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Abstract
Although the diagnosis and treatment of pulmonary hypertension (PH) is developed constantly in the last 

decade, PH remains an incurable and difficult to treat disease due to its high life disability and dreadful survival rate. 
The disease is characterized by sustained vasoconstriction, progressive vascular remodeling, and irreversible right 
heart dysfunction.

The advanced knowledge in physiopathology and classification of PH in recent years is a useful tool helping 
physicians to improve the choice of target treatment. In addition, the remarkable progresses in understanding the 
molecular and cellular mechanisms of PH allow to develop new treatments. Actually, new therapeutic molecules 
have been discovered and their mechanisms of action are better understood and some are in preclinical and clinical 
trials. Preliminary results of these molecules with benefit effects on pulmonary arterial pressure and systemic 
hemodynamic gives a new hope for the future.
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Introduction
The diagnosis and treatment of pulmonary hypertension (PH) have 

many advances in recent years, which permit to improve the survival 
of patients with PH [1]. The knowledge of physiopathology of PH is 
also improved in the last decade with the identification of predisposing 
genetic factors and molecular mechanisms involved in inflammation, 
vasoconstriction, and cell proliferation. However, PH remains a severe, 
complex, and difficult to treat disease. The recent publication of the 
new international recommendations of PH provide the clarification 
in its definition, classification and treatment [1,2]. Actually, new 
therapeutic molecules have been discovered and their mechanisms of 
action are better understood and some are in preclinical and clinical 
trials. Preliminary and promising results of these molecules give a new 
hope for the future.

Overview of Clinical Classification and Pathology of 
Pulmonary Hypertension
Clinical classification of PH

The new classification of PH is presented in Table 1. Group 1 (PAH) 
is including idiopathic PAH, heritable PAH (germline mutations of 
BMPR2, ALK1 or endoglin genes), drugs and toxins induced PAH, 
PAH associated with other conditions (connective tissue diseases, HIV 
infection, portal hypertension, congenital heart disease, schistosomiasis. 
Group1′: PH due to pulmonary veno-occlusive disease (PVOD) and/or 
pulmonary capillary hemangiomatosis (Table 1). Group1”: Persistent 
pulmonary hypertension of the newborn (PPHN). These conditions 
have been classified as a distinct category but not completely separated 
from PAH, and designated as Group 1′ and 1’’. 

Group 2 includes PH related to left heart disease, including systolic 
dysfunction, diastolic dysfunction, and valvular disorders. Group 
3 is including PH related to lung disease and/or hypoxia, including 
chronic obstructive pulmonary disease, interstitial lung disease, other 
pulmonary disease with mixed restrictive and obstructive patterns, 
sleep-disordered breathing, alveolar hypoventilation disorders, chronic 
exposure to high altitude, and developmental abnormalities (Table 1).

Group 4 is involved to PH due to chronic thromboembolic 
disease (CTEPH: chronic thromboembolic pulmonary hypertension) 
without precise criterion to distinguish between proximal and distal 
forms and other pulmonary artery obstructions (Table 1). Group 
5 includes PH with unclear and/or multifactorial mechanisms, 
including heterogeneous conditions with different pathological 
features such as hematological disorders (myeloproliferative disorders, 
splenectomy), systemic disorders (sarcoidosis, pulmonary Langerhans 
cell histiocytosis, lymphangioleiomyomatosis, neurofibromatosis, 
vasculitis), metabolic disorders (glycogen storage disease, Gaucher 
disease, thyroid disorders), and others (tumoral obstruction, fibrosing 
mediastinitis, chronic renal failure on dialysis).

Pathology of pulmonary hypertension

The pathological changes in Group 1 (PAH) predominantly 
affect the distal pulmonary arteries with medial hypertrophy, intimal 
proliferative and fibrotic changes, adventitial thickening with mild to 
moderate perivascular inflammatory infiltrates and complex lesions 
(plexiform lesions; Figure 1). For Group 1′ (PVOD), the pathological 
features are involving septal veins and pre-septal venules with occlusive 
fibrotic lesions, venous muscularization, pulmonary oedema, occult 
alveolar haemorrhage, lymphatic dilatation, lymph node enlargement 
and inflammatory infiltrates. In this group, the distal pulmonary 
arteries are affected by medial hypertrophy and intimal fibrosis (Figure 1). 
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The pathology in Group 1′′ (PPHN) is characterized by changes in 
vasoreactivity and wall structure and decreases in pulmonary vascular 
density with reduced alveolarisation.

In Group 2 (LHD), the pathology features are characterized 
by enlarged and thickened pulmonary veins, pulmonary capillary 
dilatation, interstitial oedema, alveolar haemorrhage and lymphatic 
vessel and lymph node enlargement. Distal PA may be affected by 
medial hypertrophy and intimal fibrosis. However, in Group 3, 
the pathological characteristics are involving medial hypertrophy, 
intimal obstructive proliferation of the distal pulmonary artery (PA) 
and muscularization of arterioles. In addition, a variable degree of 
destruction of the vascular bed in emphysematous or fibrotic areas may 
also be present.

The pathology in Group 4 (CTEPH) are characterized by organized 
thrombi tightly attached to the medial layer in the elastic pulmonary 
arteries, replacing the normal intima (Figure 1). A pulmonary 
microvascular disease can develop in the non-occluded and occluded 
areas that has similarities with PAH and patchy post-capillary 
remodelling related to bronchial-to-pulmonary venous shunting [1-
3]. For Group 5 (PH with heterogeneous conditions), the pathology 
patterns are varied and depended on the etiologies. 

Hemodynamic Mechanism of Physiopathology of 
Pulmonary Hypertension
Characteristics of pulmonary circulation

Pulmonary circulation constitutes a vascular system with low 
pressure, low resistance, and high distensibility. It is located between 
two ventricles and intrathoracic. Increase of cardiac output induces 
a recruitment of large number of non-perfused vessels at the basic 
state. However, due to the low pressure which reigns, in the normal 
physiological condition, in pulmonary arteries with the thin walls are 
directly affixed in pulmonary parenchyma, pulmonary hemodynamics 
might easily be modified by the slightest change in intravascular 
pressure. 

Unlike other circulations, pulmonary circulation does not have an 
efficacy auto-regulatory mechanism. Therefore, it is important to know 
the perivascular pressure to assess the active or passive modification 
of the vascular diameter. In the pulmonary circulation, only the small 
muscular pulmonary arteries and the arterioles possess the vasoactive 
properties. They are the resistant vessels or precapillary vessels. The other 
perivascular contractile elements also take part in the active change of 
pulmonary vascular resistance (PVR), but their role is negligible. In 
human, pulmonary circulation is the only circulation being capable of 

1. Pulmonary arterial hypertension (PAH)
1.1 Idiopathic
1.2 Heritable
1.2.1 BMPR2 mutation
1.2.2 Other mutations
1.3 Drugs and toxins induced
1.4 Associated with:
1.4.1 Connective tissue disease
1.4.2 HIV infection
1.4.3 Portal hypertension
1.4.4 Congenital heart disease
1.4.5 Schistosomiasis
1'. Pulmonary veno-occlusive disease and/or pulmonary capillary haemangiomatosis
1''. Persistent pulmonary hypertension of the newborn
2. Pulmonary hypertension due to left heart disease
2.1 Left ventricular systolic dysfunction
2.2 Left ventricular diastolic dysfunction
2.3 Valvular disease obstruction and congenital cardiomyopathies
2.4 Congenital/acquired left heart inflow/outflow tract obstruction and congenital cardiomyopathies
2.5 Other
3. Pulmonary hypertension due to lung diseases and/or hypoxia
3.1 Chronic onstructive pulmonary disease
3.2 Interstitial lung disease
3.3 Other Pulmonary diseases with mixed restrictive and obstructive pattern
3.4 Sleep-disordered breathing
3.5 Alveolar hypoventilation disorders
3.6 Chronic exposure to high altitude
3.7 developmental lung diseases
4. Chronic thromboembolic pulmonary hypertension
4.1 chronic throboembolic pulmonary hypertension
4.2 Other pulmonary artery onstructions
5. Pulmonary hypertension with unclear and/or multifactorial mechanisms
5.1 Haematological disorders
5.2 systemic disorders
5.3 metabolic disorders
5.4 Others

Table 1: Clinical classification of Pulmonary hypertension.



Citation: Duong-Quy S (2016) Physiopathology of Pulmonary Hypertension: from Bio-Molecular Mechanism to Target Treatment. J Vasc Med Surg 
4: 294. doi: 10.4172/2329-6925.1000294

Page 3 of 12

Volume 4 • Issue 6 • 1000294J Vasc Med Surg, an open access journal
ISSN: 2329-6925 

reacting by vasoconstriction with hypoxia characterized by a decline of 
PaO2 less than 60 mmHg [4]. Hypoxic vasoconstriction allows to adjust 
pulmonary capillary perfusion to alveolar ventilation by ensuring a 
ventilation/perfusion ratio closer to the optimal value [5].

Finally, pulmonary circulation has its particularity by possessing 
both a function of alveolar capillary gas exchange and a hemodynamic 
function. The hemodynamic function of pulmonary circulation is 
related to its role in the regulation of systemic blood pressure via the 
synthesis of angiotensin II and endothelin by numerous pulmonary 
endothelial cells.

Hemodynamic mechanism of pulmonary hypertension 

PH includes several diseases causing the hemodynamic disorders 
of pulmonary circulation determined mainly by the increases of 
mean pulmonary arterial pressure (PAPm) and pulmonary vascular 
resistance (PVR) at rest. In healthy subjects, PAP varies between 20 
mmHg in systole and 5 mmHg in diastole and the PAPm is 10 to 12 
mmHg (14 ± 3 mmHg) [6]. PH is defined by PAPm higher or equal 
to 25 mmHg, measured during a right heart catheterization (RHC). 
According to the latest recommendation, the different forms of PH are 
classified in five groups and two subgroup, depending on the clinical 
and therapeutic characteristics of causal factors [1].

In PH, the increase of PAPm is due to the modification of one of the 
three determinants of pulmonary circulation, linked by the equation: 
PAPm=[(PVR × PBFm) + LAP] (where PVR is the pulmonary vascular 
resistance, PBFm is the mean pulmonary blood flow, and LAP is the 
left atrial pressure). The LAP is obtained by measuring pulmonary 
arterial occlusion pressure (PAOP). PH related to the increase of PVR 
is frequent. The increase of RVP is due to either the vasoconstriction, or 
the rigidity of vascular walls, or the obstruction of the vascular lumen 
(pre-capillary PH).

PH associated with increased resistance by hypoxic 
vasoconstriction: The mechanism of acute pulmonary vasoconstriction 
inducing by acute alveolar hypoxia is known [7]. The hypoxic 
pulmonary vasoconstriction assures adequately pulmonary capillary 
perfusion to alveolar ventilation, thus optimizing gas exchanges. The 
main cause of hypoxic pulmonary vasoconstriction is the drop of the 
partial pressure of oxygen in the alveolar gas. When alveolar hypoxia 
becomes chronic, pulmonary vasoconstriction is more disturbance. 
It is due to the production of vasoactive mediators from endothelial 
cells [8]. The chronic hypoxic pulmonary vasoconstriction has been 
classified in group 3 of PH in the last international guidelines, including 
COPD, living in high altitude, and respiratory disorders during sleep [1].

PH related to decreased surface of the pulmonary vascular bed: It 
is usually due to the parenchyma pulmonary fibrosis such as idiopathic 
pulmonary fibrosis and systemic scleroderma, or to proximal or distal 

pulmonary arterial obstruction post-thromboembolic [9]. The cross-
sectional area of the arteries could be used to calculate the compliance 
of the pulmonary vascular bed according to the equation: β=[ln (Ps/
Pd)]/(2 A/A) (where β expresses the vascular rigidity; Ps/Pd ratio 
is the ratio of systolic pressure to diastolic pressure;  A/A is the 
variation of the cross-sectional area) [10]. This parameter is correlated 
with the mortality rate of patients with PH [11].

PH associated with increased pulmonary blood flow: PH due 
to increased pulmonary blood flow or hyperkinetic PH (Group 1 
according to the new classification) [1], is related to an abnormal 
increase of pulmonary blood flow via the shunt between systemic 
and pulmonary circulations (left - right extra- or intracardiac). This 
category of PH includes inter-atrial or -ventricular septal defects, 
ductus arteriosus, or the atrio-ventricular canal defect. Increased 
pulmonary blood flow generates the shear forces and circumferential 
stretching on the vascular walls which stress the intima layer with 
endothelial cells [12] and promote the increase of the PVR and 
vascular remodeling (hypertrophy). Due to the remodeling lesions in 
the pulmonary vascular bed, the PVR is gradually increased during the 
disease progression, with the possibility of inversion of the shunt at 
advanced stage (Eisenmenger syndrome).

Although the predominant lesions at the veinular level and 
pulmonary capillary, veno-occlusive disease (VOD) and pulmonary 
capillary hemangiomatosis (PCH) have the hemodynamic 
characteristics identical to those of the pre-capillary PH [9]. They have 
been integrated into the Group 1’ (Table 1).

PH associated with increased post-capillary pressure: Another 
mechanism responsible for increasing PAPm is the elevation of 
post-capillary pressure (passive PH). It results from an increase of 
pulmonary capillary pressure, consequential a rise in the pulmonary 
venous pressure secondary to left heart failure. Ischemic heart disease, 
mitral valve stenosis, and myxoma of the left atrium (Group 2) may 
be the cause [1]. In this group, the gradient between trans-pulmonary 
pressure (TPp) and the PVR is normal: TPp=PAPm - PAOPm. But 
when PAP becomes more important than PAOP (with high TPp), PVR 
is increased and leaded to post-capillary reactive or non-proportional 
PH. This is due to the increase of the vascular tone of arteries and/or the 
remodeling of resistant vessels possibly by vasoconstrictor reflex of the 
pulmonary arteries. It is mediated by baroreceptors of left atrium and 
pulmonary veins and by endothelial cell dysfunction [13].

The Molecular Mechanisms of Pulmonary Hypertension
Progress in understanding the molecular and cellular mechanisms 

of PH (Figure 2) allows to develop the new treatments [14].

Role of endothelial dysfunction in pulmonary hypertension

The endothelial cells play a key role in modulating vascular tone and 

     

Figure 1: Pathological characteristics of pulmonary hypertension. Left side: Plexiform lesion. In the middle: pulmonary veno-occlusive disease (PVOD). 
Right side: chronic thromboembolic pulmonary hypertension (CTEPH) [133].
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endothelial dysfunction is present in all forms of PH [8]. Endothelial 
dysfunction induces an imbalance between vasoconstrictors 
(thromboxane A2 [TxA2], endothelin-1 [ET-1] and serotonin [5-
HT]) and vasodilators (nitric oxide [NO] and prostacyclin [PGI2]). 
These mediators have direct effects on smooth muscle cells (SMCs) 
of pulmonary vessels by stimulating (or inhibiting) contraction, 
migration, and cell proliferation. They also have the ability to alter 
vascular remodeling by interaction with fibroblasts, coagulation factors 
and/or inflammatory process.

Nitric oxide (NO) signaling pathway

In endothelium, NO is synthesized by the conversion of L-arginine 
to L-citrulline via endothelial NO synthase (eNOS or NOS-3) in the 
presence of its cofactors (NADPH, BH4) [15]. NO activates soluble 
guanylate cyclase (sGC) which catalyzes the formation of cyclic 
guanosine monophosphate (cGMP) and the activation of protein 
kinase G (PKG) by cGMP. The NO/cGMP/PKG signaling cascade 
causes vasodilation by decreasing the calcium concentration inside 
of the SMCs (Figure 2). NO also has an anti-proliferative effect on 
SMCs and antiplatelet agents [16]. However, the production of NO by 
endothelial cells depends on several factors such as the activity of NOS-
3 and that of arginase which constitutes the availability of L-arginine, 
vascular blood flow, and the resulting shear forces.

In patients with PH, the expression of NOS-3 in the pulmonary 
arteries is critically diminished [17]. Especially, the expression of 
NOS-3 is inversely correlated with PVR and the severity of vascular 
plexiform lesion [18]. Indeed, in idiopathic and familial PH (according 
to the previous classification), the production of NO, measured after 
the injection of radioactive L-arginine, was significantly reduced in 
comparison with healthy subjects [19]. The other mechanisms involved 
in the decrease of the production of NO are the reduction of L-arginine 
synthesis by decreasing the activity of dimethyl-aminhydroline 
dimethyl-aminohydrolase (DDAH) [20] and the negative regulation of 
NOS-3 by RhoA/Rho-kinases [21,22].

There are several mechanisms which control and modify the 
intracellular concentration of cGMP. The phosphodiesterase of type 
5 (PDE-5), which hydrolyzes cGMP into inactive 5’-GMP, is a target 
molecular of choice in the treatment of PH. The efficacy of specific 
PDE-5 inhibitors, such as sildenafil or tadalafil in the treatment of PH 
is clearly known (Figure 3) [23,24]. In addition to PDE-5 inhibitors, the 
role of GCs stimulators, cGMP producing enzyme, in patients with PH 
is currently in clinical use [25].

Prostacyclin (PGI2) and thromboxane A2 (TxA2) signaling 
pathway

PGI2, produced by endothelium, is an endogenous vasodilator 

Figure 2: Potential mechanisms involved in the development of PH. Top half: Relaxation of smooth muscle cells induced by NO, prostacyclin, and VIP 
is mediated by cGMP and cAMP whereas constriction induced by TXA2, ET-1 and 5-HT is mediated by membrane receptors coupled to G proteins 
and intracellular calcium modifiers such as IP3 (inositol triphosphate) or mediators of RhoA/Rho-kinase pathways. Bottom half: Proliferation of smooth 
muscle cells is induced by cytokines, growth factors and TGF-β. Control of transcription is regulated by the BMP proteins and its membrane receptors 
via Smad signaling effectors, and MAP kinase pathways. Abbreviations: 5-HT1B/2A, serotonin receptors 1B or 2A; BMPR2, bone morphogenetic protein 
receptor 2; ETA/B, endothelin receptors A or B; GF, growth factors; GPCR, G protein-coupled receptors; HHV-8, human herpesvirus 8; JNK, c-Jun 
N-terminal kinase; Kv, potassium voltage-gated channels; P, phosphorylation; PGH2, prostaglandin H2; PGI2, prostaglandine I2 (prostacyclin); PGI2-R, 
prostacyclin receptors; R-TXA2, thromboxane receptors; VPAC-1/2, vasoactive intestinal peptide receptors 1 or 2; TGF-β, transforming growth factor-β; 
TPH1, tryptophan hydroxylase 1; VIP, vasoactive intestinal peptide [131].
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which acts on the synthesis of cyclic adenosine monophosphate 
(cAMP). As the same with NO, PGI2 inhibits the proliferation and 
platelet aggregation (Figure 2) [26]. In PH, the activity of PGI2 synthase 
and production of PGI2 are significantly decreased in plexiform lesions 
(Figure 1) [27]. In transgenic mice, the excessive expression of PGI2 
had a protective effect for hypoxia-induced PH [28]. Inversely, mice 
with a deficit of PGI2 receptors had a very severe PH [29]. Developed 
for more than 20 years in the treatment of PH, the analogues of PGI2 
are currently used for patients with severe form of PH (Figure 3). 
They are indicated as first-line or in combination with other drugs for 
patients with clinical deterioration [30].

TxA2, a potent platelet aggregator also produced by endothelial 
cells, is a vasoconstrictor of the cyclooxygenase pathway. In patients 
with idiopathic PH, there is a decrease of PGI2 metabolic products in 
urine, associated with an increase in metabolic products of TxA2 [31]. 
In addition, the expression of TxA2 receptors is significantly elevated in 
patients with PH [32].

In summary, in PH, the imbalanced modulation of vascular tone 
caused by deficiency of PGI2 production and increase of TXA2 activity 
induces the vasoconstriction and pulmonary arterial remodeling. 

Endothelin-1 signaling pathway

The endothelial cells also synthesize endothelin with its three 
isoforms (ET-1, endothelin-2 [ET-2] and endothelin-3 [ET-3]) are all 
vasoconstrictors. The main differences between these three isoforms 
are due to their tissue expression and affinity for both membrane 
endothelin receptors: ETA receptors and ETB receptors [33]. The binding 
of ET-1 to the receptors ETA and ETB activates G protein coupled 
to phospholipase C, resulting an increase of intracellular calcium 
concentration, responsible for the contraction of the vascular smooth 
muscles (Figure 2) [34]. Activating ETB receptors in endothelial cells 
stimulates the vasodilation via NO and PGI2 production (Figure 3). 
ET-1 is a potent vasoconstrictor possessing the mitogenic effect, pro-
platelet aggregation, pro-fibrosis, and pro-inflammatory effect [35].

ET-1 has a major role in the pathogenesis of PH. In patients with 
idiopathic or familial PH and Eisenmenger syndrome-related PH, 
the plasmatic concentration of ET-1 is very high and correlated with 
PVR and patients survival [36-38]. Particularly, the ET-1 expression 
in endothelial cells is increased only in the pulmonary arteries with 
hypertrophy of the media or fibrosis of the intima [39]. In the treatment 
of PH, receptor antagonists of ET-1 (bosentan, ambrisentan) constitute 
an important therapeutic class (Figure 3). They are prescribed as 
the first choice for patients with functional stage II of the WHO 
classification [1,2].

Serotonin signaling pathway

Serotonin (5-hydroxytryptamine [5-HT]) is a neuronal 
vasoconstriction mediator, promoting SMC proliferation and the 
formation of local micro-embolisms [40]. 5-HT is synthesized by 
catalysis of tryptophan to the enzyme tryptophan hyroxylase-1 (TPH1). 
After its synthesis, 5-HT is captured by SMCs by a specific membrane 
transporter (SERT). 5-HT may also be linked to 5-HT1B and 5-HT2A 
membrane receptors. In SMC, 5-HT activates the mitogen-activated 
protein kinase (MAPK) and Rho-kinases, thus causing vasoconstriction 
(Figure 2). 5-HT also has a proliferative effect on SMC by activating 
nucleotide transcription factors (GABA4) via the pERK1/2 proteins 
and by the formation of reactive oxygen species (ROS) dependent on 
5-HT [41].

The increase of serotonergic activity in patients with PH is related 
to the hyperactivity of SERT and/or TPH1 [42,43]. SERT is encoded 
by a single gene, localized on chromosome 17q11.2, its polymorphism 
is associated with an increase in expression and activity of SERT [42]. 
In mice, the excessive expression of SERT aggravates PH induced by 
hypoxia and/or consecutive to monocrotalin intoxication (MCT) 
[44,45]. Inhibition of SERT activity reduces PH induced by MCT in rats 
[46,47]. In humans, anorectic agents (Aminorex and Fenfluramine) are 
responsible for the development of PH by acting as substrates of SERT 
and by inducing the recapture of 5-HT by SMC of pulmonary vessels [48].

Figure 3: Mechanism of vasoconstriction and target treatment with vasodilators in pulmonary hypertension. CCBS: calcium channel blockers; PGI2: 
prostaglandine I2 (prostacycline); NO: Nitric oxide; PDE5: type 5 phosphodiesterase; ET-1: endotheline-1; 5-HT: serotonine [134].
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There is a hyper-expression of TPH1 gene in pulmonary tissue and 
pulmonary endothelial cells in idiopathic PH [49]. Mice with invalidated 
coding gene for TPH1 (TPH1-/-) were saved and did not get PH when 
exposed to hypoxia and/or anorectics (Dexfenfluramine) [50,51].

The other mechanism involved in PH related to 5-HT is the 
increase in plasma concentration of 5-HT, abnormal storage of 5-HT 
in platelets [52], or excessive production of 5-HT by endothelial cells 
[49]. This phenomenon has been found in patients with idiopathic or 
familial HTP. The role of 5-HT1B and 5-HT2A-B receptors of 5-HT was 
also investigated in PH [53-55].

Vasoactive intestinal peptide (VIP) signaling pathway

Known as a neuroendocrine mediator with systemic vasoactive 
properties, VIP has a significant role in PH. Its biological effect is 
mediated by its specific membrane receptors that are coupled to 
G-proteins (VPAC1 and VPAC2) and localized in the different tissues. 
The stimulation of VPAC receptors causes vasodilatation mediated 
by the classic signaling cascade: stimulation of adenylate cyclase by 
the coupled sG protein VPAC (AC) receptors; synthesis of cAMP by 
adenylate cyclase; activation of protein kinase A by cAMP (Figure 2).

However, it has been suggested that the vasodilation effect of 
VIP might partly be mediated through NO/cGMP/PKG signaling 
pathway [56]. The decrease in pulmonary tissue expression and serum 
concentration of VIP was found in patients with PH [57]. The VIP also 
has an inhibiting effect on SMC proliferation of pulmonary arteries 
in patients with idiopathic PH [58]. Moreover, the alteration of gene 
encoding VIP is also found in idiopathic HTP [59]. The deletion of this 
gene promotes the development of PH in a murine model, resulting in 
diffuse pulmonary vascular remodeling, right heart hypertrophy and 
pulmonary inflammation [57,58]. 

VIP is a neurotransmitter of the autonomic non-adrenergic non-
cholinergic nervous system having a powerful pulmonary vasodilator 
effect [60]. However, many undesirable effects observed during 
intravenous administration of VIP constitute a limit for its therapeutic 
use in PH. In humans, a recent study [61] showed a significant 
decrease of PAPm and PVR in patients with PH treated by inhaled 
VIP. Inhalation of VIP does not cause of systemic hypotension, while 
improving significantly hypoxemia of patients with PH associated 
with COPD and interstitial lung disease. However, the role of VIP in 
pulmonary vascular remodeling and its long-term therapeutic benefit 
are not yet clarified.

Voltage-gated potassium (Kv) channel pathway

Kv channels play an important role in the regulation of membrane 
potential of SMC and in hypoxic pulmonary vasoconstriction 
[62]. Decreased expression or dysfunction of Kv channels induces 
membrane depolarization promoting the calcium influx through of 
calcium channels dependent on Kv and an increase of intracytosolic 
Ca2+ concentration and vasoconstriction.

Kv channel dysfunction in SMC of subjects with idiopathic 
and familial PH was highlighted (Figure 2) [63]. Hypoxemia and 
fenfluramine derivatives inhibit the Kv channels [64]. The gene 
transfection of Kv 1.5 channels attenuates the development of PH and 
restores the hypoxic vasoconstriction response in PH induced by chronic 
hypoxia in rats [65]. Previous study has shown that direct inhibition 
of Kv channels in SMCs causes pulmonary arterial vasoconstriction 
[64]. The link between receptor mutation (BMPR2) and reduction of 
Kv channel expression in vasoconstriction of pulmonary arteries has 

also been demonstrated [66]. However, the role of this link in vascular 
remodeling has not yet been established.

RhoA-GTPase/Rho-kinase signaling pathway

Recently, the role of the RhoA-GTPase/Rho-kinase pathway in 
PH has been demonstrated (Figure 2) [67,68]. The main effectors of 
the RhoA-GTPase are Rho-kinases or ROCK (ROCK-1 or ROCK-β 
and ROCK-2 or ROCK-α). The ROCK regulate several functions of 
SMC: contraction, proliferation and apoptosis [69]. In addition, the 
role of RhoA-GTPase signaling system and its effectors, Rho-kinases 
(ROCK-1 and ROCK-2), in endothelial dysfunction has been recently 
demonstrated (Figure 4) [70].

Many experimental elements report in favor of the involvement 
of the RhoA-GTPase/Rho-kinase pathway in vasoconstriction and 
pulmonary vascular remodeling. This signaling pathway has been 
studied in chronic hypoxia and MCT-induced PH [68,69]. In addition, 
Rho GTPase/Rho-kinase signaling pathway is also mediated by ET-1 
and 5-HT [71,72]. The increase of the activity of the RhoA/Rho-kinase 
mediated by ET-1 in hypoxic condition has been demonstrated in 
animal models [73]. The role of 5-HT in constitutive activation of 
RhoA-GTPase/Rho-kinase in PH was demonstrated [74]. Recently, 
the interaction between 5-HT, mutation of the bone morphogenesis 
proteins receptor (BMPR2), and RhoA/Rho-kinase signaling pathway 
in PH was also established [56,57].

In vivo, the beneficial effect of Rho-kinase inhibitors in the treatment 
of PH has been confirmed by several studies. Rho-kinase inhibitors 
reduce PAP, right ventricular hypertrophy and pulmonary vascular 
remodeling in experimental models [75,76]. Preliminary results 
showed that fasudil, a selective inhibitor of Rho-kinases, administered 
intravenously or by nebulization reduced significantly PAPm and PVR 
in patients with PH (Figure 3) [77-80]. However, the effect of fasudil in 
long-term treatment of patients with PH is still under evaluation.

The Role of Genetic Factors in Pulmonary Hypertension
Mutation of the bone morphogenetic protein receptor type 2 
(BMPR2) in PH

Role of the BMPR2: More than 20 BMP molecules have been 
identified at now [81]. BMPs are secreted in the form of homodimers 
or heterodimers and bind to heterodimeric receptors having serine/
threonine activity kinase. A distinction is made between type 1 
receptors (BMPR1) and type 2 (BMPR2). Like all other ligands 
belonging to the transforming growth superfamily factor-β (TGFβ), 
BMPs induce the binding of type 1 receptor to type 2 receptor, causing 
the phosphorylation of the first one (BMPR1). Activation of the 
BMPR1 then induces the phosphorylation of the cytoplasmic proteins 
involved in the signaling pathway of the TGF superfamily, known as 
the TGF Smads [82,83]. The attenuation of BMPR2 receptor expression 
increases the signal strength of TGF-β and stimulates cell proliferation.

Mutation of BMPR2 in PH: The best characterized genetic 
defects in heritable pulmonary arterial hypertension are mutations 
of the gene encoding bone morphogenetic protein receptor type 2 
(BMPR2), a member of the transforming growth factor-β signaling 
family (Figure 2). BMPR2 modulates the growth of vascular cells by 
activating the intracellular pathway of Smad and LIM kinase [84]. 
The germline mutations in BMPR2 gene are detected in at least 70% 
of cases of heritable pulmonary arterial hypertension [85,86]. BMPR2 
gene mutations are also detected in 11%–40% of apparently sporadic 
cases, thus representing the major genetic predisposing factor for PAH 
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Figure 5: Mechanism of action for Raf-Ras-MEK/ERK. EGF: epidermal growth factor; ERK: extracellular signal regulated kinase [135].

Figure 4: Ca2+ sensitization of VSMC mediated by RhoA/Rho-kinase signaling pathway. In basal state of VSMCs, there is a balance between vasoconstriction 
and vasodilatation that is controlled by the activity of MLCK and MLCP. When Rho-kinase agonists are coupled on GPCR, it converts GDP-RhoA (inactive form) 
to GTP-RhoA (active form). GTP-RhoA translocates into the membrane and activates its downstream effectors: Rho-kinase or ROCKs. ROCKs increase the 
vasoconstriction by inhibiting the activity of MLCP via the phosphorylation of this enzyme [131].

[87]. More than 45 different mutations of BMPR2 gene have been 
identified in patients with heritable PAH [88,89]. Functional studies 
have shown that point mutations and truncations in the kinase domain 
exert dominant negative effects on receptor function [90], resulting in 
incomplete penetrance and genetic anticipation.

Mutations of activin receptor-like kinase 1 (ALK1): Mutations 
of other receptors such as activin receptor-like kinase 1 (ALK1) and 
endoglin have also been identified in PAH patients usually from 
families with coexistent hereditary hemorrhagic telangiectasia [91]. 
Mutations in ALK1 are believed to result in cellular growth-promoting 
via Smad-depending signaling. Genetic mutations of the serotonin 
transporter (5-HTT) are more frequent in idiopathic PAH than control 
subjects [42]. The L-allelic variant of the 5HTT gene is associated with 
an increased expression of the transporter and increased proliferation 
of vascular SMC. Serotonin gene polymorphism has also been found 

in PH patients with hypoxemic chronic obstructive pulmonary disease 
(COPD) [92].

Role of Growth Factors in Pulmonary Hypertension 
Receptor tyrosine kinases (RTKs)

Several growth factors are involved in the pathogenesis of PH 
(Figure 2). Most of these factors bind to membrane receptors having 
an enzymatic activity belongs to receptor tyrosine kinases (RTKs) 
except TGFβ links to a family of membrane receptors having an 
enzymatic activity of serine/threonine kinases. Intracellular signaling 
of RTKs is relayed by activation of enzymes of the serine/threonine 
kinase family: Raf kinase. Raf kinase phosphorylates and activates 
MEK1/2, then the ERK1/2. When activated, the extracellular signal-
regulated kinase (ERK) will phosphorylates the effectors that control 
the genetic transcription in the nucleus [93]. In pulmonary arteries, the 
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Raf protein is involved in apoptosis, proliferation of vascular cells, and 
angiogenesis.

Vascular endothelial growth factor (VEGF)

The vascular endothelial growth factor (VEGF), binding to its 
VEGFR-2 receptor, is involved in many endothelial biological processes 
such as proliferation, synthesis of NO and PGI2, angiogenesis, and 
control of vascular permeability (Figure 2) [94]. The increase of 
VEGFR-2 expression is also found in idiopathic PH [95]. VEGF is also 
involved in PH associated with systemic diseases [96] or viral infections [97].

Platelet-derived growth factor (PDGF)

Recent data demonstrated that the platelet-derived growth factor 
(PDGF) has been involved in PH induced by chronic hypoxia or after 
injection of MCT [98]. This growth factor regulates the proliferation and 
migration of SMC, angiogenesis, and apoptosis (Figure 2). The PDGF 
receptor antagonists (PDGFR-) limit the evolution of PH induced by 
systemic shunt (by ligation of the ductus arteriosus) in the fetuses of 
sheep [99]. It also decreases the evolution of vascular plexiform lesions 
in PH [98]. Otherwise, the beneficial effect of imatinib, a PDGFR 
antagonist, in treatment of patients with PH who have no response to 
conventional treatment has been demonstrated [100].

Transforming growth factor-β (TGFβ)
The growth factors of TGF family, including TGFβ but also the 

BMP, are potentially involved in vascular remodeling in PH via Smad 
(Smad 2 and 3) signaling pathway (Figure 2). TGFβ has opposite effects 
on proliferation and cell migration, depending on its concentration 
in situ: activating effect at low concentration and inhibiting effect at 
high concentration. SMC of pulmonary arteries of patients with PH 
express three isoforms of TGFβ. There are anomalies in the signaling 
path of TGFβ/Smad2-3 in experimental MCT-induced PH [101]. The 
discovery of new receptors of TGFβ and intracellular Smad inhibitors 
adds a new treatment in PH [102].

Epidermal growth factor (EGF)
Epidermal growth factor (EGF), induced by oxidant stress or by 

inflammatory mediators, is also involved in PH (Figures 2 and 5). The 
inhibition of its membrane receptor attenuates the development of 
MCT-induced PH [103].

Role of Extracellular Matrix and Metalloproteases in 
Pulmonary Hypertension 
Role of extracellular matrix (ECM) and metalloproteases 
(MMP) in PH

In PH, ECM and MMPs play a preponderant role in pulmonary 
vascular remodeling. A recent study showed that ECM and MMPs such 
as tenascin-C (Tn-C) and MMP-2 have been new important markers of 
pulmonary vascular remodeling in PH [104].

Tenascin-C: Tn-C is an extracellular matrix glycoprotein and its 
role in pulmonary vascular remodeling has been reported [105]. The 
increase of Tn-C expression in the medium layer of SMCs of pulmonary 
arteries in patients with familial or congenital heart disease-induced 
PH has been found more than 15 years ago [106,107]. Under the effect 
of soluble growth factors, Tn-C increases the proliferation of SMCs via 
the activation of the receptors which mediates tyrosine kinase activity 
(receptors of EGF) [105,108]. In the animal model of MCT-induced 
PH, the inhibition of Tn-C increases the apoptosis of SMCs and 
decreases the hypertrophic lesions of the pulmonary arteries [109,110].

Elastase: Serine elastase (SerE) plays an important role in the 
production of Tn-C [108] and activation of MMP [111]. The increase 
of SerE expression has been demonstrated in experimental hypoxia-
induced PH or by injection of MCT in rats [111]. In this model, either 
the use of the serine protease inhibitor or the excessive expression of 
the serine elafine protease could limit the pulmonary vascular lesions 
in PH.

Metalloproteases of the extracellular matrix: The role of MMP 
in PH has recently been demonstrated. The expression and activity of 
MMP-2 are increased in pulmonary tissue of rats having MCT-induced 
PH [112]. In humans, expression of MMP-1 and MMP-2 is increased 
in the SMCs isolated from the arteries of patients with idiopathic PH 
[113]. However, there are currently no therapeutic experiences of the 
use of specific inhibitors of ECMs and MMPs in PH.

Role of Inflammation in Pulmonary Hypertension 

Role of inflammatory cells in PH

The role of inflammation and autoimmunity in vascular remodeling 
seen in idiopathic PH and PH associated with systemic diseases have 
been recently highlighted. First, circulating autoantibodies directed 
against endothelial cells and cell nuclei are frequently found in 
PH [114]. Secondly, perivascular infiltration of inflammatory cells 
including lymphocytes (T and B), macrophages, and dendritic cells, is 
a constant feature of plexiform vascular lesions [115].

Role of cytokines and pro-inflammatory cytokines in PH

Cytokines and inflammatory chemokines are also involved in 
the pathogenesis of PH. Increased concentrations and expressions 
of pro-inflammatory cytokines (IL-1β, IL-6) were found in plasma 
and lung tissue of patients with severe idiopathic PAH (Figure 2) 
[116]. In mice, high expression of IL-6 was associated with increased 
pulmonary vascular resistance, and extensive pulmonary vascular 
lesions [117]. Efficacy of tocilizumab, a monoclonal antibody directed 
against IL-6 receptors, has been recently reported in a patient with 
PH [118]. Plasma concentrations and expressions of fractalkine and 
its receptors (CX3CR1 and CX3CL1) are increased in circulating 
lymphocytes (CD4+ and CD8+) and lung tissue [119], and the role 
of the chemokines CCL5 (RANTES) and CCL2 (chemokine ligand 2) 
studied in PH patients [120].

Role of viral infection in PH

Human immunodeficiency virus (HIV-1): Viral infections and 
inflammation resulting from these infections can induce PH. Indeed, 
the association between infection with human immunodeficiency 
virus (HIV-1) and the occurrence of severe PH is known (Figure 2) 
[121,122]. Result of a recent study has shown that the prevalence of PH 
in patients with HIV-1 is approximately 0.46% [123]. This prevalence 
has not changed in the last 30 years (0.5% in 1991) [121].

Human herpes type 8 (HHV-8): Recently, the role of infection 
with human herpes type 8 (HHV-8) has been documented in idiopathic 
and familial PH [124]. In these patients, the expression of HHV-8 was 
found in lung tissue and in the plexiform lesions of pulmonary arteries 
[125]. The role of HHV-8 in the development of elastin production-
related PH has also been studied in transgenic Mts-1 mice [126]. It 
suggests that the gene expression of HHV-8 playing an important role 
in the etiology of PH induced by viral infection via receptors coupled 
to G proteins [127]. However, the role of HHV-8 infection in PH is still 
controversial (Figure 2) [128,129].
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Hepatitis C: PH is also found in hepatitis C with a prevalence of 1% 
to 5% according to the previous study [130]. The pathogenesis of PH 
in this condition is not yet understood (Figure 2) [131]. PH associated 
with hepatitis C-induced is preceded by portal hypertension [132-135].

Conclusion
Until now, despite the combination of available vasodilator drugs 

at early stage of disease, the prognostic of PH remains unfortunately 
the same as some progressed cancer. The development in recent years 
of new bio-molecular techniques association with the identification 
of different signaling pathways improve the understanding of the 
molecular and genetic mechanisms of PH. The new findings on 
pathophysiology and pathobiology of PH also help physicians to 
improve advanced knowledge on pathogenesis of this disease and to 
develop new approaches therapeutics.
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