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Abstract
Surface Plasmon Resonance (SPR) and Localized Surface Plasmon Resonance (LSPR) have become powerful 

bio-sensing techniques. These techniques allow for rapid and ultra-sensitive detection of biological analytes with 
applications in medical diagnostics, environmental monitoring, and food safety. Plasmonic sensors are fabricated 
using metal nanoparticles, metal nanostructures or a combination of both. With major advancements in the area of 
nano synthesis, the development of plasmonic sensors has expanded significantly. Plasmonic platforms offer a viable 
substitute to detection techniques such as Enzyme Linked Immunosorbent Assay (ELISA) and Polymerase Chain 
Reaction (PCR) in some cases and complement them in many others. Most of the state-of-the-art plasmonic biosensors 
can measure binding affinity and kinetic rates in real time from any molecule that can change its refractive index. Other 
developments in plasmonics include the use of metamaterials that operate in the visible and infra-red region. In this 
review, we will briefly cover the developments in the last few years in plasmonics as it relates to disease detection.
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Introduction
Conventional optics are limited in their ability to resolve 

nanometer-scale structures because of the diffraction limit [1-3]. This is 
because the evanescent waves carrying the sub-wavelength information 
decay before they form an image when they pass through a medium of 
different permittivity [3-7]. To overcome this limitation, researchers 
have worked to develop methods for sub-wavelength imaging [8-11]. 
Although some methods like immersion lenses and near-field imaging 
were able to detect some sub-wavelength features, they could not 
form distinct images. The development in the field of plasmonics has 
enabled the detection of sub-wavelength features by compensating the 
evanescent loss and restoring the image below the diffraction limit.

The development of plasmonics has led to extraordinary advancement 
in the area of ultra-sensitive detection at the single particle or molecular 
level. New developments in nano-synthesis have made it possible to 
design nanoparticles in different sizes, shapes and configurations [12-17]. 
Noble metal nanoparticles of gold (Au) and silver (Ag) exhibit excellent 
plasmonic properties and have widely been used for sensing low-level and 
label-free analytes in physiological media [18]. The plasmonic sensing is 
determined by the resonance shift of a plasmonic sensor in the presence of 
the bio-analytes which changes the refractive index of dielectrics around 
the metal. This unique property of the plasmonic resonance comes from 
the plasmon oscillation or the cumulative motion of the conduction band 
electrons relative to fixed positive ions that are often observed in noble 
metals [19-21]. When the plasmonic oscillations are induced by outside 
light sources in specific wavelength ranges and specific angles, they can 
confine and control the light at the nanoscale [22].

The noble metals exhibit very different properties when they 
are on a nanoscale. When light is incident on the nanoparticles it 
makes the conduction electrons in them oscillate with a resonant 
frequency [23-26]. These oscillations are a function of nanoparticle 
shape, size and morphology. As a result of these LSPR modes [26-
30], the nanoparticles absorb and scatter light very intensely. These 
novel characteristics enable the nanoparticles to be used as labels for 
immunoassays in bio-sensors [31-34]. Other applications of plasmonic 
nanoparticles [35,36] include their utility as optical switches [37,38], 
waveguides [39,40] and lithographic tools [41-44]. Though LSPR 
phenomenon is theoretically possible in any metal, silver and gold are 

the most commonly used metals [45-47]. Gold as a material is favored 
for plasmonic sensors due to its corrosion resistance and its binding 
capability to biomolecules. However, silver appears to be the material 
of choice due to the low dielectric loss at different optical frequencies. 
Other common materials that exhibit plasmonic properties include 
aluminum and copper [48-50]. Plasmonic nanoparticles also serve as 
spatial labels [51,52] in immunoassays and cellular imaging and act 
as transducers [28,53,54] that convert small changes in the refractive 
index into spectral shifts. The refractive index of the organic bio-
molecules is different from the buffer. The binding of the nanoparticles 
with the biomolecules has the effect of an increased refractive index 
that results in the spectrum shifting to a higher wavelength (red-shift) 
[46,55,56]. These bio-molecular interactions can be monitored in real 
time with high sensitivity [57]. LSPR-shift assays are also useful for the 
ultrasensitive quantification of proteins [58]. In this review, our intent 
is to present briefly the development of plasmonic sensors in the last 
few years as it relates to the diagnosis of disease.

Detection of Biomarkers
Detection of thrombin for blood clotting

Sensing platforms using SPR can measure modest changes in the 
refractive index emanating from the interactions between two bio-
entities close to the surface of the plasmonic “element”. The binding 
kinetics near the surface can be measured in real time [59-61]. While 
aggregation-based immunoassays use simple instrumentation, 
biosensor sensitivity is limited by the number of aggregation events 
and require a long incubation period to ensure maximized signals. As 
a result, sensing platforms using SPR spectroscopy are used as signal 
transduction methods for measuring the changes in refractive index 
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that result from analyte binding to the recognition element at the surface 
of the noble metal thin film or nanoparticle. Many SPR sensors [48-
52] have recently been used for such applications. A similar technique 
was used for the detection of thrombin utilizing thrombin aptamer 
functionalized gold (Au) aggregated nanoparticles which were used as 
seeds for the growth in the presence of CTAB, HAuCl4 and NADH [62-
67]. For further amplification, the thrombin aptamer was immobilized 
on a glass surface and incubated with different concentrations of 
thrombin. The aptamer functionalized Au nanoparticles were bound 
to the second available site on the thrombin as shown in Figure 1A with 
concentrations of thrombin ranging between 0 and 160 nM as shown 
in the absorbance spectra (Figure 1B). A wavelength of 650 nm was 
used to generate the calibration curve as shown in Figure 1C.

Detection of prostate specific antigen (PSA) for prostate 
cancer

Elliptical nano-disk arrays were fabricated using thermal Nano-
imprint lithography (NIL) with the enzyme-antibody conjugate to 
enhance PSA detection. The Au nano-disks were fabricated as shown 
in Figure 2. The morphology of the optically anisotropic elliptical Au 
nano-disk arrays was studied by SEM, as shown in Figure 2A and 2B. 
The long-axis and short axis of the Au nano-disk named Ii and Is show 
different extinction peaks (Figure 2C).

The Au nano-disks modified with 11-mercaptoundecanoic acid 
(MUA) are shown in Figure 3A. The functionalized nano-disks were 
incubated in a solution of anti-PSA, to immobilize the antibody (Figure 
3B). After that the PSA, biotinylated anti-PSA, and streptavidin-alkaline 
phosphatase were applied to form the sandwich assay (Figure 3C and 3D). 
Finally, the enzyme-catalyzed precipitation reaction (shown in Figure 
3E and 3F) was shown to yield insoluble precipitates onto the nano-disk 
surfaces. Without the enzymatic precipitation, PSA detection in the 2.8 
nM range was considered to be difficult, but with enzymatic precipitation, 
a concentration of 280 fM was detected with peak shifts of 7.7 and 5.5 in 
the s-peak and I-peak respectively [53]. Enzyme-linked immunosorbent 
assay (ELISA) using LSPR can be viewed physically with the eye, without 
any equipment. In conventional ELISA, the intensity of the color is a 
function of the concentration of the target molecule that impedes the 
visible detection in equivalent concentration ranges.

Detection of carcinoembryonic antigen (CEA) for colon 
cancer and prostate specific antigen for prostate cancer

Blood contains protein biomarkers that are the indicators of 
certain diseases. However, the ultra-low concentrations of biomarkers 
secreted by colon and prostate tumors in early stages are not high 
enough to show clinical symptoms. Nano-plasmonic biosensors can 

Figure 1: (A) Amplified detection of thrombin on surfaces by the catalytic enlargement of thrombin aptamer-functionalized gold nanoparticles. (B) Absorbance spectra 
of thiolated aptamer modified glass slides incubated in (a) 0 (b) 2 (c) 5 (d) 19 (e) 94 and (f) 167 nM thrombin using thiolated aptamer functionalized gold nanoparticles 
and the catalytic enlargement process. (C) Calibration curve corresponding to the amplified optical detection of thrombin (Reprinted with permission from, Copyright 
2014 American Chemical Society [67]).
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provide exceptional levels of sensitivity for detecting disease states. 
The sandwich assay in Figure 4 shows such a system in which a cancer 
biomarker using cantilever is primarily recognized by surface-anchored 
antibodies and then by an antibody in a solution that identifies a region 
of the captured biomarker [68]. The second antibody is bound to a 
100 nm diameter gold nanoparticle. The nanoparticle has a mass of 
∼10 fg and a density of 19,300 kg m-3 [68]. It also exhibits localized 
plasmonic resonance in the visible range which results in resonant 
enhancement of light absorption and scattering. The micro cantilevers 
also display a structural quality that can be used as optical resonators. 
The bio-molecular interactions [69-75] on the cantilever results in the 
optical spectral shift as explained earlier. Carcinoembryonic Antigen 

and prostate specific antigen (PSA) were detected by analyzing these 
samples spiked in undiluted serum. This technique improved the LOD 
by three orders of magnitude compared to the other clinical diagnostic 
systems. This detection method for CEA and PSA involves two bio-
recognition steps to enhance the selectivity and improve the sensor 
response as indicated in Figure 4. The resonant frequency is a function 
of the loading of biomolecules on the cantilever. The mass loading 
indicates a decrease in the resonance frequency. The intrinsic detection 
limit for these devices in the air was about 1 pg (10-12 g), which was 
corroborated by the approximate number of detected molecules, which 
was found to be about 100.

Figure 2: SEM images of (A) the array pattern of the elliptical Si nanopillars , (B) the array pattern of elliptical Au nanodisks was fabricated on a glass wafer (C) as 
prepared elliptical Au nano-disk arrays, including s-peak and l-peak. (Reproduced with permission, from Copyright © 2011 American Chemical Society [53]).

Figure 3: Schematic illustration of PSA detection procedure, (A) Modification of the surface MUA. (B) Immobilization of the PSA antibody. (C) Binding of PSA to 
the antibody. (D) Sandwich binding of alkaline phosphatase detection antibody conjugates to PSA. (E) Enzymatic reaction of the BCIP/NBT substrate. (F) Product 
precipitation on the nano-disk. (Reproduced with permission from Copyright © 2011 American Chemical Society. This journal is © The Royal Society of Chemistry 
2014 RSC Adv., 2014, 4, 43725–43745|43735 Review RSC Advances Published on 04 September 2014 [53]). 
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Figure 4: Schematic illustration of the sandwich assay on the cantilevers and its effect on the resonance frequency. (A) The cantilever was functionalized with capture 
antibodies. The functionalization method comprised of silanization, followed by antibody binding on the top surface of the cantilever. Polyethylene glycol was used to 
minimize nonspecific interactions. The cantilever was then immersed in the serum sample for immunoreaction to take place between the protein biomarker and the 
capture antibodies. The immunoreactions were apparent on exposing the cantilever to the detection antibodies for the biomarker that was bound to 100-nm-diameter 
gold nanoparticles. The detection antibody recognizes a specific open free region of the captured biomarker. (B) SEM image of the silicon cantilevers. The cantilever 
dimensions were 500 µm long, 100 µm wide and 1 µm thick (C) Optical beam deflection method for measuring the vibrations of the cantilever in which a laser beam 
was focused on the free-end region. The deflection of the reflected beam by the cantilever vibrations was measured by a linear position-sensitive photodetector. 
The photocurrents I-right and I-left were measured by the linear position-sensitive photodetector. The cantilever array was driven by a piezoelectric actuator located 
beneath the base of the cantilever. (D) Nanoparticle mass loading effect on the resonance frequency of the cantilever. The resulting downshift of the resonance 
frequency represents the proportion to the added mass. (Reproduced with permission from Ref. [68]. Copyright © Nature Publishing Group).
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The opto-plasmonic transduction method used to capture biomarkers 
is shown in Figure 5, in which there is a light scattering of the gold 
nanoparticles as a result of the LSPR. The nanoparticles spectra of the light 
scattered due to the presence of a single biofunctionalized nanoparticle 
on the substrate indicates a peak at a wavelength of 620 which gives the 
orange color of the nanoparticle [76]. The binding of the gold nanoparticle 
to the silicon surface breaks the degeneration of the dipole plasmonic 
modes [77,78], which results in different optical frequencies based on 
the orientation. The opposite sides of the cantilever act as mirrors which 
enhances the light reflectivity by useful interference between the reflection 
from the two surfaces. This property was used for detecting ultralow 
concentrations of the cancer biomarker.

Detection of squamous cell carcinoma antigen (SCCa) for 
cervical cancer

Squamous cell carcinoma antigen (SCCa) is a tumor biomarker 
that is used for the diagnosis, treatment and prognosis for patients 
suffering from cervical cancer [79]. A LSPR technique based on noble 
metal nanoparticles bypasses the disadvantages of traditional testing 
strategies, it improves free-labeling, has short assay time, excellent 

sensitivity, and selectivity [27,28,64,72,80,81]. A LSPR biosensor for 
the detection of SCCa is shown in Figure 6 in which triangle-shaped 
Ag nanoparticle array was fabricated using nano-sphere lithography 
using 11-mercaptoundecanoic acid (MUA) to form a functionalized 
chip surface with monoclonal anti-SCCa antibodies. Different 
concentrations of SCCa were effectively tested in both buffer and 
human serum with detections in the linear range of 0.1-1,000 pM. 
The sensor functionalization was a multi-step process as outlined in 
Figure 6. The LSPR spectra for the detection of SCCa shown in Figure 
7 indicates a total red-shift of 24.95 from the bare substrate to the 
immobilized 100 pM SCCa.

Detection of surface antigen (HBsAg) for hepatitis B

Plasmon-enabled diagnostic assays are mostly performed in 
solution [82]. The advantage of using plasmonics is that being in 
nano-scale, they have a large surface area. The size of the particles and 
their high diffusion rates in the sample allow for increased speed and 
sensitivity compared to surface-based approaches. Assays, where the 
analyte molecule is directly confined on the nanoparticle surface tend 

Figure 5: (A) The Au nanoparticles in the sandwich assay feature plasmon resonances that give rise to enhanced scattering and absorption near the resonance 
frequency. (B) The optical dark-field image of a single nanoparticle 100 nm in diameter after performing a sandwich assay. The doughnut shape is due to the 
resonance plasmon dipole that is perpendicular to the surface that dominates the scattering. (C) Scattering spectra of an area of 40 µm in diameter that contains a 
single nanoparticle. (D) SEM image of the cantilever clamping region that indicates the frontier between the 6-µm-thick preclamping structures fixed to the chip and 
the 1-µm-thick cantilever. (E) Bright-field images of the same cantilever clamping region at different illumination wavelengths in the visible spectrum. The thinness of 
the cantilever means the light can bounce efficiently multiple times between the opposite cantilever sides, and this enhances optical reflectivity at wavelengths in which 
constructive interference occurs. Conversely, the reflectivity suppression is seen for wavelengths in which destructive interference occurs. (F), the relative reflectivity 
in the cantilever on preclamping as a function of the wavelength (Reproduced with permission from Ref. [68]. Copyright © Nature Publishing Group).
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to yield a relatively small shift in the LSPR peak. Therefore, it is necessary 
to have an absorbance spectroscopy setup to enable detection. This 
analysis could be performed by a plate reader. For direct identification of 
physiological fluids that require transmission of electromagnetic radiation, 
it is advantageous to use the near-infrared region of the spectrum where 
light penetration is at its optimum. This means working in the 700-900 

nm area of the light spectrum. The quantification of hepatitis B surface 
antigen (HBsAg) in blood serum and plasma, which indicates active viral 
replication of hepatitis B virus is shown in Figure 8. The LSPR shift occurs 
in the 700-750 nm, which allowed sensitive detection in physiological 
solutions. The HBsAg was detected using a monoclonal antibody 
conjugated to the surface of AuNRs by physical adsorption, and the 
surface was blocked using BSA. In pure buffers, the AuNR biosensor could 
measure the HBsAg concentration to a LOD of 0.01 IU mL, which was 40 
times lower than thee LOD of the ELISA.

Detection of troponin (cTnI) for myocardial infarction

The degree of peak shift observed analyte capture is proportional 
to the molecular weight and refractive index of the captured 
molecule. A uNR assay was used for the detection of cardiac troponin 
biomarker(cTnI) [82], an important biomarker of myocardial damage. 
Magnetic nanoparticles (MNPs, Fe3O4) were used to enhance the LSPR 
shift upon analyte binding (Figure 9). The high refractive index and 
mass of the iron oxide nanoparticles lead to a significant perturbation of 
LSPR when they are in close proximity to AuNRs. Furthermore, the high 
surface-to-volume ratio allows for a high density of chemical binding. 
The magnetic properties allow for the direct capture, separation and 
enrichment of target molecules in complex physiological conditions. 
In this assay, two different anti-cTnI antibodies were employed 
that bound to different epitopes on the cTnI molecule. One of these 
antibodies was conjugated to the MNPs, the other to the AuNRs. The 
MNPs were added to blood plasma, after that they bound the target 
cTnI, followed by magnetic separation of the cTnI. The analyte solution 
and AuNR solutions were then combined, and the analyte bound to the 
antibody on the AuNR surface, thus bringing the MNP in proximity 
to the Au surface. A LOD of 30 pM in blood plasma was obtained, 
which is three orders of magnitude lower than comparable studies. The 
average phase shift was 210% compared to the analyte.

Figure 6: Design of the LSPR biosensor for specific detection of SCCa. (A) the glass substrate with triangle-shaped silver nanoparticles arrays. (B) saM formed due 
to the incubation of 1mM MUa. (C) Incubation in 75 mM eDc-hcl/15 mM Nhs. (D) attachment of anti-scca antibody (10 µg/ml). (E) The immunoassay of SCCa in both 
buffer and serum samples. (Copyright © 2014 Zhao et al. This work was published by Dove Medical Press Limited, and licensed under Creative Commons Attribution 
– Non Commercial (unported, v3.0) License) [79].

Figure 7: LSPR spectra for detection of 100 pM scca. (A) Bare silver nanochip, 
λmax=573.92 nm. (B) Modification of 1 mM MUa, λ max=589.1 nm. (C) 
Incubation with 10 µg/ml monoclonal anti-scca, λmax=602.38 nm. (D) Detection 
of 100 pm scca, λ max=612.15 nm. (Copyright © 2014 Zhao et al. This work 
was published by Dove Medical Press Limited, and licensed under Creative 
Commons Attribution – Non Commercial (unported, v3.0) License) [79].
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Detection of mtb antigens for tuberculosis

Tuberculosis (TB) is an infectious disease that causes millions of 
deaths annually. The conventional “culture” methods require up to 
6 to 8 weeks to provide a result. A SPR biosensor based on an array 
format shown in Figure 10 [83-86] allows immobilization of nine 
TB antigens onto the sensor chip for simultaneous determination of 
antibodies. Twenty-five-spot protein arrays were fabricated using 
conventional photolithography techniques. The array dimensions 
were 2 mm in diameter with a center-to-center spacing of 3 mm. The 

8-mercaptooctanoic (8-MOA) acid in ethanol was dropped on the 
surface array and allowed to form a self-assembled monolayer (SAM) 
for 30 min. The surface of the array was further treated with 400 mM 
1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride) 
EDC/100 mM NHS for 10 minutes to active carboxyl groups of 
8-MOA. A concentration of 50 μg/mL was maintained for all antigens 
and exposed to an array of protein spots for one hour. The arrays were 
blocked with 1 M ethanolamine for 10 min. The images shown were 
observed at the fixed angle which was slightly less than the SPR angle 
and collected with a CCD camera at a wavelength of 790 nm.

Figure 8: (A) TEM image of AuNRs used to detect hepatitis B surface antigen (HBsAg). (B) Absorbance spectrum, showing a red shift in the spectrum on the addition 
of the analyte. (Adapted from Ref. [82] and reprinted with permission from Elsevier).

Figure 9: A schematic illustration of the bio-separation of target molecules from blood plasma using functional Fe3O4 MNPs, followed by the MNP mediated LSPR 
assay. The use of MNPs facilitates the enhancement of the LSPR shift. (Adapted from Ref. [82], and reprinted with permission from The American Chemical Society).
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The Figure 11 spectra of the multiplexed detection system show the 
real-time SPR binding curves of the sample with PBS as the running 
buffer [83]. The change in reflectivity indicates an interaction between 
the specific antibody with its antigen in the serum. In this study, the 
detection signal reflectivity was shown to be at least two orders-of-
magnitude higher than in the negative control [87].

Detection of human epidermal receptor protein-2 (HER2) 
for breast cancer

Though SPR has been used for biomolecular detection of tumor bio-
markers, it presents some experimental difficulties that were overcome 
by incorporating nano-hole arrays in metallic films. This configuration 
exhibits superior optical transmission [88-90], which is used in the 
monitoring of bio interactions on the plasmonic metal surface. This 
biosensor exhibited good sensitivity and linearity. For the detection 
of the HER2 antigen, the surface was coated with AB1 (biotinylated 
antibody) through its interaction with previously immobilized 
streptavidin molecules. Then, the HER2 antigen was immobilized, and 
finally, the surface was introduced to the AB2 antigen. The use of a 
secondary antibody, which characterizes the sandwich detection mode, 

improved the sensitivity of the sensor. As the molecules are immobilized 
on the surface, the refractive index on the metal-dielectric interface 
increases, leading to a redshift. Compared to the AB1 immobilization 
step, a shift of 1.2 nm was observed when the HER2 [91-93] antigen 
(concentration 30  ng  mL−1) was immobilized. An extra redshift of 
1.3  nm was observed when AB2 was linked to the AB1/HER2 layer; 
this resulted in a 2.5-nm total band displacement. Furthermore, the 
maximum transmission shift obtained for the immobilization of AB2 
was of 2.50 ± 0.03 nm (with respect to the surface covered with AB1) 
with an accuracy of 0.1 nm. A concentration of 30 ng mL−1 of human 
epidermal receptor protein-2 (HER2) antigen [91,92] associated with 
breast cancer was detected using this system.

Conclusion
In this review paper, we have tried to highlight the wide use of 

plasmonic-based sensors and systems for disease detection. The reason 
for plasmonic diagnostics to be expanding at this rapid pace is the 
capability for ultra-sensitive detection. Most of the current diagnostics 
are based on ELISA, PCR or imaging. Fluorescence-based ELISA was 
also limited in the detection of concentrations, and only with plasmonics 

Figure 10: SPR image of a multiplexed microarray (left) and the biomolecule configuration on the array (right). (Copyright ©2012 Hsieh et al. licensee Springer [83]).

Figure 11: SPR sensograms shows a response to the injection of 10-fold diluted sera into an array-format SPR sensor. (a) SPR fromTB patient sera and (b) SPR 
results from normal control sera. (Copyright ©2012 Hsieh et al. licensee Springer) [83].
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was able to detect in femtogram/ml or attogram/ml. Incorporating 
plasmonics methods along with older modalities of detection can 
result in complementary and synergicstic testing for disease states 
with improved sensitivity and specificity. Further advancements in 
the field of plasmonics could produce better diagnostic platforms and 
systems which may play an important role in prognosis, monitoring or 
detection of disease.
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