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Abstract
Industrial growth, urbanization and wrong agricultural practices are responsible for pollution and loss of 

environmental quality. Petro plastics, produced from mineral resources, are one of the most important materials, 
but the production process destructs the environment. Bio-based and biodegradable plastics can form the basis 
for environmentally preferable and sustainable alternative to current materials based exclusively on petroleum feed 
stocks. Bioplastic helps us to overcome the problem of pollution caused by synthetic plastics as they originate from 
renewable resources and are a new generation of plastics able to significantly reduce the environmental impact in 
terms of energy consumption and greenhouse effect. Polyhydroxyalkanoate (PHA) emerges as a potential candidate 
in a way to be used as a biopolymer material which not only possesses the characteristic similar to the traditional 
plastic, but it is also biodegradable in nature without any toxic production .A way to reduce the production cost is 
the use of alternative substrates, such as the agro industrial wastes. This review gives an overview of economical 
strategies to reduce production costs of PHA as well as its applications in various fields. 

Polyhydroxy Alkanoates - A Sustainable Alternative to Petro-Based Plastics
Gupta Divya1*, Tiwari Archana1 and Ramirez Alejandro Manzano2

1School of Biotechnology, Rajiv Gandhi Proudyogiki Vishwavidyalaya, Bhopal, M.P., India
2Department of Material Sciences CINVESTAV-IPN, Unidad Querétaro Libramiento Norponiente, Querétaro, México

Keywords: Polyhydroxyalkanoates; Bioplastics; Environment

Introduction
Plastic can be regarded as one of the greatest inventions and an 

indispensable commodity of human’s life ever since it has been 
developed into a major industry [1]. It contributes to sustainable 
development and brings quality life to citizens. As example plastics 
makes many goods in our daily life more affordable and reduce the 
wastage of many valuable resources.

Plastics have eased the everyday life; its usage is increasing and 
annual production has increased substantially over the last 60 years, it 
has hiked by 3.8 % to around 280 million tons in 2011 over the world. 
The statistics of European market clearly reveal the annual turnover of 
300 billion Euros [2]. The main source for the production of plastics 
are petrochemicals which are non renewable in nature. A recent 
estimation done on the earth’s mineral resources showed an alarming 
rate of depletion of these valuable natural assets. This has created a 
renewed impetus to search for various other sustainable alternatives. 
The increasing cost and the awareness of consumers of the negative 
environmental impact of the fluid mineral fuels and related products 
like recalcitrance to biodegradation [3], toxicity after incineration and 
massive waste accumulation into the landfills as well as growing water 
and land pollution problems have led to concern about plastics. 

Biopolymer
With the excessive use of plastics, rising pressure is getting placed 

to meet the ever increasing demand of petrochemicals coupled with the 
search for a safe plastic waste disposal process. This awareness of the 
waste problem and its impact on the environment has awakened new 
interest in the area of economic and efficient biodegradable polymers 
sources for production of plastic or popularly known as the “bioplastic”. 
Table 1 shows the comparitive analysis between biopolymer and peto 
based plastics.

Numerous types of biodegradable polymers are under 
development that popularly includes Polylactides, Polyglycolic acids, 
Polyhydroxyalkanoates (PHAs), aliphatic polyesters, polysaccharides. 
On the other hand, natural renewable polymers include porous 
sponges (from cellulose wood fibres), fibres (made from natural fibres), 

hydrogels, starch, cellulose, chitin, chitosan, lignin and proteins. 
Among these numerous aforementioned biodegradable polymers, 
PHAs is being considered as the most potential renewable substitute 
to petrochemical plastics because of its resemblance to commercially 
available plastic in context to physical and chemical properties [4,5].

Polyhydroxyalkanoates (PHAs) are polymers synthesized entirely 
by a biological process that involves conversion of carbon sources 
directly into PHAs through microbial fermentation [6,7]. In contrary, 
most of the other biopolymers like polybutylene succinate (PBS), 
Polytrimethylene Terephthalate (PTT) and Polylactic Acid (PLA) are 
chemically synthesized using fermentation-derived monomers. For 
example, PLA is prepared by Ring Opening Polymerization (ROP) 
of lactide, a cyclic dimer of dehydrated lactic acid that is produced by 
fermentation [8-11].

Classification of PHAs
PHAs  are lipoidic material [12] accumulated intracellularly 

as insoluble inclusions by a wide variety of microorganisms in the 
presence of an abundant carbon source. The assimilated carbon 
sources are biochemically processed into hydroxyalkanoate units 
under stressed conditions, polymerised and stored in the form of 
water insoluble inclusions in the cell cytoplasm. The ability of cells to 
carry out the polymerization process rests on the availability of a key 
enzyme known as PHA synthase. The product of this enzyme is high 
Molecular Weight (MW) optically active crystalline polyester [13].  The  
molecular  weight   of  PHAs  depends  upon the  type  of  growth  
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conditions  and  microorganism,  which    range between 2×105 to 3×106 
daltons [6, 14, 15].

Among these Polyhydroxybutyrate, poly(3-hydroxybutyrate) 
[P(3HB)] was the first and most common type of PHA to be identified 
by the French microbiologist Maurice Lemoigne [16]. P(3HB) is an 
optically active biological linear polyester which is insoluble in water 
and exhibit a high degree of polymerization that ranges from 105 to 
approximately 107. The biosynthesized P(3HB) is thus perfectly iso-
tactic and upon extraction from the microorganisms has a crystallinity 
of about 55-80% with a melting point at around 180°C [17-20].

Structurally, these polymers are classified on the basis of the number 
of carbon atoms that ranges from 3-5, 6-14, mostly and some are 
more than 14   [7,20,21]  and the type of monomeric units, producing 
homopolymers or heteropolymers. PHAs with 3–5 carbon atoms 
are considered as short chain length PHA’s (scl-PHAs). Examples 
of this class include poly(3-hydroxybutyrate) [P(3HB)] and poly(4-
hydroxybutyrate) [P(4HB)]. Medium chain length PHAs (mcl-PHAs) 
contains 6-14 carbon atoms which includes homopolymers poly(3-
hydroxyhexanoate) [P(3HHx)], poly(3-hydroxyoctanoate) [P(3HO)] 
and heteropolymers such as P(3HHx-co-3HO) [22]. PHAs with more 
than 14 carbon atoms are considered as long chain length PHAs (lcl-
PHAs) and they are very uncommon and least studied. For example 
P(3HB-3HV-3HHD-3HOD) copolymer in Pseudomonas aeruginosa 
[21]. 

Characteristics of Polyhydroxyalkanoates 
Physical characteristics

Although aliphatic polyesters have been studied extensively but 
their remarkable properties such as sufficiently high molecular mass 
coupled with polymerization characteristics were realized only recently 
which can be exploited in order to replace conventional plastics such 
as polypropylene. Naturally occurring PHA’s are optically active 
linear polyesters with each repeating unit in the stereochemical 
R-configuration. Monomeric compositions, chemical structure as well 
as the molecular weight are the key factors influencing the physical 
properties of the polymer. The molecular mass of PHAs varies per PHA 
producer but is generally in the order of 50,000 to 1,000,000 Dalton.  

Scl-PHAs such as P(3HB) are crystalline polymers which are quite 
brittle and rigid, with high melting points and low glass transition 
temperatures [23]. These unique characteristics of this biologically 
synthesized P(3HB) arises due to its exceptional purity. The brittleness 
is due to the formation of large crystalline domains in the form of 
spherulites. On the other hand, P(4HB), P(3HB-co-4HB) P(HB-co-
HV), scl-PHAs are  strong and malleable thermoplastic polyesters 
[24],especially P(HB-co-HV). It is created by incorporating PV into 
PHB which is less stiff and brittle than PHB, as a result it can be used 

to prepare films with excellent water and gas barrier properties similar 
to polypropylene. It can also be processed at lower temperature along 
with preserving most of mechanical properties of PHB [25]. Moreover, 
Mcl-PHAs are the thermoplastic elastomers with low crystallinity and 
tensile strength but high elasticity. They also have a lower melting 
point and glass transition temperatures in contrast to scl-PHAs and 
polypropylene. 

However, for the replacement of petroleum-based plastics, PHA 
copolymers consisting of both SCL and MCL monomers are considered 
better choices than PHB due to the presence of certain enhanced 
properties, such as flexibility and ease of processing [26]. Table 2 gives 
an outline of comparison of physical properties of different PHAs with 
conventional polymers [6,27]

Biological characteristics

The diversity of numerous hydroxy acid monomers that can 
be incorporated into PHAs, in conjunction with a biological 
polymerization system capable of generating high-molecular weight 
materials, has resulted in a manifold rise in the availability of wide range 
of new polymers. Important biological attributes of PHA includes:

Biodegradability: Besides the typical polymeric properties 
described above, biodegradability is conceivably the most versatile 
property of PHAs. These biological polyesters are inert, insoluble in 
water, not affected by moisture and indefinitely stable in air [28].

These polymers are biologically processed by microbial enzymes 
into inorganic molecules such as carbon dioxide and water under 
aerobic conditions or methane and water under anaerobic conditions 
[29]. Such a processing is a part of the natural carbon recycling cycle 
that exists on the earth shown in (Figure 1). The ability to degrade 
PHA is broadly carried out by bacteria and fungi, which depends 
on secretion of specific extracellular PHA depolymerases into the 
environment or by the intracellular mobilization of PHA in the 
accumulating strain itself.  Both Intracellular mobilization of PHA and 
extracellular degradation differ from each other due to difference in 
the biophysical conformations of extracellular (denatured) PHA from 
those of intracellular (native) PHA. Intracellular PHA depolymerases 
hydrolyze an endogenous carbon reservoir which are in amorphous 
state, the native PHA granules, consisting of the polymer with a surface 
layer of proteins and phospholipids which is sensitive to physical or 
chemical stress. Extracellular PHA depolymerases degrade denatured 
extracellular granules which are partially crystalline and are lacking a 
surface layer [30,31].

Intracellular depolymerases degrades poly[D-(-)-3-hy-
droxybutyrate] (PHB) within the granules into 3-hydroxybutyric acid. 
It acts on the latter and oxidises it to acetylacetate and a β-ketothiolase 
acts on acetylacetate to break it down to acetyl-CoA. Under aerobic 

Properties Biopolymer Petro-based plastics

Renewability Yes or partially No
Sustainability Yes No

Degradability Biodegradable and/or compostable Usually non-degradable (Some are degradable through polymer 
oxidation)

Polymer range
Biopolymers (lipids, proteins, Starch etc.), Bacterial 

polymers (Polyhydroxyalkanoates, polyhydroxybutyrate) Extensive
Green house gas emissions Low emission High emission

Utilization of fossil fuels Limited utilization High utilization
Agriculture land utilization Expected to increase No utilization

Table 1: Comparison between Biopolymer and Petro-based plastics.
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conditions, the acetyl-CoA enters the citric acid cycle and is oxidized 
to CO2 [32]. Very little is known about the intracellular depolymerases 
since they are always found to be intimately connected to the P(3HB) 
granules and the overall process is very complex [31,33]. Extracellular 
depolymerases degrade polyhydroxyalkanoates present in the 
environment [31]. The environmental microbes attack the polymers 
on the surface [7] and secrete extracellular enzymes that solubilise 
the polymer and these soluble products are then absorbed through 
their cell walls and utilized. The PHA depolymerase enzymes act on 
the polymer mainly by hydrophobic interactions. Degradation by 
these depolymerases initially produces oligomers. Some microbes 
produce an additional dimer hydrolase, which further breaks down the 
oligomers into the corresponding monomer [34]. These extracellular 
enzymes are quite well understood. The activities of these enzymes 
may vary depending on the composition of the polymer, its physical 

form (amorphous or crystalline), dimensions and most importantly, 
the environmental conditions. 

Biocompatibility: According to Williams DF  the biocompatibility 
may be defined as the ability of a material to perform with an 
appropriate host response in a specific application [35] without any 
toxic or injurious after effects on biological functions. PHA is highly 
biocompatible in nature as no toxic compound is generated during 
polymer degradation. The biocompatibility of PHA particularly 
P(3HB), is no surprise, as 3HB is a normal blood constituent and is 
found in the cell envelope of eukaryotes [36]. The ease of crystallization 
of PHB during precipitation makes entrapment of the drug difficult 
[37]. Hence, copolymers with HV have been used for drug formulation 
more than the pure PHB. Copolymers of 3-hydroxybutyrate and 
3-hydroxyvalerate (PHBV), P(4HB), copolymers of 3-hydroxybutyrate 
and 3-hydroxyhexanoate (PHBHHx) have been tested in animals. 
These tests revealed that all these polymers were biocompatible in 
various host systems [38]. PHAs have great contribution in medicine 
,it has been  used in different medical applications, such as in wound 
management (sutures, skin substitutes), vascular system devices (heart 
valves, vascular grafts), orthopedic (scaffolds for cartilage engineering, 
screws, bone graft substitutes), controlled drug delivery (through 
macro and nanocarriers), urological stents etc [39]. Microcapsules 
from PHB and P(HB-co-HV) has been prepared by various techniques 
and investigated for the release of bovine serum albumin [40] P(3HB-
3HV) capsules can be used as a suitable  biodegradable matrix  for drug 
delivery in veterinary medicine that can remain in the rumen of cattle 
[41,42].PHB and P(HB-co-HV) are both crystalline materials [42] 
but the actual degree of crystallinity varies considerably depending 
on crystallization conditions and HV content [43]. This will, in turn, 
affect the drug release characteristics. Drug release rates have been 
reported to increase with increasing HV content [43-45]. For instance, 
microspheres from P(HB-co-HV) containing tetracycline for the 
treatment of periodontal diseases showed decreasing encapsulation 
efficiencies and increasing delivery rates with a higher HV content. 
Sulbactam-cefoperazone antibiotic was integrated into rods made of 
poly(3-hydroxybutyrate-co-22 mol%-3-hydroxyvalerate) and studies 
were carried out to use these rods as antibiotic-loaded carriers to treat 
implant related and chronic osteomyelitis. The rods were implanted 
into a rabbit tibia that was artificially infected by Staphylococcus aureus. 
After 15 days, the infection subsided and within 30 days there was 
complete healing. The high melting points of P(3HB) and P(HB- co-
HV) is sometimes a disadvantage and the use of medium chain PHAs 
with lower melting points could provide a considerable advancement 
in drug delivery [46]. P(4HB) as biocompatible material  has been 
used as a cardiovascular patching material with great success. It has 
also been used to make heart valves and in vascular grafting. Sutures, 
ligaments, surgical meshes and pericardial substitutes made with 
P(4HB) are now being used [47]. PHA matrices have also been tested 
for hemocompatibility by inspecting the response of mammalian blood 
when incubated with polymer films. It was shown that PHB or P(HB-
co-HV), when in contact  with blood, did not affect platelet responses, 
nor did the polymer activate complement system.

Renewable nature: The production of PHA is solely based on 
the usage of renewable resources. Fermentative production of PHAs 
is based on carbon and energy sources obtained from agricultural 
products such as sugars and fatty acids. These agricultural feed 
stocks are derived from CO2 and water, and after their conversion to 
biodegradable PHA, the breakdown products are again CO2 and water. 
Thus, apart from being biodegradable and biocompatible, PHAs receive 

Polymer
Melting

temperature 
(°C)

Young’s
modulus 
(GPA)

Tensile
strength 

(MPa) ELASTICITY (%)

P(3HB) 175-180 3.5–4 40 3–8

P(4HB) 53 149 104 n.a.
P(3HB-co-3HV)

(3 mol% HV) 170 2.9 38 n.a.

P(3HB-co-3HV)
(20 mol% HV) 145 1.2 32 50–100

P(3HB-co-4HV)
(3 mol% HV) 166 n.a. 28 45

P(3HB-co-4HV)
(10 mol% HV) 159 n.a. 24 242

P(3HO) 61 n.a. 6–10 300–450
Polystyrene

(PS) 80–110 3.0–3.1 50 3–4

Polypropylene
(iPP) 176 1.7 34.5 400

Nylon-6,6 265 2.8 83 60

Table 2: A comparison between the physical properties of different PHA’s and 
commonly used conventional polymers.

Biopolymer

BioplasticsBiomass

Synthetic
Biology

Agricultural
feedstock Compost

CO2,H2Oetc.

Figure 1: Synthetic biology, Bioplastics and Environment:   Bioplastics 
derived from synthetic biology approaches using renewable feed stock, are 
good candidates for sustainable development and eco-friendly environment, 
due to their biodegradability and compostability.
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general attention because they are based on renewable compounds 
instead of diminishing fossil fuel stockpiles [48].

It is the consequence of PHAs inherent physical and biological 
properties along with the striking similarity of physical and chemical 
profile with conventional polymers such as polypropylene, it has  
attracted commercial interest and has been extensively studied in the 
last two decades [49,50].  

Sustainable PHAs: Using Low Cost Production 
Technology

The global interest of many companies in large scale production of 
PHA polymers, has been established [51]. The biopolymer production 
cost is the major stumbling block in the commercialization of PHA.  
The high production cost of biopolymer is mainly depends upon the 
methods adopted for its synthesis and the composition of media which 
limit the widespread use of PHA [52]. 

By utilizing using inexpensive renewable carbon source and  
bacterial  strains  through  a fermentation  process,  it  is  plausible  to  
produce  all sorts of related biopolymers  having  properties  ranging  
from  stiff  and  brittle  polymers  to  rubbery  polymers [22]. 

Microorganisms

Application of genetic engineering is essentially paving the way 
for the development of super PHA production strains that are able 
to grow to a high cell density within a short period of time on low 
cost substrates under less demanding fermentation conditions, such 
as micro-aerobic conditions [6,53]. This approach has significantly 
reduced the production costs. Engineering approaches including 
incorporation of engineered PHA synthases and engineered precursor 
supplying enzymes into the pathways have been applied to achieve 
enhanced production.

PHA-producing bacteria can be divided into two groups according 
to the culture conditions required for PHA synthesis. First group is 
constituted by the wild type forms such as Ralstonia eutropha (>80%), 
Alcaligenes latus (>75%), and Pseudomonas oleovorans (>60%) that 
requires limited essential nutrient(s) for the production of PHAs and 
quantity of PHAs (ranging from 50% to 80% of the dry cell mass) [51]. 
The second group synthesizes PHAs alongside with the growth in the 
cultivation medium. Bacteria’s in this group includes Alcaligenes latus 
and recombinant E. coli containing the PHA biosynthetic genes. 

Genetic engineering strategies have proven miraculous in the field 
of microbiology, as it has been used to reduce the generation time of the 
recombinant microbes and simplify PHA recovery.  Most remarkable 
example is construction of several refactored microbes producing PHA 
is among these Recombinant E. coli has been of the most favored host 
developed by harboring the PHAs biosynthesis gene.  It has the ability 
to growth fast facilitate short generation time, best understanding 
in genetics and biochemistry, abroad substrate utilization ability.  
Example molasses and whey, and easy purification of the polymer 
from E. coli contribute to its popularity [54,55]. Recombinant E.coli 
harbouring PHB biosynthetic genes from C.necator were able 
to accumulate P(3HB) with a yield of 80–90% dcw in fed-batch 
cultivation while a P(3HB) content of 76% dcw was obtained in a pH-
stat fed-batch culture [56]. Moreover, possibilities for the formation of 
‘polymeric blends’ such as blending of P(3HB) with mcl-PHA has also 
been investigated in recombinant Pseudomonas oleovorans [57]. Three 
key enzymes for biosynthesis of PHAs are b-ketothiolase, NADPH-
dependent acetoacetyl-CoA reductase, and PHA synthase encoded by 

genes phaA, phaB, and phaC, respectively [7]. Factors regulating PHAs 
synthesis are phasins protein, it bind directly to PHA and possibly to 
the PHA-cycling enzymes, PHA synthase and/or PHA depolymerase 
[58,59], The second type of regulator is PhaR  implicates in negative 
regulation of a phasin  protein [60,61]. It was found that P(3HB) acts 
as an inducer for phaP expression in a PhaR-mediated regulatory 
system.  By direct binding PhaR interacts with PHA. PhaR-mediated 
regulatory mechanism may be responsible for PHA accumulation in 
cells is common in SCL PHA-producing bacteria [62] it  was also found 
that mutation in  PHB synthesis enzyme  acetyl coenzyme A (CoA), 
ketothiolase (PhaA) and NADPH-linked acetoacetyl-CoA reductase 
(PhaB), revealed not only a PHB deficiency but also a deficiency in 
growth on C1and C2 compounds [63].

Waste materials as inexpensive substrate 

The major cost of the production of PHA is decided by the type of 
medium that is used [64]. Thus, the selection of media is a vital factor 
as it not only provides optimal conditions for production of a variety 
of PHAs by different strains of bacteria but it also deals with high 
volumetric productivity to provide an end product that is economically 
feasible. The PHAs can  be  produced  from  a  wide variety of  substrates  
such  as  low  cost  renewable  resources  (for example,  sucrose,  starch,  
cellulose,  triacylglycerols), fossil resources (methane, mineral oil, 
lignite, hard coal), by products  (molasses,   whey,   glycerol), chemicals  
(propionic  acid,  4-hydroxybutyric  acid)  and  carbon dioxide [65].

Innovative processes are getting investigated for producing PHAs 
from a variety of low cost substrate such as waste water, municipal 
wastes, agricultural and industrial residues and their byproducts. 
Waste water would help to improve environment conditions as organic 
matter present in wastewater (in the form of organic pollutant) can 
be converted to useful substances or polyhydroxyalkanoates (PHAs )
during various stages of its treatment to facilitate the removal of these 
pollutants [66-68]. 

Plant oils: Plant oils are derived from oil-bearing crops, such as soy 
bean, rapeseed, palm, sunflower, and corn. Lately, interest abounded 
to utilize these plant oils in the bio-based product industries, more 
specifically, for its efficient conversion into PHA that would make PHA 
based product’s prices competitive with their petroleum counterparts. 
Plant oils have been investigated and were found to be most desirable 
carbon source for large scale PHA production. Recent studies have 
suggested that plant oils give higher yield for both, cell biomass and 
PHA production (0.6 to 0.8 g of PHA per g of oil) in comparison with 
other tested substrates such as sugars because of their complex mix of 
triglycerides [69]. Various plant oils have been used such as P(3HB) 
homopolymer and P(3HB3co35 mol% 3HHx) copolymer has been 
synthesize by Cupriavidus necator H16 and its recombinant strain 
(harboring the PHA synthase gene from A. caviae) using soybean oil as 
the sole carbon source [70,71]. Similarly, Lee and colleagues observed 
the production of 80% dcw P (3HB-co-3HV) from C. necator H16 
when grown on plant oils such as palm kernel oil [72]. C. testosteroni 
has been studied for its ability to synthesize mcl-PHA from vegetable 
oils such as castor seed oil, coconut oil, mustard oil, cotton seed oil, 
groundnut oil, olive oil and sesame oil [73]. C. necator organism is also 
reported to produce PHAs from the waste frying oil [74]. Although 
these are some very good producers of PHAs, on average the PHA 
accumulations are still low. Thus, more explorations are needed 
regarding the development of superior vegetable oil utilizing strains 
and to further improve fermentation technology for the utilization of 
waste vegetable oils and other plant oils to further enhance growth and 
PHA accumulation using these substrates.
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Rice bran: Rice is the most important cereal product of Asian 
countries and second largest produced cereal in the world. India and 
China are the largest producers of rice, as they account for more than 
one-third of global population supply. Rice bran is a byproduct of 
the rice milling process and it accounts for 8 -12 % of the rice kernel 
[75]. It  is  associated with environmental impact due to presence  of  
impurities  like arsenic  and  silica,  as well as the  presence  of  free  fatty  
acids. Study conducted by Ting-Yen Huang et al. showed procurement 
of PHA successfully from extruded rice bran and corn starch from   
Haloferax mediterranei under a hyper-saline condition [76]. Using rice 
bran (a low cost agro-industry residue),  3.63 g/L of biomass, 1.75 g/L 
of intra-cellular polymer Polyhydroxyalkanoate, (PHA) and 1.2 g/L 
of extra-cellular polymer (exopolysaccharide, EPS)  was produced by  
Sinorhizobium meliloti [77]. 

Molasses: Molasses is the low value, unpalatable and final 
residual syrup generated in sugar-refining mills after repeated sugar 
extraction by carrying out crystallization of sugarcane or sugar beet 
juice. It is mainly used as a cattle feed supplement, in specialized yeast 
propagation or as a flavoring agent in some foods [78]. Depending 
on the grades and sources, sugar molasses cannot be further used in 
foods or feeds and is, thus, ideal for consideration as an inexpensive 
carbon source for fermentative processes. According to Tate & Lyle 
Molasses Germany GMBH [79] the quantities of cane molasses and 
beet molasses generated worldwide in 2004 were 39 and 12 million 
tons, respectively. Molasses has negative environmental impact due to 
its accumulation during sugar processing, thus cane molasses and beet 
molasses are ideal for consideration as an inexpensive carbon source 
for PHA production which could alleviate its disposal problems.  Soy 
molasses have also been tested as alternative substrate, which is a by-
product of soybean processing industry. It contains various soluble 
carbohydrates especially sucrose, raffinose and stachyose [80].

A great deal of work has been carried out into the utilization of 
molasses for PHA production. Both Gram negative and Gram positive 
bacteria such as recombinant E. coli and  Klebsiella strains [81], 
R. eutropha [82], Bacillus strains [83] has  used molasses for PHA 
production.

Cane molasses was found to be an excellent substrate for the 
growth of Bacillus megaterium for subsequent PHA production by 
[83]  a total biomass and PHA content of 72.7 g · L-1 and 42% (wt/wt) 
[84] demonstrated the production of 61% dcw PHA using molasses as 
a complex feedstock in 2-stage CSTR [85] reported the production of 
P(3HB) at 3 g polymer L −1 and 50% dcw P (3HB) content by Bacillus 
megaterium grown on beet molasses [86] have tested Pseudomonas 
corrugata  on inexpensive soy molasses carbon substrate for the 
production of medium-chain-length PHA and achieved a cell dry mass 
concentration of 3 .4 g L -1, with a PHB content of 5 -17% dcw.

Dairy whey: During cheese and casein production at the food 
processing industries, about 80-90% of the processed milk volume is 
converted to whey as a byproduct [87]. Whey is rich in lactose, proteins, 
lipids, and lactic acid [88]. It is the soluble part of milk that is separated 
from the casein during cheese manufacture and is stabilized by disulfide 
bonds which makes it insoluble in water. For smaller dairies, disposal 
of whey is cost demanding as only about half of the produced whey is 
converted into useful products such as human and animal feed while 
the rest is disposed of as waste causing environmental problems due to 
its high oxygen demand. 

Many isolates of bacteria were evaluated for the production of 
different polyester members of the PHA family from lactose or cheese 

whey as carbon source [89]. Recombinant Escherichia coli strains have 
been used for the production of PHA [90,91]. The production of a 
heteropolymer from whey by Thermus thermophilus HB8 has also 
been described [92]. Role of Cupriavidus necator has been extensively 
established as a platform for PHA production and it is one of the best 
industrially useful strain which is able to use cheap carbon sources. 
However it is unable to hydrolyse the disaccharide lactose and 
galactose which is the main sugar contained in whey [93] hydrolyzed 
milk whey in order to make glucose available for C. necator.  Scientist 
have proposed an alternative process consisting of two steps for PHB 
production from milk whey: lactose was first converted to lactic acid 
by lactobacilli, and the resulting lactic acid was then used as carbon 
source by R. eutropha for PHA production [94]. Further scientist have 
developed recombinant strains of C.necator which are able to produce 
the polymer directly from lactose and or whey permeate in one step 
[95]. Hence, milk whey can be successfully used as carbon source for 
PHAs production which would significant reduce the production cost 
of the PHAs.

Downstream processing

Recovery of PHA is another process that significantly affects 
the overall process economics. The development of a cheaper safer 
downstream process for the recovery of PHA will have considerable 
impact on industrial production of this versatile biopolymer. The 
extraction  and  the  purification  of  bacterial  polyhydroxyalkanoates  
are  the  key  step  of  the  process profitability in the fermentation 
system. The ideal method should lead to a high purity and recovery 
level at a low production cost. 

Traditional PHA downstream processing methods requiring the 
use of solvents, enzymatic digestion, or mechanical disruption are 
expensive and impractical for industrial-scale recovery. A common 
practice to recover PHA is through the organic solvent extraction 
method. This process has many advantages over other cell disruption 
processes, For example solvent extraction do not degrade the polymer 
and can be useful for several medical applications by the elimination 
of Endotoxin which can be found in Gram negative bacteria [96]. 
However, the use of solvents creates hazards for the operators and 
for the environment which limits its success in pilot-plant and large 
scale processing [97]. To alleviate this short coming, an extraction 
method using non-halogenated solvent such as sodium hypochlorite 
has been used for the aqueous process [98]. Although the use of sodium 
hypochlorite significantly increased PHA degradation, polymer purity 
greater than 95% is achieved [96]. 

Mechanical cell disruption is widely used to release intracellular 
protein [99]. It is mainly favored due to economic advantageous such 
as it causes mild damage to the products and does not involve any 
chemicals making it environmental friendly.  But, it also has drawbacks 
like it decrease the molecular weight of the biopolymer, long processing 
time and difficulty in scaling up.

Enzymatic digestion method is a gentle and selective alternative 
separation method, which has attracted the interest of many 
researchers [100]. It eliminates the need of hazardous solvents but the 
enzymes used are expensive and the process is also more complex and 
economically unattractive. 

Due to the problem associated with solvent extraction process, 
much attention has been given to centrifugal fractionation as a simple 
and economical process for separating specific resin components from 
the recovered PHA. Continuous centrifugal fractionation gives 85% 
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of PHA with purity more than 95% [101,102]. Pretreatment of cells, 
mechanical disruption, solubilisation of non-PHA cell material by 
chemical or enzymatic treatment in the system, spontaneous liberation 
of poly(3-hydroxybutyrate), dissolved air flotation  or air classification 
and extraction using supercritical CO2 have been recently reviewed 
[103].

Over the years, a variety of PHA recovery methods have been 
developed, although none of the downstream procedures posses all the 
necessary requirements for a significant efficient and economical large-
scale process [104]. The major drawbacks are cost, safety and scalability. 
Still, further researches have been made for the development of simple 
fermentation strategies as well as modification of recovery techniques 
in order to scale-up the PHA production.

Conclusions and Outlook
As plastic materials are of such importance in our society and 

knowing that materials are a fundamental determinant of sustainability; 
currently PHAs have rapidly developed as potential substitute material 
to petro plastics due to its versatile property like biodegradable and 
biocompatible. Their structural versatility and characteristics of 
PHAs have been investigated and new areas of exploitation are being 
discovered due to its various applications in industries and medical 
field .The major drawback for extensive use of these polymers and 
its slow growth is their high production cost and inferior thermo-
mechanical, physical and processing properties of biodegradable 
polymers compared with petrochemical plastics.

Consequently, scientists  have  shown  immense  progress  
in  searching  for  new  bacterial  strains,  creating  new  types  of  
recombinant  strains and tailoring various kinds of PHA to reduce 
the cost of production. Use of low-cost renewable carbon sources in 
fermentation process has the potential to reduce PHA production 
costs, which will certainly improve PHAs competitiveness and its 
production substantially, leading to an enhancement in its widespread 
usage as they confer no long term effects on environment and could be 
adorable at social and economic levels. 
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