stroke, co-administration
of UA and alteplase elicits synergistic effects compared with
administration of these agents alone. Co-administration of UA and
alteplase reduces infarct volume, improves neurologic function, and
attenuates the inflammatory response [21].

In addition to the synergistic effects seen in models of ischemia,
clinical trials have suggested that UA has beneficial effects in AIS
treatment. In a clinical trial of AIS patients treated with alteplase,
infusion of UA reduced levels of the markers of lipid peroxidation in
plasma, such as malondialdehyde [23]. A meta-analysis (10 studies;
8,131 patients) showed that increased levels of UA in serum had
protective effects upon neurologic outcomes after AIS, and that high
levels of UA in serum at AIS onset were a biomarker of a better
prognosis in AIS patients [24]. Moreover, Amaro et al. reported that
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higher concentrations of UA are associated with better outcomes after
thrombolytic therapy with alteplase [25].

Recently, a double-blind study, “Safety and Efficacy of Uric Acid in
Patients with Acute Stroke” (URICO-ICTUS), was conducted in 411
AIS patients treated with alteplase <4.5 h of symptom onset [26]. The
study compared administration of UA with that of a placebo [26].
URICO-ICTUS showed that ischemic stroke that worsened upon
imaging <72 h occurred significantly more frequently in patients in the
placebo group (9%) than in the UA group (3%) (p=0.025) [27]. A
tendency toward improvement was observed in functional outcomes at
90 days in the UA group, though the difference was not significant
[27]. The addition of UA to thrombolytic therapy resulted in an
absolute increase in the prevalence of excellent functional outcome at
90 days of 6% compared with placebo (placebo group, 33%; UA group,
39%; p=0.099) [27]. Neither clinically relevant differences nor
significant differences were reported between the two groups with
respect to death, symptomatic ICH, or gouty arthritis, thereby showing
the safety of UA administration [27].

Acute concentrations of matrix metalloproteinase-9 (MMP-9) in
serum have been associated with alteplase administration. Disruption
of the blood–brain barrier, hemorrhagic complications, lesion growth,
and poor long-term outcome has been noted in alteplase-treated
patients [28-33]. UA has been shown to prevent increments in levels of
active-MMP-9 in alteplase-treated patients, and this biomarker has
been found to be inversely correlated with AIS outcome at 90 days
[28,30].

However, the mechanism of action of UA is not known. Reactive
oxygen species (ROS) are generated soon after occlusion and
reperfusion of vessels [34]. Levels of the markers of oxidative stress are
raised before recanalization in patients with AIS undergoing treatment
with alteplase [35]. Moreover, alteplase administration induces
oxidative stress in rat brains [36], in addition to ROS generation by
ischemia and reperfusion. The fibrin-binding affinity of alteplase can
be impaired by exposure to ROS, and the characteristic advantage of
the thrombus selectivity of alteplase in spontaneous thrombolysis and
thrombolytic therapy may be diminished in environments in which
ROS are plentiful [37]. Therefore, UA may promote alteplase-mediated
thrombolysis through reduction of ROS and of its anti-thrombolytic
action.

The clinical evidence and mechanism of action for UA must be
clarified. The synergistic effect of UA with alteplase does not benefit all
patients equally; thus, a larger confirmatory clinical trial should be
planned to establish the benefit of UA with thrombolytic therapy in
AIS patients. URICO-ICTUS also showed that UA administration
resulted in a significant improvement in functional outcome in
patients with hyperglycemia, female patients, and patients who have
suffered a moderate stroke [26,30,38]. Patients have individualized
oxidative stress and antioxidant properties in ischemia and
reperfusion. Therefore, the optimal dose of UA may vary according to
sex, age, body weight, ethnicity and medical history (e.g. diabetes
mellitus). Hence, various study arms may be required for future large
clinical trials.

In the future, if levels of oxidative stress or antioxidant properties
can be determined rapidly in AIS patients before treatment, the
optimal dose of antioxidant may be ascertained. To ensure
combination therapy becomes the treatment of choice for AIS patients,
the basic mechanisms of alteplase–UA combination therapy must be
determined.
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