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Introduction
Sildenafil, the oldest approved Phosphodiesterase 5 (PDE5)

inhibitor, was originally developed for the treatment of angina pectoris
[1,2]. However, due to common side effects of enhancing penile
erection among volunteers who participated in the initial clinical trials,
the focus of research was shifted toward its potential beneficial effects
on erectile dysfunction. Since then, besides Sildenafil (Viagra) two
other PDE5 inhibitors, namely Vardenafil (Levitra) and Tadalafil
(Cialis) have been approved for the treatment of this common sexual
disorder. Subsequently, these agents were found to reduce pulmonary-
artery pressure and improve exercise capacity, World Health
Organization functional class, and hemodynamics in patients with
symptomatic pulmonary arterial hypertension [3,4], leading to the
approval of Sildenafil for this indication. These effects are largely
attributed to the ability of PDE5 inhibitors to relax the arterial wall
leading to decreased pulmonary arterial resistance and pressure.
Because PDE5 is expressed in arterial wall smooth muscle of the lungs
and penis [5], PDE5 inhibitors act selectively in these organs without
causing major systemic vasodilation. Besides these two organs, PDE5
is expressed in the renal tissue as was evident by PCR, northern blot
and immunohistochemical analysis [6]. Actually, three isoforms of
PDE5 have been identified in humans and dogs: PDE5A1, PDE5A2,
and PDE5A3. PDE5 which localized to the glomeruli, mesangial cells,
cortical tubules, and inner medullary collecting duct plays a critical
role in the regulation of renal hemodynamics and kidney excretory
function [7]. Support for the physiological importance of PDE5 at the
renal level, was recently derived from NO-stimulated cGMP-forming
Guanylyl Cyclase Knockout Mice (NO-GC1 KO). The relaxation of
renal vasculature as determined in isolated perfused kidneys was
reduced in these mice. 2-Kidney-1-Clip-Operation (2K1C) operated
Wild Type (WT) mice showed a reduction of cGMP-dependent
relaxation of renal vessels, which was not found in the NO-GC1 KOs.
The reduced relaxation in operated WT mice was restored by sildenafil
indicating that enhanced PDE5-catalyzed cGMP degradation most
likely accounts for the attenuated vascular responsiveness [8].

At the cellular level, PDE5 inhibitors protect cyclic Guanosine
Monophosphate (cGMP) from degradation by cGMP-specific
Phosphodiesterase Type 5 (PDE5) in the target organs. cGMP is
derived from either Nitric Oxide (NO) or natriuretic peptides action
on soluble or particulate guanylate cyclase, respectively [2], resulting
in increased cytosolic levels of cGMP, a well-known potent
vasodilator.

In the last few years, research focus has shifted to the field of
cardioprotective and subsequently nephroprotective properties of
PDE5 inhibitors. Concerning cardioprotection, it was elegantly
summarized by Reffelmann and Kloner [2], therefore the current
communication will concisely focus on recent studies that support
potential nephroprotective profiles of PDE5 inhibitors in both
experimental and clinical research. Yet, due to the similarity between
the mechanisms underlying cardiac and renal ischemic damage, the
present review recognises the great advances in the cardioprotective
properties of PDE5 inhibitors, which might be extrapolated to the
nephroprotective profile of the these agents. Therefore, a brief referral
to the cardioprotective actions of PDE5 inhibitors is brought hereby.

Pre-clinical Research
Besides their vasodilatory action, PDE5 inhibitors possess anti-

apoptotic and anti-oxidant properties [9], making them a promising
therapy for Ischemia-Reperfusion (I/R) injury of various organs. At
the cardiac level, pre-treatment with either Sildenafil or Tadalafil
reduced infarct size by 68% and 25% in rabbit and rat models of
myocardial infarction, respectively [10,11]. These beneficial
cardioprotective effects were attributed to the ability of Sildenafil to
open mitochondrial K (ATP) channels in the myocardium [10]. In this
context, opening of K (ATP) channels is regarded as an essential step
in signalling ischemic preconditioning [12]. Similarly, Vardenafil
restored mitochondrial membrane potential in a model of ischemia of
isolated rat heart [13]. It should be emphasized that mitochondrial
dysfunction is largely recognized as a key mediator of variety of
diseases including cardiac, neuronal and renal acute and chronic
damage [14-16]. In line with this concept, several studies have
demonstrated that restoration of mitochondrial function after
ischemic insults may be a key target to the recovery of inflicted organs
[15,16]. Recently, Whitaker et al. [16] have demonstrated that cGMP-
selective PDE inhibitors stimulate Mitochondrial Biogenesis (MB)
both in vitro and in vivo. Since, ischemic cardiac and renal injuries
share the same cellular mechanisms, namely oxidative stress,
apoptosis, and fibrosis, PDE5 inhibitors may also possess
nephroprotective effects in renal ischemic injury.

Indeed, our group has evaluated the early nephroprotective effects
of Tadalafil, a PDE5 inhibitor, in an experimental model of renal I/R
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[17]. For this purpose, Sprague-Dawley rats were divided into two
groups: vehicle-treated I/R, and Tadalafil (10 mg/kg po)-treated I/R
group. After removal of the right kidney and collection of two baseline
urine samples, the left renal artery was clamped for 45 min followed by
reperfusion for 60, 120, 180, and 240 min. Vehicle-treated I/R animals
exhibited significant reduction in Glomerular Filtration Rate (GFR)
throughout the follow-up period. In addition, the ischemic kidney
showed remarkable cast formation, necrosis, and congestion, a
consistent pattern of acute tubular necrosis. Furthermore, urinary
excretion of Neutrophil Gelatinase Associated Lipocaline (NGAL) and
Kidney Injury Molecule 1 (KIM-1), two novel biomarkers of kidney
injury [18-21], substantially increased following I/R insult. In contrast,
Tadalafil treatment resulted in a significant improvement in kidney
function and amelioration of the adverse histological alterations of the
ischemic kidney. Noteworthy, the urinary excretion of NGAL and
KIM-1 markedly decreased in the Tadalafil-treated I/R group. These
findings demonstrate that Tadalafil possesses early nephroprotective
effects in rat kidneys subjected to I/R insult. This approach may
suggest a prophylactic therapy for patients with ischemic AKI.

These results are in agreement with other studies that reported
beneficial renal effects of PDE5 inhibitors in the I/R rat model [22,23],
after unilateral ureteral obstruction [24], following cardiopulmonary
bypass AKI in swine [25], and post-transplant of warm ischemic
kidney [26]. While these studies examined the effects of PDE5
inhibitor pre-treatment on renal histology, oxidative stress, and
function, our study [17] assessed the effects of PDE5 inhibitors on the
more sensitive biomarkers of AKI [18-21], namely NGAL and KIM-1.
Concerning the efficacy of the three approved PDE5 inhibitors, it was
found that Sildenafil demonstrated slightly higher anti-apoptotic
effects in renal tubular tissue compared with Vardenafil and Tadalafil
[24]. All the tested PDE5 inhibitors suppressed the activation of the
deleterious isoform of NO synthase, Inducible NO Synthase (iNOS) in
the renal tissue after Partial Unilateral Ureteral Obstruction (PUUO)
model [21]. PUUO is a common urological problem, where it induces
progressive apoptosis of both renal tubular and interstitial cells which
contributes to renal tissue loss in obstructive uropathy [26]. On the
other hand the nephroprotective effects of Sildenafil in
postcardiopulmonary bypass AKI in swine was associated with
preservation of Endothelial NO Synthase (eNOS) and ATP
bioavailability and prevention of endothelial dysfunction, regional
hypoxia, inflammation, up-regulation of iNOS and tubular damage
[25]. These effects are consistent with the notion that ischemic AKI is
characterized by disruption of mitochondrial homeostasis and
inhibition of MB, and that restoration of mitochondrial number and
function is required for recovery of the injured kidney [16]. Sildenafil
has been shown to promote MB in cultured renal proximal tubular
cells and in renal tissue derived from experimental folic acid-induced
AKI in mice [16]. In addition, the elevated cGMP levels and
enhancement of eNOS expression following PDE-5 inhibition is
essential for the maintenance of renal perfusion and glomerular
filtration [27]. Noteworthy, PDE5 is expressed in both proximal
tubules and glomeruli [28]. Likewise, cGMP derived from either NO
or PDE5 inhibition regulates glomerular filtration by modulating the
reorganization of the glomerular slit diaphragm and cytoskeleton of
the podocytes [29,30].

The beneficial nephropotective effects of PDE5 inhibitors are not
restricted to AKI. It was shown that Sildenafil treatment prevented
hypertension and deterioration of renal function, reduced histologic
damage, inflammation and apoptosis, delayed the onset of proteinuria,
and preserved renal capillary integrity in an experimental model of

Chronic Kidney Diseases (CKD) induced by 5/6 nephrectomy [31].
However, the beneficial anti-proteinuria impact of Sildenafil was lost
when therapy began 4 weeks after the induction of the disease;
suggesting that efficacy is reduced if pathological changes are already
established. Similarly, Vardenafil ameliorated renal damage in type 1
diabetic rats via restoration of cGMP levels in podocytes [32]. The
nephroprotective effects of Vardenafil were evident by the reduction of
renal Transforming Growth Factor Beta (TGF-β) and the restoration
of nephrin and podocin expression accompanied by reduced
proteinuria. The nephroprotective effects of PDE5 inhibitors in
models of CKD are not solely due to blood pressure lowering action
[33], since they possess a potent anti-proliferative effect, preventing
mesangial cell proliferation and extracellular matrix expansion [34,35].
Similarly, PDE5 inhibition induce anti-apoptotic effects, [31,36] anti-
oxidative stress [37] and anti-inflammation [38] on renal cells in CKD
models [33].

Clinical Research
Acute kidney injury is a common clinical problem affecting 2–7% of

hospitalized patients including 5–10% of critically ill subjects [39-41].
Despite the advances in critical care medicine, AKI still poses an
important clinical challenge associated with high morbidity and
mortality. This is attributed to delay in diagnosis of AKI on the one
hand and largely to lack of efficient treatment on the other. In this
regard, several strategies have been proposed to deal with this disease.
These include antioxidants and antioxidant enzyme mimetics,
erythropoietin, peroxisome-proliferator-activated receptor agonists,
inhibitors of poly (ADP-ribose) polymerase, carbon monoxide-
releasing molecules, statins, adenosine, and acetylcysteine [39-42].
Unfortunately, the therapeutic efficacy of these approaches is
inconsistent and in most cases disappointing. Compared with the
many advances in the use of PDE5 inhibitors in clinical cardiac
settings, to the best of our knowledge these agents were not tested in
AKI clinical situations. Specifically, PDE5 inhibition resulted in
important cardioprotective effects as was evident by reduction of
infarct size, cardiac hypertrophy, lung edema and improved cardiac
function in experimental models of heart failure or myocardial injury
[2,13,43,44]. Clinical studies have also demonstrated beneficial effects
of Sildenafil and Vardenafil on endothelial function [45], where
chronic therapy with these agents improves endothelial function in
patients with chronic heart failure. Similarly, chronic Sildenafil
therapy significantly improved heart rate recovery, an important
prognostic marker, in patients with heart failure [46]. In line with
these findings, Guazzi et al. [47] have demonstrated that Sildenafil
improves left ventricle ejection fraction, diastolic function and clinical
status, suggesting a role for PDE5 inhibition in heart failure therapy.
Beneficial effects of Sildenafil have been documented in patients with
severe pulmonary hypertension who underwent cardiac valve
replacement surgery [48]. Unfortunately, neither this study nor other
relevant clinical trials reported the impact of PDE5 inhibition on
kidney function, where AKI is prevalent in patients who undergo this
type of cardiac surgery. It is tempting to assume that PDE5 inhibitors
will improve kidney function in various renal insults including AKI
and cardio-renal syndrome as was shown in experimental studies.
Concerning the latter, it was shown that Sildenafil mimics the
hemodynamic effects of Brain Natriuretic Peptide (BNP) in dogs with
heart failure induced by rapid pacing [49]. Additional encouraging
hints came from clinical trials where treatment of type-2 diabetic
patients with Sildenafil for one month reduced albuminuria [50].
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Lasaponara et al. [51] have tested the safety of PDE5 inhibitors in
patients with erectile dysfunction and severe renal disease or those
who have received renal transplants. Both sildenafil and vardenafil
were found to be efficacious and well tolerated for the treatment of
erectile dysfunction in patients receiving renal dialysis or transplant.
At the renal level, kidney function in graft recipients was not adversely
affected by sildenafil administration. The glomerular filtration rate and
filtration fraction of renal grafts were significantly increased in 10
patients who received a single 100-mg dose of sildenafil. Moreover,
lithium clearance was also significantly increased in sildenafil-treated
patients. Significant decreases were also observed in renal vascular
resistance and mean arterial pressure. Serum creatinine increased
slightly from baseline in 50 transplant recipients given sildenafil 25, 50,
or 100mg as needed for 12 weeks in an open-label study. However, no
effect on creatinine level was found in a second open-label study of 65
younger transplant recipients who received sildenafil 50 or 100mg for
an unspecified time period or in a randomized, controlled, crossover
trial of sildenafil 25, 50, or 100mg for 8 weeks. No negative effects of
sildenafil on CLcr occurred in 20 patients who received sildenafil
50mg for 4 weeks [51]. Blood urea nitrogen was also not significantly
changed in transplant recipients who received sildenafil 50mg. Blood
chemistry and hemoglobin were also unchanged with sildenafil
treatment.

The variability in the extent of the beneficial renal and extra-renal
effects of the various PDE5 inhibitors in both experimental and
clinical studies may stem from their selectivity to the different PDE
isoforms. In this context, tadalafil is extremely selective for PDE5, but
also potently inhibits PDE11, an enzyme with unknown physiological
function [52]. As PDE1 is expressed in the brain, myocardium, and
vascular smooth muscle cells, non selectivity with respect to this
enzyme (selectivity: tadalafil>vardenafil>sildenafil) may result in
vasodilation and tachycardia. Inhibition of PDE6 (selectivity:
tadalafil>vardenafil congruent with sildenafil), which is expressed only
in retina and functions in visual transduction, can transiently disturb
vision. PDE5 inhibitors may also indirectly inhibit PDE3 by increasing
cyclic guanosine monophospate levels, thereby elevating heart rate and
vasodilation while inhibiting platelet aggregation [52]. Another
important aspect is the dose at which PDE5 inhibitors were tested. In
the experimental studies the applied doses were higher than the
clinically effective doses, raising concerns over their inhibitory effects
on other PDEs isoforms. In addition, in the clinical studies a wide
range of doses were applied. This aspect once again calls for a highly
selective PDE5 inhibitor, which upon dose escalation will still be free
from non-selective and undesired adverse effects. Such an agent will be
the ideal drug candidate for nephroprotection.

Conclusions and Perspectives
The initial application of PDE5 inhibitor for erectile dysfunction

has evolved to other clinical settings including heart failure,
pulmonary hypertension and kidney dysfunction. These therapeutic
approaches are not surprising in light of the discovery that PDE5 is
expressed in a number of tissues such as lung, heart and kidney. While
the cardioprotective effects of PDE5 inhibitors are supported by both
experimental and to a lesser extent clinical studies, the
nephroprotective effects of these agents in AKI and CKD are still
emerging with limited animal studies and only one clinical trial [50].
Thus, carefully controlled large clinical studies are needed before
extrapolating the encouraging experimental findings to clinical
indications. Additional issue of debate involves the mechanisms

underlying the cardio- and nephroprotective effects of PDE5
inhibitors. It is widely accepted that these agents exert their beneficial
renal and cardiac effects via systemic and regional hemodynamics.
However, since Sildenafil significantly reduced necrosis and apoptosis
of cultured myocytes exposed to ischemia and of renal cells, a direct
effect independent of their vascular action may contribute to the
cardio- and nephroprotective effects of PDE5 inhibitors [9]. Thus, it
seems that PDE5 inhibitors exert their beneficial effects via multiple
mechanisms which involve both hemodynamic and molecular
signalling pathways, including NO and cGMP and their downstream
cascade [13]. A plausible mechanism for the improvement of cardiac
and renal function by PDE5 inhibition is proposed in Figure 1.
Moreover, although PDE5 inhibitors have an excellent safety record,
they may provoke minor side-effects, such as dyspepsia, headache, and
myalgia.

Figure 1: Schematic description of the intracellular mechanism of
action of natriuretic peptides and nitric oxide and their functions in
target organs.
These agents increase intracellular cGMP, which causes
vasodilation, diuresis, natriuresis, and other beneficial renal and
cardiac effects. PDE5 degrades cGMP, thus abolishing the
beneficial effects of natriuretic peptides and other substances that
act via NO generation, such as bradykinin and acetycholine. PDE5
inhibitors, protect against cGMP degradation by PDE5, thus
augmenting the beneficial actions of natriuretic peptides,
bradykinin, and acetylcholine. ANP: Atrial Natriuretic Peptide;
BNP: Brain Natriuretic Peptide; B2: Bradykinin Receptor Type 2;
cGMP: Cyclic Guanosine Monophosphate; eNOS: Endothelial
Nitric Oxide Synthase; M: Muscarinic Receptor; NO: Nitric Oxide;
NRPA,B: Natriuretic Peptide Receptors A,B respectively; PDE5:
Phosphodiesterase 5.

In conclusion, despite the encouraging results from animal studies,
till now there is insufficient evidence to support the renoprotective
effects of PDE5 inhibitors in humans. Of relevance could be patients
who undergo interventional procedures associated with increased risk
for AKI including radiocontrast-induced nephropathy, kidney
transplants, cardiopulmonary bypass surgery and critically ill patients.
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