

ISSN: 2155-9546

Journal of
Aquaculture
Research & Development

OPEN ACCESS Freely available online

Short Communication

Polyculture Systems for Marine Aquaculture Sustainability

Emma Hawthorne*

Department of Marine Farming, Gulf University, Abu Dhabi, United Arab Emirates

DESCRIPTION

Polyculture systems combine multiple species in marine aquaculture to improve efficiency, productivity and environmental outcomes. By utilizing different ecological niches, polyculture reduces waste, enhances growth and diversifies revenue streams. This approach integrates finfish, shellfish and seaweed to maximize resource use while supporting sustainability.

Species selection is central to polyculture. Fish species like snapper or sea bass occupy higher trophic levels, consuming formulated feed. Shellfish such as mussels or oysters filter water, removing excess nutrients and improving water clarity. Seaweed absorbs dissolved nitrogen and phosphorus, contributing to water quality and providing additional biomass for sale or processing. Combining these species in compatible systems ensures mutual benefits and reduces ecological pressure.

Monitoring environmental conditions is essential. Water parameters, including temperature, salinity, oxygen and nutrients, must be maintained within suitable ranges for all species. Automated sensors and real-time monitoring allow farmers to detect changes early, adjust management practices and prevent stress or disease outbreaks. Regular observation of behaviour and growth provides practical insight into system health.

Polyculture in marine aquaculture represents an effective approach to improving productivity while maintaining ecological balance. By cultivating multiple species together, farms can utilize resources more efficiently and create systems in which the natural interactions between organisms enhance overall performance. For example, combining finfish with shellfish or seaweed allows the different species to occupy distinct ecological niches. Finfish may consume formulated feed, while shellfish filter particulate matter from the water, reducing organic accumulation and seaweed absorbs dissolved nutrients, lowering the risk of eutrophication. These interactions not only improve water quality but also reduce the likelihood of environmental stress that can negatively affect growth and survival rates.

Feeding strategies in polyculture systems require thoughtful planning. By matching feed types and schedules to the nutritional needs of each species, farmers can reduce waste and prevent excessive nutrient loading in the water. Automated feeding systems can help maintain consistency and efficiency, while direct observation allows farmers to respond to behavioural cues and consumption patterns. The inclusion of shellfish and seaweed further contributes to resource efficiency, as these organisms help recycle nutrients and maintain water quality.

CONCLUSION

Community participation enhances the effectiveness of polyculture practices. Farmers benefit from exchanging experiences, attending training sessions and participating in cooperative management strategies. This collective knowledge allows farms to adopt successful techniques more quickly, troubleshoot challenges and maintain consistent yields. It also strengthens local networks, supporting both economic and environmental resilience in coastal regions. By integrating careful species selection, continuous monitoring, optimized feeding and community collaboration, polyculture systems in marine aquaculture provide a practical method to produce high-quality seafood sustainably. This approach supports economic stability, reduces environmental impact and ensures long-term productivity, making it an effective solution for responsible marine farming.

REFERENCES

1. Houston RD, Kriaridou C, Robledo D. Animal board invited review: Widespread adoption of genetic technologies is key to sustainable expansion of global aquaculture. *Animal*. 2022;16(10):100642.
2. Carrera-Quintana SC, Gentile P, Giron-Hernández J. An overview on the aquaculture development in Colombia: Current status, opportunities and challenges. *Aquaculture*. 2022;561:738583.
3. Qian Z, Na L, Bao-Long W, Tao Z, Peng-Fei M, Wei-Xiao Z, et al. Capabilities and mechanisms of microalgae on nutrients and

Correspondence to: Emma Hawthorne, Department of Marine Farming, Gulf University, Abu Dhabi, United Arab Emirates, E-mail: ehawthorne@gulfuniv.ae

Received: 29-Aug-2025, Manuscript No. JARD-25-30488; **Editor assigned:** 01-Sep-2025, PreQC No. JARD-25-30488 (PQ); **Reviewed:** 15-Sep-2025, QC No. JARD-25-30488; **Revised:** 22-Sep-2025, Manuscript No. JARD-25-30488 (R); **Published:** 29-Sep-2025, DOI: 10.35248/2155-9546.25.16.1036

Citation: Hawthorne E (2025). Polyculture Systems for Marine Aquaculture Sustainability. *J Aquac Res Dev*. 16:1036.

Copyright: © 2025 Hawthorne E. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

florfenicol removing from marine aquaculture wastewater. *J Environ Manage.* 2022;320:115673.

- 4. Cristiano S, Baarset H, Bruckner C, Johansen J, Pastres R. Emergy assessment to assess the ecological sustainability of smolt production and innovative options for the reuse and valorisation of aquaculture discards. *Ecol Indic.* 2023;146:109850.
- 5. Cai J, Chan HL, Yan X, Leung P. A global assessment of species diversification in aquaculture. *Aquaculture.* 2023;576:739837.
- 6. Zhang Z, Lin W, Li Y, Yuan X, He X, Zhao H, et al. Physical enrichment for improving welfare in fish aquaculture and fitness of stocking fish: A review of fundamentals, mechanisms and applications. *Aquaculture.* 2023;574:739651.
- 7. Liu M, Yan Z, Huang C, Lin Z, Peng Z, Zhao C, Zheng X. Temporal dynamics of protist communities and environmental factors in the horizontal flow-polyculture pond aquaculture model of *Sinonovacula constricta*. *Aquacult Eng.* 2024;107:102477.
- 8. Mahari WA, Waiho K, Fazhan H, Azwar E, Shu-Chien AC, Hersi MA, et al. Emerging paradigms in sustainable shellfish aquaculture: Microalgae and biofloc technologies for wastewater treatment. *Aquaculture.* 2024;587:740835.
- 9. Akter M, Schrama JW, Adhikary U, Alam MS, Mamun-Ur-Rashid M, Verdegem M. Effect of pellet-size on fish growth, feeding behaviour and natural food web in pond polyculture. *Aquaculture.* 2024;593:741342.
- 10. Mdoe CN, Mahonge CP, Ngowi EE. Mapping the trends, knowledge production, and practices of climate-smart aquaculture scholarship: Empirical insights from bibliometric analysis. *Aquaculture.* 2025;598:741939.