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Abstract

Reactive oxidant species (ROS) and intracellular antioxidants are on a sophisticated equilibrium that may lead to
cellular damage in case of enhanced production of ROS and/or lowered antioxidant status. Several enzymatic
pathways concur to the platelet production of ROS, including NADPH oxidase, myeloperoxidase, xanthine oxidase
and uncoupled eNOS. Platelet NADPH oxidase seems to play a crucial role in platelet activation. Pharmacologic
approach to reduce platelet activation by the down-regulation of NAPDH oxidase, may represent a future target of
antiplatelet drugs. In this context some antioxidant molecules content in food, such as polyphenols, Vitamin E,
Vitamin C and PUFAn-3, would be of potential interest.
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Abbrevations:
DNMQ: 2,3-Dimethoxy-1,4-Naphthoquinone; CD40L: CD40

Ligand; Gpiib/Iiia: Glycoprotein Iib/Iiia; Pufan-3: Polyunsaturated
Fatty Acid N-3; ROS : Reactive Oxidant Species

Introduction
Oxidative stress is believed to play a major role in the formation

and progression of atherosclerosis, facilitating LDL oxidation within
artery wall, which ultimately leads to foam cells formation and
atherosclerotic plaque [1]. Thus, growing evidences suggest that
oxidative stress is associated with classic atherosclerotic risk factors
reflecting a process of systemic inflammation that predisposes to
atherosclerosis [2].

In physiological conditions, there is a balance between formation of
reactive oxidant species (ROS) and intracellular antioxidant response.
The alterations of this equilibrium lead to cellular damage, both in case
of enhanced production of ROS, and/or impaired antioxidant status
[3]. ROS are physiologic molecules that act as second messengers for
cell activation [4]. Several cells are able to produce ROS, such as
neutrophil, monocytes, endothelial cells and platelets [5]. Platelets play
a key role in the process of athero-thrombosis, via release of
inflammatory and pro-thrombotic molecules [6]. The first study
demonstrating that platelets were able to generate ROS was published
in 1977 by Marcus [7]. Upon activation, platelets produce ROS that are
implicated in: 1) propagation of platelet activation by inactivating
nitric oxide, 2) releasing of platelet agonists such as ADP, Collagen,
Arachidonic Acid giving formation of isoprostanes, Metalloproteinase
and ox-LDL and 3) releasing of pro-atherogenic molecules such as
CD40L [8,9].

Oxidative Stress and Platelet Activation
Several enzymatic pathways concur to the platelet production of

ROS including NADPH oxidase, myeloperoxidase, xanthine oxidase
and uncoupled eNOS [10]. Among them, NADPH oxidase plays a
major role, as shown by the almost complete cellular ROS suppression
in patients with hereditary deficiency of NOX2, the catalytic sub-unit
of the enzyme [11].

There are some evidences suggesting that ROS formation is
functionally relevant for platelet activation [12]. It was observed that
the reduction of the cytosolic concentration of hydrogen peroxide by
catalase inhibited platelet aggregation [13]. More recently, the
inhibition of NADPH oxidase by chemical inhibitors, such as
diphenyleneiodonium and apocynin, as well as by specific inhibitory
peptides, was found to be associated to a significant reduction of
calcium mobilization, GPIIb/IIIa opening and, in turn, platelet
activation [14]. Moreover, the use of ROS scavengers or inhibitors of
O2- production reduced platelet activation [14]. Consistent with these
findings, O2- scavenger, apocynin and catalase inhibited platelet
activation, whereas a ROS donor such as 2,3-dimethoxy-1,4-
naphthoquinone (DNMQ) enhanced it [14]. Recent studies suggest a
more important role of a specific product of arachidonic acid
oxidation, namely isoprostanes, in the late phase of platelet activation
and thrombus growth [14]. Isoprostanes are produced from non-
enzymatic oxidation of arachidonic acid and possess pro-aggregating
properties [15]. Isoprostanes are stable compounds and can be
measured in urine [16]. Urinary levels of isoprostanes reflect platelet
production of isoprostanes [17]. Enhanced levels of isoprostanes have
been found in patients at risk for or with cardiovascular diseases [17].

The role of isoprostanes (8-iso-PGF2α) has been investigated in the
process of platelet recruitment, a model that mimics in vivo the
accumulation of platelets at site of vascular injury [18].

NADPH oxidase activation is also implicated in platelet-mediated
LDL oxidation [19]; in fact, in presence of native LDL, activated
platelets are able to generate ox-LDL, which in turn serve to further
propagate platelet activation [1].
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In addition to pro-oxidant molecules, activated platelets release
pro-atherogenic molecules such as CD40 ligand (CD40L) and
Glycoprotein IIb/IIIa (GPIIb/IIIa). CD40L is a protein of the tumor
necrosis factor family that is implicated in the pathogenesis of
atherosclerosis via its inflammatory and prothrombotic properties
[20]. Several studies performed in patients with established acute or
chronic coronary heart disease documented that plasma levels of
sCD40L are predictive of atherosclerotic progression [21-23]. In
particular, in atrial fibrillation patients, CD40L levels were inversely
associated to adiponectin levels [24] and were associated to
cardiovascular events [25] suggesting that lower antioxidant and
higher inflammatory conditions are detectable in patients at a higher
risk of stroke.

Regarding GPIIb/IIIa, this molecule plays a major role in the
regulation of platelet adhesion and aggregation during haemostasis.
Several studies demonstrated that there is, in diabetic patients, an
increased of platelet surface expression of glycoprotein Ib (GP Ib),
which mediates binding to von Willebrand factor, and GP IIb/IIIa,
which mediates platelet-fibrin interaction and represents the final
common pathway of platelet activation, leading to platelet aggregation
[26,27].

Antioxidant Nutrients and Platelet Activation
Cells have developed a number of defence mechanisms against

oxidative damage [28]. Some enzymatic systems, such as superoxide
dismutase, catalase, glutathione peroxidase are defined primary
antioxidants. In addition, there are non-enzymatic scavenger that can
block free radicals such as glutathione, vitamin E, vitamin C,
polyphenols defined secondary antioxidants. Foods may represent a
natural source of many of these anti-oxidants [8].

Polyphenols
Polyphenols are a class of molecules [29] present in many

components of the Mediterranean diet. The attention paid to
polyphenols is related to epidemiological evidence that point out that a
diet rich in polyphenols reduces the susceptibility to various diseases
such as diabetes, cardiovascular and Alzheiemer diseases [30-32]. The
effect of polyphenols is related to their regulatory property on
oxidative stress [33], a key element in the development of many
diseases.

Polyphenols may also affect platelet function, as shown by data
suggesting an inhibitory effect of polyphenol-rich nutrients, i.e, wine,
cocoa and extra vergin olive oil [34] on platelet activation [35].
Previous studies have shown that polyphenols such as catechin/
epicatechin in cocoa reduces platelet activity by inhibiting ADP
induced expression of the GP IIb-IIIa surface glycoproteins [36]. Also
our group has recently shown that acute administration of 40 g cocoa
is associated with inhibition of platelet activation, which was
associated with impaired production of platelet isoprostanes via down-
regulation of platelet NOX2, responsible of ROS production [37].
Moreover in the same paper we demonstrated in vitro that a mix of
epicatechin plus catechin is able to decreased of the p47phox
translocation that is essential for the activation of NADPH oxidase
[37]. Same results were observed with administration of 10 g of extra
virgin olive oil in healthy subjects in addition to a Mediterranean diet
meal. In this study we showed that extra virgin olive oil, rich in
polyphenols, down-regulated NOX2 activity, pointing to this
enzymatic pathway as a mechanism accounting for the antioxidant

activity of extra virgin olive oil [1]. Moreover, Ciancarelli et al. showed
a decrease in the platelet activation after 4-week supplementation of
red wine in 15 healthy male volunteers [38] (Figure 1).

Figure 1: Platelet oxidative stress and antioxidant nutrients;
possible mechanism of inhibition

Vitamin E
Vitamin E is a chain-breaking antioxidant that prevents the

propagation of free radical reaction. As a free radical scavenger,
vitamin E has the role of eliminating lipid soluble free radicals, in
conjunction with the network of cellular antioxidant defences,
comprising catalases, superoxide dismutases, glutathione-S-transferase
and other enzymes, as well as small organic molecules such as L-
ascorbic acid or b-carotene [39]. Vitamin E has demonstrated to
possess anti-platelet and anticoagulant properties [40].

Many studies have demonstrated that vitamin E, in a range of
concentration between 50 and 500 μM, inhibits ex vivo platelet
aggregation induced by phorbolemyristate, arachidonic acid and
collagen [41]. The mechanism by which vitamin E inhibits platelet
function is controversial, because it is still to be clearly defined if it
depends or not on its antioxidant property [41,42,6].

Freedman et al. [41] demonstrated that a daily dosage between 400
and 1200 IU of vitamin E for 14 days inhibits platelet aggregation
elicited by phorbolmyristate and arachidonic acid by interfering with
platelet protein kinase C activity. Pignatelli et al. [42] showed that
vitamin E inhibits platelet function through its antioxidant properties,
in particular by blocking the capacity of hydrogen peroxide to
stimulate platelet arachidonic acid metabolism and the PLC pathway.
The interplay between vitamin E and platelet function has been tested
in healthy subjects or in patients at risk of cardiovascular disease such
as those with diabetes or dyslipidemia [43] that are associated with
enhanced oxidative stress and platelet hyperactivity in vivo [44].

In these studies the authors demonstrated that, after a daily
administration of 100 to 600 mg vitamin E for 8 weeks, there is a
significant reduction of both isoprostane F2-III and 11-dehydro-
thromboxane B2 [41,42], corroborating the hypothesis that oxidative
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stress is implicated in platelet activation and that vitamin E
supplementation may modulate it (Figure 1).

Polyunsaturated fatty acids (PUFAs)
Polyunsaturated fatty acids (PUFAs) are fatty acids that contain

more than one double bond in their backbone [45]. Among the
PUFAs, there are two classes, ω-3 and ω-6, in which the first double
bond occupies the third or the sixth position from the ω end,
respectively. Linoleic acid (ω-6) and alpha-linolenic acid (ω-3) are also
known as essential fatty acids because they are fundamental for the
organism and cannot be synthesized in the human body, so they must
be supplied by the diet. PUFAs are present in many species of nuts and
vegetable oils [46] and some ω-3 PUFAs are found in fatty fishes.

The antithrombotic properties of fish-derived ω-3 PUFAs have
been well-characterized and have been mainly attributed to the
incorporation of ω-3 PUFAs into the phospholipid membrane,
altering the arachidonic acid metabolism and subsequent reduction in
thromboxane (TX) A2 release [47]. As such, ω-3 PUFA compete with
arachidonic acid (ω-6 PUFA) as a substrate for COX enzyme
promoting the synthesis of platelet biologically inactive eicosanoids
(TXA3) rather than ω-6-derived platelet activator eicosanoids (TXA2)
[48]. In addition, ω-3 PUFA have demonstrated to ameliorate vascular
function and enhance NO release, thus modulating platelet function
[49]. α-Linolenic acid (ALA), another ω-3 PUFA found in vegetable
oils, has also shown to exert antiplatelet effects. In previously study, it
was shown that α-linolenic acid incubated with stimulated platelets,
reduced platelet CD40L expression, O2- production, NADPH oxidase
activation and p38MAP kinase phosphorylation [50] (Figure 1).

Vitamin C
Vitamin C (L-ascorbic acid) is an important water soluble vitamin

discovered already in the 17th century as the causal factor for scurvy
when lacking in the diet, a disease occurring at plasma concentrations
below 4 μM [51]. Many effects have been attributed to L-ascorbic acid
that are the result of its antioxidant, anti-atherogenic, anti-
carcinogenic and immune-modulatory action [52]. Vitamin C
possesses antiplatelet activity and is a direct antioxidant because it
quenches superoxide radicals [53]. Based on clinical and
epidemiological studies a dietary intake of 100 mg/day of L-ascorbic
acid has been suggested to reduce the incidence of mortality from
heart disease, stroke and cancer [54] L-Ascorbic acid in vitro prevents
the atherogenic, oxidative modification of LDL, shown by a variety of
mechanisms. In particular, a previously study has been shown that
platelets pre-incubated with vitamin C inhibit in a dose dependent
manner the expression of platelet CD40L via reduction of platelet O2–

[55]. Several studies investigated whether short-term treatment with
vitamin C, after intravenous [55,56] and oral [57,58] administration
affects platelet function. Globally considered, the studies showed
inhibition of platelet function after intravenous [51,52] and oral
[57,59] administration of vitamin C.

Although the effect achieved after vitamin C given orally is difficult
to explain, the inhibition observed after intravenous vitamin C
administration raises important questions about the role of ROS in
platelet activation. Thus, vitamin C behaves as an antioxidant only if
supra-physiological concentration [59]. It is therefore plausible that
intravenous administration of vitamin C actually exerted an
antioxidant effect that resulted in platelet ROS inhibition and
ultimately reduced platelet activation (Figure 1).

Conclusions
Several studies support the central role played by ROS in the

mechanism of platelet activation. This effect is achieved via multiple
pathways, including impaired biosynthesis or inactivation of NO
and/or NADPH oxidase activation. Pharmacologic approach that
reduces platelet activation may represent a future target of antiplatelet
drugs. At this regard some antioxidants contained in foods, such as
polyphenols, Vitamin E, Vitamin C or PUFAn-3 would be of potential
interest for clinical purposes. To support this theory, randomized
interventional trials are necessary to see if they inhibit in vivo platelet
aggregation, and if they may eventually be used as part of an anti-
thrombotic treatment in atherosclerotic diseases.
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